Understanding Alstroemeria pallida Flower Colour: Links between Phenotype, Anthocyanins and Gene Expression
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Characterisation
2.2. Anthocyanin Characterisation
2.3. Relative Expression of Chalcone Synthase (CHS) and Anthocyanidin Synthase (ANS)
2.4. Principal Component Analysis
3. Discussion
3.1. Phenotypic Characterisation of Flower Colour
3.2. Anthocyanin Content in Tepals
3.3. Relative Expression of CHS and ANS
3.4. Principal Component Analysis
4. Materials and Methods
4.1. Plant Material
4.2. Phenotypic Characterisation
4.3. Anthocyanin Characterisation
4.4. Gene Expression
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Accession | Tepal Cell pH |
---|---|
RHSN999D | 5.00 a |
RHS155B | 5.01 a |
RHS56C | 5.01 a |
RHS65B | 5.01 a |
RHS68C | 4.99 a |
Appendix B
References
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Plant pigments for coloration: Anthocyanins, betalains and carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef] [PubMed]
- Andersen, Ø.M.; Markham, K.R. Flavonoids: Chemistry, Biochemistry and Applications; CRC Press: Boca Raton, FL, USA, 2005; pp. 471–551. [Google Scholar]
- Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Thill, J.; Miosic, S.; Ahmed, R.; Schlangen, K.; Muster, G.; Stich, K.; Halbwirth, H. ‘Le Rouge et le Noir’: A decline in flavone formation correlates with the rare color of black dahlia (Dahlia variabilis hort.) flowers. BMC Plant Biol. 2012, 12, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitzer, V.; Veberic, R.; Osterc, G.; Stampar, F. Color and phenolic content changes during flower development in groundcover rose. J. Am. Soc. Hortic. Sci. 2010, 135, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Fumi, T.; Norio, S.; Kenjiro, T.; Koichi, S.; Toshio, H. Flower colors and their anthocyanins in Matthiola incana cultivars (Brassicaceae). J. Jpn. Soc. Hortic. Sci. 2012, 81, 91–100. [Google Scholar]
- Zhao, D.Q.; Tao, J.; Han, C.X.; Ge, J.T. Flower color diversity revealed by differential expression of flavonoid biosynthetic genes and flavonoid accumulation in herbaceous peony (Paeonia lactiflora Pall.). Mol. Biol. Rep. 2012, 39, 11263–11275. [Google Scholar] [CrossRef]
- Han, Y.Y.; Ming, F.; Wang, J.W.; Wen, J.G.; Ye, M.M.; Shen, D.L. Cloning and characterization of a novel chalcone synthase gene from Phalaenopsis hybrida orchid flowers. Russ. J. Plant Physiol. 2006, 53, 223–230. [Google Scholar] [CrossRef]
- Tanaka, Y.; Katsumoto, Y.; Brugliera, F.; Mason, J. Genetic engineering in floriculture. Plant Cell Tissue Organ Cult. 2005, 80, 1–24. [Google Scholar] [CrossRef]
- Bordignon-Luiz, M.T.; Gauche, C.; Gris, E.F.; Falcão, L.D. Colour stability of anthocyanins from Isabel grapes (Vitislabrusca L.) in model systems. LWT Food Sci. Technol. 2007, 40, 594–599. [Google Scholar] [CrossRef]
- Tanaka, Y.; Brugliera, F.; Chandler, S. Recent progress of flower colour modification by biotechnology. Int. J. Mol. Sci. 2009, 10, 5350–5369. [Google Scholar] [CrossRef]
- Weiss, M.R. Floral colour changes as cues for pollinators. Nature 1991, 354, 227–229. [Google Scholar] [CrossRef]
- Dötterl, S.; Glück, U.; Jürgens, A.; Woodring, J.; Aas, G. Floral reward, advertisement and attractiveness to honey bees in dioecious Salix caprea. PLoS ONE 2014, 9, e93421. [Google Scholar] [CrossRef] [PubMed]
