Phenolic Composition, Antioxidant Capacity and Antibacterial Activity of White Wormwood (Artemisia herba-alba)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition of Phenolic Compounds in A. herba-alba Fractions
2.2. Antimicrobial Activities of A. herba-alba Extracts
2.3. Antioxidant Activities of A. herba-alba Extraction
3. Materials and Methods
3.1. Materials
3.2. Extraction of Artemisia by Soxhlet Apparatus
3.3. Isolation and Fractions of Artemisia Extract by Column
3.4. Thin-Layer Chromatography (TLC)
3.5. Analysis of Phenols by HPLC (High Performance Liquid Chromatography)
3.6. Origin and Selection of Microbial Strains
3.7. Preparation of the Inoculums
3.8. Disk Diffusion Method on Agar
3.9. Direct TLC Bioautography Assay
3.10. DPPH Radical Scavenging Activity Assay
3.11. Ferric Reducing Antioxidant Power (FRAP) Assay
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anand, U.; Jacobo-Herrera, N.J.; Altemimi, A.B.; Lakhssassi, N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorlenko, C.L.; Kiselev, H.Y.; Budanova, E.V.; Zamyatnin, J.A.A.; Zamyatnin, J.A.A. Plant Secondary Metabolites in the Battle of Drugs and Drug-Resistant Bacteria: New Heroes or Worse Clones of Antibiotics? Antibiotics 2020, 9, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, U.; Nandy, S.; Mundhra, A.; Das, N.; Pandey, D.K.; Dey, A. A review on antimicrobial botanicals, phytochemicals and nat-ural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic microorganisms. Drug Resist. Updates. 2020, 51, 100695. [Google Scholar] [CrossRef] [PubMed]
- Zu, Y.-G.; Yu, H.; Liang, L.; Fu, Y.-J.; Efferth, T.; Liu, X.; Wu, N. Activities of Ten Essential Oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 Cancer Cells. Molecules 2010, 15, 3200–3210. [Google Scholar] [CrossRef]
- Hao, D.C.; Xiao, P.G. Pharmaceutical resource discovery from traditional medicinal plants: Pharmacophylogeny and pharma-cophylogenomics. Chin. Herb. Med. 2020, 12, 104–117. [Google Scholar] [CrossRef]
- Singh, A.; Pratap-Singh, A.; Ramaswamy, H.S. A Controlled Agitation Process for Improving Quality of Canned Green Beans during Agitation Thermal Processing. J. Food Sci. 2016, 81, E1399–E1411. [Google Scholar] [CrossRef] [Green Version]
- Messaoudene, D.; Belguendouz, H.; Ahmedi, M.-L.; Benabdelkader, T.; Otmani, F.; Terahi, M.; Youinou, P.; Touilboukoffa, C. Ex Vivo Effects of Flavonoids Extracted from Artemisia herba Alba on Cytokines and Nitric Oxide Production in Algerian Pa-tients with Adamantiades-Behcet’s Disease. J. Inflamm. 2011, 8, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-M. On the origin and development of Artemisia (Asteraceae) in the geological past. Bot. J. Linn. Soc. 2004, 145, 331–336. [Google Scholar] [CrossRef]
- Vallès, J.; Garcia, S.; Hidalgo, O.; Martin, J.; Pellicer, J.; Sanz, M.; Garnatj, T. Biology, Genome Evolution, Biotechnological Issues, and Research Including Applied Perspectives in Artemisia (Asteraceae). Adv. Bot. Res. 2011, 60, 349–419. [Google Scholar]
