Nematode Autotomy Requires Molting and Entails Tissue Healing without Obvious Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. C. elegans Growth Conditions
2.2. Formation of Worm-Stars
2.3. Strains
2.4. Photography
3. Results
3.1. Autotomy Can Occur in Many Rhabditid Species
3.2. Autotomy Can Occur at Either L3-to-L4 or L4-to-Adult Molts
3.3. Autotomy Can Occur at Any Body Axis Point Posterior to the Pharynx
3.4. Autotomy may be Achieved by Twisting
3.5. Autotomy is Associated with Extensive Healing and May Involve Tissue Fusions
3.6. Autotomy Fails to Induce Obvious Cell or Tissue Regeneration
3.7. Successful Autotomy is Independent of Most Signaling Pathways or Regeneration Mechanisms
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Emberts, Z.; Escalante, I.; Bateman, P.W. The ecology and evolution of autotomy. Biol. Rev. Camb. Philos. Soc. 2019, 94, 1881–1886. [Google Scholar] [CrossRef] [PubMed]
- Fleming, P.A.; Muller, D.; Bateman, P.W. Leave it all behind: A taxonomic perspective of autotomy in invertebrates. Biol. Rev. Camb. Philos. Soc. 2007, 82, 481–510. [Google Scholar] [CrossRef] [PubMed]
- Hodgkin, J.; Félix, M.-A.; Clark, L.C.; Stroud, D.; Gravato-Nobre, M.J. Two Leucobacter strains exert complementary virulence on Caenorhabditis including death by worm-star formation. Curr. Biol. 2013, 23, 2157–2161. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar]
- Clark, L.C.; Hodgkin, J. Leucobacter musarum subsp. musarum sp. nov., subsp. nov., Leucobacter musarum subsp. japonicus subsp. nov., and Leucobacter celer subsp. astrifaciens subsp. nov., three nematopathogenic bacteria isolated from Caenorhabditis, with an emended description of Leucobacter celer. Int. J. Syst. Evol. Microbiol. 2015, 65, 3977–3984. [Google Scholar]
- Yoeli, M. Observations of agglutination and thigmotaxis of microfilariae in bancroftian filariasis. Trans. R. Soc. Trop. Med. Hyg. 1957, 51, 132–136. [Google Scholar] [CrossRef]
- Pye, A.E.; Burman, M. Rosette formation by Heterorhabditis bacteriophora. Nematologica 1981, 27, 117–119. [Google Scholar] [CrossRef]
- Ambros, V. A hierarchy of regulatory genes controls a larva-to-adult switch in C. elegans. Cell 1989, 57, 49–57. [Google Scholar] [CrossRef]
- Singh, R.N.; Sulston, J.E. Some observations on moulting in Caenorhabditis elegans. Nematologica 1978, 24, 63–71. [Google Scholar] [CrossRef]
- Lažetić, V.; Fay, D.S. Molting in C. elegans. Worm 2017, 6, 1330246. [Google Scholar] [CrossRef]
- Schwarz, J.; Bringmann, H. Analysis of the NK2 homeobox gene ceh-24 reveals sublateral motor neuron control of left-right turning during sleep. Elife 2017, 6, 24846. [Google Scholar] [CrossRef]
- Hernández, J.M.; Podbilewicz, B. The hallmarks of cell-cell fusion. Development 2017, 144, 4481–4495. [Google Scholar]
- Loer, C.M.; Calvo, A.C.; Watschinger, K.; Werner-Felmayer, G.; O’Rourke, D.; Stroud, D.; Tong, A.; Gotenstein, J.R.; Chisholm, A.D.; Hodgkin, J.; et al. Cuticle integrity and biogenic amine synthesis in Caenorhabditis elegans require the cofactor tetrahydrobiopterin (BH4). Genetics 2015, 200, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Gravato-Nobre, M.J.; Nicholas, H.R.; Nijland, R.; O’Rourke, D.; Whittington, D.E.; Yook, K.J.; Hodgkin, J. Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics 2005, 171, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Conradt, B.; Wu, Y.C.; Xue, D. Programmed cell death during Caenorhabditis elegans development. Genetics 2016, 203, 1533–1562. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, A.D.; Hutter, H.; Jin, Y.; Wadsworth, W.G. The genetics of axon guidance and axon regeneration in Caenorhabditis elegans. Genetics 2016, 204, 849–882. [Google Scholar] [CrossRef] [PubMed]
- Vibert, L.; Daulny, A.; Jarriault, S. Wound healing, cellular regeneration and plasticity: The elegans way. Int. J. Dev. Biol. 2018, 62, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.E.; Shen, K. Neurite Development and Repair in Worms and Flies. Ann. Rev. Neurosci. 2019, 42, 209–226. [Google Scholar] [CrossRef]
- Kim, D.H.; Ewbank, J.J. Signaling in the innate immune response. Wormbook 2018, 2018, 1–35. [Google Scholar] [CrossRef]
- Hodgkin, J.; Clark, L.C.; Gravato-Nobre, M.J. Worm-stars and half-worms: Novel dangers and novel defense. Worm 2014, 3, 27939. [Google Scholar] [CrossRef]
- Barron, G.L. The Nematode-Destroying Fungi. Topics in Mycobiology No. 1; Canadian Biological Publications Ltd.: Guelph, ON, Canada, 1977. [Google Scholar]
- Hsueh, Y.P.; Mahanti, P.; Schroeder, F.C.; Sternberg, P.W. Nematode-trapping fungi eavesdrop on nematode pheromones. Curr. Biol. 2013, 23, 83–86. [Google Scholar] [CrossRef]
- Frand, A.R.; Russel, S.; Ruvkun, G. Functional genomic analysis of C. elegans molting. PLoS Biol. 2005, 3, 312. [Google Scholar] [CrossRef] [PubMed]
- Zugasti, O.; Rajan, J.; Kuwabara, P.E. The function and expansion of the Patched- and Hedgehog-related homologs in C. elegans. Genome Res. 2005, 15, 1402–1410. [Google Scholar] [CrossRef] [PubMed]
- Kelley, M.; Yochem, J.; Krieg, M.; Calixto, A.; Heiman, M.G.; Kuzmanov, A.; Meli, V.; Chalfie, M.; Goodman, M.B.; Shaham, S.; et al. FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis. Elife 2015, 4, 06565. [Google Scholar] [CrossRef] [PubMed]
- Lažetić, V.; Fay, D.S. Conserved Ankyrin Repeat Proteins and Their NIMA Kinase Partners Regulate Extracellular Matrix Remodeling and Intracellular Trafficking in Caenorhabditis elegans. Genetics 2017, 205, 273–293. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodgkin, J. Nematode Autotomy Requires Molting and Entails Tissue Healing without Obvious Regeneration. J. Dev. Biol. 2019, 7, 21. https://doi.org/10.3390/jdb7040021
Hodgkin J. Nematode Autotomy Requires Molting and Entails Tissue Healing without Obvious Regeneration. Journal of Developmental Biology. 2019; 7(4):21. https://doi.org/10.3390/jdb7040021
Chicago/Turabian StyleHodgkin, Jonathan. 2019. "Nematode Autotomy Requires Molting and Entails Tissue Healing without Obvious Regeneration" Journal of Developmental Biology 7, no. 4: 21. https://doi.org/10.3390/jdb7040021
APA StyleHodgkin, J. (2019). Nematode Autotomy Requires Molting and Entails Tissue Healing without Obvious Regeneration. Journal of Developmental Biology, 7(4), 21. https://doi.org/10.3390/jdb7040021