- Ômura, H.; Honda, K. Priority of color over scent during flower visitation by adult Vanessa indica butterflies. Oecologia 2005, 142, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Aros, D.; Spadafora, N.; Venturi, M.; Núñez-Lillo, G.; Meneses, C.; Methven, L.; Müller, C.T.; Rogers, H.J. Floral scent evaluation of segregating lines of Alstroemeria caryophyllaea. Sci. Hortic. 2015, 185, 183–192. [Google Scholar] [CrossRef]
- Aros, D.; Garrido, N.; Rivas, C.; Medel, M.; Müller, C.; Rogers, H.; Úbeda, C. Floral scent evaluation of three cut flowers through sensorial and gas chromatography analysis. Agronomy 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Okitsu, N.; Noda, N.; Chandler, S.; Tanaka, Y. Flower Color and Its Engineering by Genetic Modification. In Ornamental Crops. Handbook of Plant Breeding; Van Huylenbroeck, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11, pp. 29–62. [Google Scholar]
- Bridgen, M.P. Alstroemeria. In Ornamental Crops; Springer: Berlin/Heidelberg, Germany, 2018; pp. 231–236. [Google Scholar]
- Finot, V.; Baeza, C.; Muñoz-Schick, M.; Ruiz, E.; Espejo, J.; Alarcón, D.; Carrasco, P.; Novoa, P.; Eyzaguirre, M.T. Guía de Campo Alstroemerias Chilenas; Corporación Chilena de la Madera: Concepción, Chile, 2018; 292p. [Google Scholar]
- Saito, N.; Yokoi, M.; Ogawa, M.; Kamijo, M.; Honda, T. 6-Hydroxyanthocyanidin glycosides in the flowers of Alstroemeria. Phytochemistry 1988, 27, 1399–1401. [Google Scholar] [CrossRef]
- Nørbæk, R.; Christensen, L.P.; Brandt, K. An HPLC investigation of flower colour and breeding of anthocyanins in species and hybrids of Alstroemeria. Plant Breed. 1998, 117, 63–67. [Google Scholar] [CrossRef]
- Tatsuzawa, F.; Saito, N.; Murata, N.; Shinoda, K.; Shigihara, A.; Honda, T. 6-Hydroxypelargonidin glycosides in the orange–red flowers of Alstroemeria. Phytochemistry 2003, 62, 1239–1242. [Google Scholar] [CrossRef]
- Muñoz, M.; Moreira, A. Alstroemerias de Chile: Diversidad, Distribución y Conservación; Taller La Era: Santiago, Chile, 2003; 140p. [Google Scholar]
- Saito, N.; Yokoi, M.; Yamaji, M.; Honda, T. Anthocyanidin glycosides from the flowers of Alstroemeria. Phytochemistry 1985, 24, 2125–2126. [Google Scholar] [CrossRef]
- Bakkenb, A.K. Structure determination of 6-hydroxycyanidin-and 6-hydroxydelphinidin-3-(6′-0-aL-rhamnopyranosyl-ß-D-glucopyranosides) and other anthocyanins from alstroemeria cultivars. Acta Chem. Scand. 1997, 51, 108–112. [Google Scholar]
- Cavieres, L.; Peñaloza, A.P.; Arroyo, M.T.K. Efectos del tamaño floral y densidad de flores en la visita de insectos polinizadores en Alstroemeria pallida Graham (Amaryllidaceae). Gayana Botánica 1998, 55, 1–10. [Google Scholar]
- Aros, D.; Suazo, M.; Rivas, C.; Zapata, P.; Ubeda, C.; Bridgen, M. Molecular and morphological characterization of new interspecific hybrids of alstroemeria originated from A. caryophylleae scented lines. Euphytica 2019, 215, 93. [Google Scholar] [CrossRef] [Green Version]
- Bohm, B.A. Intraspecific flavonoid variation. Bot. Rev. 1987, 53, 197. [Google Scholar] [CrossRef]
- Dormont, L.; Joffard, N.; Schatz, B. Intraspecific variation in floral color and odor in orchids. Int. J. Plant Sci. 2019, 180, 1036–1058. [Google Scholar] [CrossRef]
- Wu, C.A.; Streisfeld, M.A.; Nutter, L.I.; Cross, K.A. The genetic basis of a rare flower color polymorphism in Mimulus lewisii provides insight into the repeatability of evolution. PLoS ONE 2013, 8, e81173. [Google Scholar] [CrossRef] [Green Version]