- Adel, K.; Zied, Z.; Ahmed, B.K.; Ji, G.N.; Mohamed, D.; Radhouane, G.; Kadri, A.; Zarai, Z.; Bekir, A.; Gharsallah, N.; et al. Chemical constituents and antioxidant activity of the essential oil from aerial parts of Artemisia herba-alba grown in Tunisian semi-arid region. Afr. J. Biotechnol. 2011, 10, 2923–2929. [Google Scholar] [CrossRef]
- Sharaf, S.A.; Shibli, R.A.; Kasrawi, M.A.; Baghdadi, S.H. Cryopreservation of wild Shih (Artemisia herba-alba Asso.) shoot-tips by encapsulation-dehydration and encapsulation-vitrification. Plant Cell Tissue Organ Cult. PCTOC 2011, 108, 437–444. [Google Scholar] [CrossRef]
- Mo-hamed, A.E.H.; ElSayed, M.A.; Hegazy, M.E.; Helaly, S.E.; Esmail, A.M.; Mohamed, N.S. Chemical Constituents and Biological Activities of Artemisia Herba Alba. Rec. Nat. Prod. 2010, 4, 1–25. [Google Scholar]
- Mohamed, H.R.H.; Amer, M.; El Faky, A.S.A. Growth retardation and apoptotic death of tumor cells by Artemisia herba-alba oral administration in Ehrlich solid carcinoma bearing mice. Rev. Bras. Farm. 2019, 29, 763–772. [Google Scholar] [CrossRef]
- Iriadam, M.D.; Musa, G.M.; Hatice, H.; Sun Baba, F. Effects of two Turkish medicinal plants Artemisia herba-alba and Teu-crium polium on blood glucose levels and other biochemical parameters in rabbits. J. Cell Mol. Biol. 2006, 5, 19–24. [Google Scholar]
- Mighri, H.; Hajlaoui, H.; Akrout, A.; Najjaa, H.; Neffati, M. Antimicrobial and antioxidant activities of Artemisia herba-alba essential oil cultivated in Tunisian arid zone. Comptes Rendus Chim. 2010, 13, 380–386. [Google Scholar] [CrossRef]
- Essid, R.; Rahali, F.Z.; Msaada, K.; Sghair, I.; Hammami, M.; Bouratbine, A.; Aoun, K.; Limam, F. Antileishmanial and cytotoxic potential of essential oils from medicinal plants in Northern Tunisia. Ind. Crops Prod. 2015, 77, 795–802. [Google Scholar] [CrossRef]
- Hatimi, S.; Boudouma, M.; Bichichi, M.; Chaib, N.; Idrissi, N.G. [In vitro evaluation of antileishmania activity of Artemisia herba alba Asso]. Bull. Soc. Pathol. Exot. 2001, 94, 29–31. [Google Scholar]
- Cheraif, K.; Bakchiche, B.; Gherib, A.; Bardaweel, S.K.; Çol Ayvaz, M.; Flamini, G.; Ascrizzi, R.; Ghareeb, M.A. Chemical Composition, Antioxidant, Anti-Tyrosinase, Anti-Cholinesterase and Cytotoxic Activities of Essential Oils of Six Algerian Plants. Molecules 2020, 25, 1710. [Google Scholar] [CrossRef] [Green Version]
- Laid, M.; Hegazy, M.E.F.; Ahmed, A.A.; Ali, K.; Belkacemi, D.; Ohta, S. Sesquiterpene lactones from Algerian Artemisia herba-alba. Phytochem. Lett. 2008, 1, 85–88. [Google Scholar] [CrossRef]
- Bouazza, L.; Boufennara, S.; Bensaada, M.; Zeraib, A.; Rahal, K.; Saro, C.; Ranilla, M.J.; López, S. In vitro screening of Algerian steppe browse plants for digestibility, rumen fermentation profile and methane mitigation. Agrofor. Syst. 2019, 94, 1433–1443. [Google Scholar] [CrossRef]
- Gacem, M.A.; El Hadj-Khelil, A.O.; Boudjemaa, B.; Gacem, H. Phytochemistry, Toxicity and Pharmacology of Pistacia lentiscus, Artemisia herba-alba and Citrullus colocynthis. In Sustainable Agriculture Reviews 39; Springer: Cham, Switzerland, 2020; pp. 57–93. [Google Scholar]
- Rafika, G.; Zahia, H.; Nesma, H. Chemical Composition and Antibacterial Activity of Artemisia campestris ssp. glutinosa (J. Gay) Batt. and A. judaïca ssp. sahariensis (Chev.) Species Endemic to the Algerian Sahara. J. Essent. Oil Bear. Plants 2018, 21, 779–788. [Google Scholar] [CrossRef]
- Younsi, F.; Trimech, R.; Boulila, A.; Ezzine, O.; Dhahri, S.; Boussaid, M.; Messaoud, C. Essential oil and phenolic compounds of Ar-temisia herba-alba (Asso.): Composition, antioxidant, antiacetylcholinesterase, and antibacterial activities. Int. J. Food Prop. 2016, 19, 1425–1438. [Google Scholar] [CrossRef] [Green Version]
- Tilaoui, M.; Mouse, H.A.; Jaafari, A.; Zyad, A. Comparative Phytochemical Analysis of Essential Oils from Different Biological Parts of Artemisia herba alba and Their Cytotoxic Effect on Cancer Cells. PLoS ONE 2015, 10, e0131799. [Google Scholar] [CrossRef] [PubMed]
- Bourgou, S.; Rebey, I.B.; Mkadmini, K.; Isoda, H.; Ksouri, R.; Ksouri, W.M. LC-ESI-TOF-MS and GC-MS profiling of Artemisia herba-alba and evaluation of its bioactive properties. Food Res. Int. 2017, 99, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Abood, S.; Eichelbaum, S.; Mustafi, S.; Veisaga, M.-L.; López, L.A.; Barbieri, M. Biomedical Properties and Origins of Sesquiterpene Lactones, with a Focus on Dehydroleucodine. Nat. Prod. Commun. 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Hudaib, M.; Aburjai, T. Composition of the Essential Oil from Artemisia herba-alba Grown in Jordan. J. Essent. Oil Res. 2006, 18, 301–304. [Google Scholar] [CrossRef]
- Altemimi, A.B.; Mohammed, M.J.; Yi-Chen, L.; Watson, D.G.; Lakhssassi, N.; Cacciola, F.; Ibrahim, S.A. Optimization of Ultrasonicated Kaempferol Extraction from Ocimum basilicum Using a Box–Behnken Design and Its Densitometric Validation. Foods 2020, 9, 1379. [Google Scholar] [CrossRef]
- Moussii, I.M.; Nayme, K.; Timinouni, M.; Jamaleddine, J.; Filali, H.; Hakkou, F. Synergistic antibacterial effects of Moroccan Arte-misia herba alba, Lavandula angustifolia and Rosmarinus officinalis essential oils. Synergy 2020, 10, 100057. [Google Scholar] [CrossRef]
- Mohamed, T.A.; Abd El Aty, A.A.; Shahat, A.A.; Abdel-Azim, N.S.; Shams, K.A.; ElShamy, A.I.; Ahmed, M.M.; Youns, S.H.H.; El-Wassimy, T.M.; El-Toumy, S.A.; et al. New antimicrobial metabolites from the medicinal herb Artemisia herba-Alba. Nat. Prod. Res. 2019, 1–9. [Google Scholar] [CrossRef]
- Souhila, T.; Fatma Zohra, B.; Tahar, H.S. Identification and quantification of phenolic compounds of Artemisia herba-alba at three harvest time by HPLC–ESI–Q-TOF–MS. Int. J. Food Prop. 2019, 22, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Bourgou, S.; Tammar, S.; Salem, N.; Mkadmini, K.; Msaada, K. Phenolic composition, essential oil, and antioxidant activi-ty in the aerial part of Artemisia herba-alba from several provenances: A comparative study. Int. J. Food Prop. 2016, 19, 549–563. [Google Scholar] [CrossRef]
- Feuerstein, I.; Danin, A.; Segal, R. Constitution of the essential oil from an Artemisia herba-alba population of Spain. Phytochemistry 1988, 27, 433–434. [Google Scholar] [CrossRef]