- Paine, K.C.; White, T.E.; Whitney, K.D. Intraspecific floral color variation as perceived by pollinators and non-pollinators: Evidence for pollinator-imposed constraints? Evol. Ecol. 2019, 33, 461–479. [Google Scholar] [CrossRef]
- Vaidya, P.; McDurmon, A.; Mattoon, E.; Keefe, M.; Carley, L.; Lee, C.R.; Bingham, R.; Anderson, J.T. Ecological causes and consequences of flower color polymorphism in a self-pollinating plant (Boechera stricta). New Phytol. 2018, 218, 380–392. [Google Scholar] [CrossRef] [Green Version]
- Jia, N.; Shu, Q.Y.; Wang, L.S.; Du, H.; Xu, Y.J.; Liu, Z.A. Analysis of petal anthocyanins to investigate coloration mechanism in herbaceous peony cultivars. Sci. Hortic. 2008, 117, 167–173. [Google Scholar] [CrossRef]
- He, Q.; Shen, Y.; Wang, M.; Huang, M.; Yang, R.; Zhu, S.; Wang, L.; Xu, Y.; Wu, R. Natural variation in petal color in Lycoris longituba revealed by anthocyanin components. PLoS ONE 2011, 6, e22098. [Google Scholar] [CrossRef] [Green Version]
- Nørbæk, R.; Christensen, L.P.; Bojesen, G.; Brandt, K. Anthocyanins in the Chilean species of Alstroemeria. Phytochemistry 1996, 42, 97–100. [Google Scholar] [CrossRef]
- Narbona, E.; Buide, M.L.; Casimiro-Soriguer, I.; Del Valle, J.C. Polimorfismos de color floral: Causas e implicaciones evolutivas. Rev. Ecosistemas 2014, 23, 36–47. [Google Scholar] [CrossRef]
- Levin, D.A.; Brack, E.T. Natural selection against white petals in Phlox. Evolution 1995, 49, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.R.; Bischoff, M.; Lord, J.M.; Robertson, A.W. Where have all the blue flowers gone: Pollinator responses and selection on flower colour in New Zealand Wahlenbergia albomarginata. J. Evol. Biol. 2012, 25, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Majetic, C.J.; Raguso, R.A.; Tonsor, S.J.; Ashman, T.-L. Flower color-flower scent associations in polymorphic Hesperis matronalis (Brassicaceae). Phytochemistry 2007, 68, 865–874. [Google Scholar] [CrossRef]
- Davies, K.M. Modifying anthocyanin production in flowers. In Anthocyanins: Biosynthesis, Functions and Applications; Gould, K., Davies, K., Winefield, C., Eds.; Springer Science and Business: New York, NY, USA, 2009; pp. 49–84. [Google Scholar]
- Xu, W.; Luo, G.; Yu, F.; Jia, Q.; Zheng, Y.; Bi, X.; Lei, J. Characterization of anthocyanins in the hybrid progenies derived from Iris dichotoma and I. domestica by HPLC-DAD-ESI/MS analysis. Phytochemistry 2018, 150, 60–74. [Google Scholar] [CrossRef]
- Du, H.; Lai, L.; Wang, F.; Sun, W.; Zhang, L.; Li, X.; Wang, L.; Jiang, L.; Zheng, Y. Characterisation of flower colouration in 30 Rhododendron species via anthocyanin and flavonol identification and quantitative traits. Plant Biol. 2018, 20, 121–129. [Google Scholar] [CrossRef]
- Nakatsuka, A.; Izumi, Y.; Yamagishi, M. Spatial and temporal expression of chalcone synthase and dihydroflavonol 4-reductase genes in the asiatic hybrid lily. Plant Sci. 2003, 165, 759–767. [Google Scholar] [CrossRef]
- Morgret, M.L.; Huang, G.H.; Huang, J.K. DNA sequence analysis of three clones containing chalcone synthase gene of Petunia hybrida. FASEB J. 2005, 19, 303. [Google Scholar]
- To, K.Y.; Wang, C.K. Molecular breeding of flower color. Floric. Ornam. Plant Biotechnol. 2006, 1, 300–310. [Google Scholar]