- Yun, K.; Kil, B.; Park, J. Identification of naturally occurring, chemicals from Artemis, princeps var, orientalis. Allelopath. J. 1994, 1, 95–104. [Google Scholar]
- Pratap-Singh, A.; Fathordoobady, F.; Guo, Y.; Singh, A.; Kitts, D.D. Antioxidants help favorably regulate the kinetics of lipid peroxidation, polyunsaturated fatty acids degradation and acidic cannabinoids decarboxylation in hempseed oil. Sci. Rep. 2020, 10, 10567. [Google Scholar] [CrossRef] [PubMed]
- Seddik, K.; Nadjet, I.; Daoud, B.A.H.; Lekhmici, A. Antioxidant and antibacterial activities of extracts from Artemisia herba alba Asso. leaves and some phenolic compounds. J. Med. Plants Res. 2010, 4, 1273–1280. [Google Scholar]
- Braghiroli, L.; Mazzanti, G.; Manganaro, M.; Mascellino, M.; Vespertilli, T. Antimicrobial activity of Calluna vulgaris. Phytother. Res. 1996, 10, S86. [Google Scholar]
- Merkl, R.; Hrádková, I.; Filip, V.; Šmidrkal, J. Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech J. Food Sci. 2010, 28, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Rauha, J.-P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef]
- Chanwitheesuk, A.; Teerawutgulrag, A.; Kilburn, J.D.; Rakariyatham, N. Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem. 2007, 100, 1044–1048. [Google Scholar] [CrossRef]
- Bertella, A.; Benlahcen, K.; Abouamama, S.; Pinto, D.C.; Maamar, K.; Kihal, M.; Silva, A.M. Artemisia herba-alba Asso. essential oil antibacterial activity and acute toxicity. Ind. Crops Prod. 2018, 116, 137–143. [Google Scholar] [CrossRef]
- Lekganyane, M.A.; Matsebatlela, T.M.; Howard, R.L.; Shai, L.J.; Masoko, P. The phytochemical, antibacterial and antioxidant activi-ty of five medicinal plants against the wound infecting bacteria. Afr. J. Biotechnol. 2012, 11, 13210. [Google Scholar]
- Sroka, Z.; Cisowski, W. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 2003, 41, 753–758. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Advantages and limitations of common testing methods for antioxidants. Free Radic. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef] [PubMed]
- Hodzic, Z.; Pasalic, H.; Memisevic, A.; Srabovic, M.; Saletovic, M.; Poljakovic, M. The influence of total phenols content on antiox-idant capacity in the whole grain extracts. Eur. J. Sci. Res. 2009, 28, 471–477. [Google Scholar]
- Spigno, G.; De Faveri, D.M. Antioxidants from grape stalks and marc: Influence of extraction procedure on yield, purity and antioxidant power of the extracts. J. Food Eng. 2007, 78, 793–801. [Google Scholar] [CrossRef]
- Sendi, N.; Mkadmini-Hammi, K.; Ben Mansour, R.; Selmi, S.; Trabelsi, N.; Isoda, H.; Ksouri, R.; Megdiche-Ksouri, W. Simultaneous optimization of ultrasound-assisted extraction of flavonoid compounds and antiradical activity from Artemisia herba-Alba using response surface methodology. Prep. Biochem. Biotechnol. 2020, 50, 943–953. [Google Scholar] [CrossRef]
- Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant activities of peel, pulp and seed fractions of common fruits as deter-mined by FRAP assay. Nutr. Res. 2003, 23, 1719–1726. [Google Scholar] [CrossRef]
- Wiktor, A.; Mandal, R.; Singh, A.; Pratap-Singh, A. Pulsed Light treatment below a Critical Fluence (3.82 J/cm2) minimizes pho-to-degradation and browning of a model Phenolic (Gallic Acid) Solution. Foods 2019, 8, 380. [Google Scholar] [CrossRef] [Green Version]
- Skendi, A.; Irakli, M.; Chatzopoulou, P. Analysis of phenolic compounds in Greek plants of Lamiaceae family by HPLC. J. Appl. Res. Med. Aromat. Plants 2017, 6, 62–69. [Google Scholar] [CrossRef]
- Andrews, J.M. BSAC standardized disc susceptibility testing method (version 8). J. Antimicrob. Chemother. 2009, 64, 454–489. [Google Scholar] [CrossRef]
- Zazharskyi, V.V.; Davydenko, P.O.; Kulishenko, O.M.; Borovik, I.V.; Brygadyrenko, V.V. Antimicrobial activity of 50 plant extracts. Biosyst. Divers. 2019, 27, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Khaleel, A.I.; Sijam, K.; Rashid, T.S. Determination of antibacterial compounds of punica Granatum peel extract by tlc direct bio-autography and GCMS analysis. Biochem. Cell. Arch. 2018, 18, 379–384. [Google Scholar]
- Amiri, A.; Mousakhani-Ganjeh, A.; Amiri, Z.; Guo, Y.-G.; Singh, A.P.; Kenari, R.E. Fabrication of cumin loaded-chitosan particles: Characterized by molecular, morphological, thermal, antioxidant and anticancer properties as well as its utilization in food system. Food Chem. 2020, 310, 125821. [Google Scholar] [CrossRef] [PubMed]
- Oyaızu, M. Studies on product of browning reaction prepared from glucose amine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
Fractions | Number of Peak | Retention Time (min) | Concentration (ppm) c | Identifed Compounds |
---|---|---|---|---|
I a | 1 | 2.5 | 18.0 ± 0.9 | Hydroquinone |
II a | 1 | 2.9 | 2.3 ± 0.2 | 4-Hydroxy benzoic acid |
2 | 3.1 | 2.2 ± 0.3 | Vanillic acid | |
III b | 1 | 2.8 | 0.7 ± 0.1 | Catechol |
2 | 3.2 | 1.6 ± 0.2 | Quercetin | |
IV b | 1 | 2.0 | 5.1 ± 0.3 | Gallic acid |
2 | 2.8 | 14.1 ± 0.7 | 4-Hydroxy benzoic acid | |
3 | 3.7 | 20.3 ± 1.1 | Cinnamic acid | |
V b | 1 | 2.0 | 4.6 ± 0.3 | Gallic acid |
2 | 2.5 | 1.8 ± 0.2 | Hydroquinone | |
3 | 3.4 | 14.9 ± 0.8 | Thymol |
Concentration | Zone of Inhibition (mm) e | ||||
---|---|---|---|---|---|
Fraction I (2) | μg/mL | S. aureus | B. cereus | E. coli | P. vulgaris |
1.25 | 0 | 8 ± 1.12 a | 0 | 9 ± 1.02 a | |
2.5 | 0 | 15 ± 0.87 b | 0 | 12 ± 0.95 a | |
5 | 10 ± 1.01 a | 17 ± 1.02 b | 0 | 15 ± 1.03 b | |
10 | 13 ± 1.11 a | 19 ± 0.99 c | 12 ± 0.87 a | 18 ± 1.11 c | |
20 | 17 ± 0.88 b | 20 ± 1.07 c | 17 ± 1.03 b | 19 ± 0.99 c | |
Fraction II (3,4) | 1.25 | 0 | 11 ± 1.02 a | 10 ± 1.1 a | 0 |
2.5 | 0 | 16 ± 1.02 b | 12 ± 1.09 a | 0 | |
5 | 11 ± 0.91 a | 18 ± 0.82 b | 17 ± 0.84 b | 12 ± 0.88 a | |
10 | 16 ± 1.04 b | 21 ± 1.03 c | 21 ± 1.07 c | 16 ± 1.01 b | |
20 | 17 ± 1.12 b | 22 ± 0.97 c | 20 ± 0.99 c | 22 ± 0.95 c | |
Fraction III (3,5) | 1.25 | 10 ± 0.97 a | 12 ± 1.04 a | 8 ± 0.98 a | 0 |
2.5 | 13 ± 1.03 b | 16 ± 0.92 b | 12 ± 1.03 a | 0 | |
5 | 18 ± 1.01 c | 20 ± 0.89 c | 15 ± 1.04 b | 0 | |
10 | 19 ± 0.98 c | 25±0.93d | 17 ± 0.99 b | 0 | |
20 | 20 ± 0.92 c | 27 ± 1.05 d | 20 ± 1.09 c | 9 ± 1.05 a | |
Fraction IV (1,3,6) | 1.25 | 0 | 0 | 0 | 0 |
2.5 | 13 ± 1.11 a | 8 ± 1.02 a | 10 ± 1.05 a | 0 | |
5 | 16 ± 0.91 b | 14 ± 0.98 b | 17 ± 0.87 b | 0 | |
10 | 19 ± 1.08 c | 18 ± 1.03 c | 17 ± 1.08 b | 14 ± 0.88 b | |
20 | 25 ± 1.01 d | 20 ± 0.91 c | 19 ± 1.01 b | 18 ± 1.03 c | |
Fraction V (1,2,5) | 1.25 | 0 | 0 | 0 | 0 |
2.5 | 11 ± 1.2 a | 0 | 15 ± 0.83 b | 0 | |
5 | 16 ± 1.3 b | 15 ± 1.12 b | 17 ± 1.04 b | 0 | |
10 | 23 ± 0.98 c | 17 ± 0.93 b | 21 ± 1.12 c | 11 ± 0.94 a | |
20 | 21 ± 1.11 c | 20 ± 1.11 c | 21 ± 1.14 c | 17 ± 1.02 b | |
Control | Amikacin | 22 | 24 | 25 | 23 |
Gentamycin | 25 | 23 | 22 | 24 | |
Direct TLC Bioautography results | Retardation factors (Rf) of inhibition zones. | 0.20, 0.40, 0.70 | 0.30, 0.40, 0.55, 0.70, 0.80 | 0.40, 0.55, 0.70 | 0.30 |
Color indicator Legend | 0–5 mm | 5–10 mm | 10–15 mm | 15–20 mm | >20 mm |
Concentration (µg/mL) | Standard (%) | Fraction I (%) | Fraction II (%) | Fraction III (%) | Fraction IV (%) | Fraction V (%) |
---|---|---|---|---|---|---|
10 | 50.3 ± 0.1 c | 31.1 ± 0.9 a | 30.1 ± 0.8 a | 52.9 ± 0.6 b | 37.0 ± 0.6 b | 42.7 ± 0.3 b |
20 | 71.7 ± 1.3 e | 39.7 ± 0.4 b | 37.6 ± 0.9 b | 70.5 ± 0.4 e | 49.9 ± 0.1 c | 61.9 ± 0.5 d |
40 | 86.7 ± 1.3 g | 49.8 ± 0.5 c | 41.6 ± 0.7 b | 89.1 ± 0.6 g | 70.1 ± 0.3 e | 81.0 ± 0.5 f |
80 | 92.9 ± 0.5 h | 69.5 ± 0.6 e | 50.7 ± 0.4 c | 95.8 ± 0.2 h | 80.0 ± 0.4 f | 89.0 ± 0.6 g |
160 | 98.5 ± 0.5 i | 80.6 ± 0.3 f | 67.1 ± 0.3 e | 98.8 ± 0.2 i | 86.9 ± 0.1 g | 93.1 ± 0.3 h |
Standards | Retention Time (min) | Concentration (ppm) | Area 1 |
---|---|---|---|
Hydroquinone | 2.53 | 25 | 128,153,656 (0.01) |
4-Hydroxy benzoic acid | 2.85 | 25 | 43,264,890 (0.01) |
Vanillic acid | 3.07 | 25 | 26,209,327 (0.01) |
Catechol | 2.78 | 25 | 72,980,280 (0.02) |
Quercetin | 3.26 | 25 | 30,545,891 (0.01) |
Gallic acid | 2.06 | 25 | 25,719,999 (0.01) |
Cinnamic acid | 3.62 | 25 | 5,012,145 (0.01) |
Thymol | 3.32 | 25 | 8,398,173 (0.02) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, M.J.; Anand, U.; Altemimi, A.B.; Tripathi, V.; Guo, Y.; Pratap-Singh, A. Phenolic Composition, Antioxidant Capacity and Antibacterial Activity of White Wormwood (Artemisia herba-alba). Plants 2021, 10, 164. https://doi.org/10.3390/plants10010164
Mohammed MJ, Anand U, Altemimi AB, Tripathi V, Guo Y, Pratap-Singh A. Phenolic Composition, Antioxidant Capacity and Antibacterial Activity of White Wormwood (Artemisia herba-alba). Plants. 2021; 10(1):164. https://doi.org/10.3390/plants10010164
Chicago/Turabian StyleMohammed, Muthanna J., Uttpal Anand, Ammar B. Altemimi, Vijay Tripathi, Yigong Guo, and Anubhav Pratap-Singh. 2021. "Phenolic Composition, Antioxidant Capacity and Antibacterial Activity of White Wormwood (Artemisia herba-alba)" Plants 10, no. 1: 164. https://doi.org/10.3390/plants10010164
APA StyleMohammed, M. J., Anand, U., Altemimi, A. B., Tripathi, V., Guo, Y., & Pratap-Singh, A. (2021). Phenolic Composition, Antioxidant Capacity and Antibacterial Activity of White Wormwood (Artemisia herba-alba). Plants, 10(1), 164. https://doi.org/10.3390/plants10010164