- Nakatsuka, T.; Abe, Y.; Kakizaki, Y.; Yamamura, S.; Nishihara, M. Production of red- flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep. 2007, 26, 1951–1959. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Sun, H.Y.; Shang, X. Flower color patterning in pansy (Viola × wittrockiana Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas. Plant Physiol. Biochem. 2014, 84, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuka, T.; Mishiba, K.I.; Abe, Y.; Kubota, A.; Kakizaki, Y.; Yamamura, S.; Nishihara, M. Flower color modification of gentian plants by RNAi-mediated gene silencing. Plant Biotechnol. 2008, 25, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Rosati, C.; Cadic, A.; Duron, M.; Ingouff, M.; Simoneaub, P. Molecular characterization of the anthocyanidin synthase gene in Forsythia × intermedia reveals organ- specific expression during flower development. Plant Sci. 1999, 149, 73–79. [Google Scholar] [CrossRef]
- Shimizu, K.; Ohnishi, N.; Morikawa, N.; Ishigami, A.; Otake, S.; Rabah, I.O.; Sakata, Y.; Hashimoto, F. A 94- bp deletion of anthocyanidin synthase gene in acyanic flower lines of lisianthus [Eustoma grandiflorum (Raf.) Shinn.]. J. Jpn. Soc. Hortic. Sci. 2011, 80, 434–442. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.J.; Chuang, Y.N.; Chiou, C.Y.; Chin, D.C.; Shen, F.Q.; Yeh, K.W. Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars. Planta 2012, 236, 401–409. [Google Scholar] [CrossRef]
- Aros, D.; Gonzalez, V.; Allemann, R.K.; Müller, C.T.; Rosati, C.; Rogers, H.J. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers. J. Exp. Bot. 2012, 63, 2739–2752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wageningen University Bioinformatics. Available online: http://www.bioinformatics.nl/ (accessed on 8 July 2017).
- The National Center for Biotechnology Information. Available online: http://www.ncbi.nlm.nih.gov/ (accessed on 8 July 2017).
- Hirai, M.; Yamagishi, M.; Kanno, A. Reduced transcription of a LEAFY-like gene in Alstroemeria sp. cultivar Green Coral that cannot develop floral meristems. Plant Sci. 2012, 185, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat Versión; Universidad Nacional de Córdoba: Córdoba, Argentina, 2015; Available online: http://www.infostat.com.ar (accessed on 18 October 2018).
Accession | Colour | VCI | C* | h* | L* | |||
---|---|---|---|---|---|---|---|---|
RHS N999D | White | 1 | 8.72 | d | 72.55 | a | 87.02 | a |
RHS 155B | White | 2 | 9.76 | cd | 34.25 | b | 83.77 | ab |
RHS 56C | Light Pink | 3 | 10.34 | c | 31.86 | b | 81.19 | b |
RHS 65B | Light Pink | 4 | 17.40 | b | 20.78 | c | 81.50 | b |
RHS 68C | Pink | 5 | 22.02 | a | 12.54 | d | 76.26 | c |
Variables | r |
---|---|
L*/C* | −0.76 † |
L*/h* | 0.75 † |
L*/VCI | −0.81 † |
C*/h* | −0.70 † |
C*/VCI | 0.91 † |
H*/VCI | −0.86 † |
Correlation | L* | H* | C* | VCI | 6-Hydroxycyanidin Concentration | CHS Expression | ANS Expression | |||
---|---|---|---|---|---|---|---|---|---|---|
Significance | Ref.18S | Ref.eEF1A | Ref.18S | Ref.eEF1A | ||||||
L* | 0.74 | −0.75 | −0.81 | −0.36 | 0.16 | 0.22 | −0.56 | −0.37 | ||
H* | * | −0.72 | −0.89 | −0.54 | 0.11 | −0.001 | −0.54 | −0.58 | ||
C* | * | * | 0.92 | 0.11 | 0.03 | 0.06 | 0.66 | 0.70 | ||
VCI | * | * | * | 0.26 | −0.06 | −0.004 | 0.58 | 0.65 | ||
6-hydroxycyanidin concentration | ns | * | ns | ns | 0.08 | 0.23 | 0.45 | 0.35 | ||
CHS Ref. 18S | ns | ns | ns | ns | ns | 0.80 | 0.46 | 0.22 | ||
CHS Ref. eEF1A | ns | ns | ns | ns | ns | * | 0.33 | 0.48 | ||
ANS Ref. 18S | * | * | * | * | * | * | ns | 0.59 | ||
ANS Ref. eEF1A | ns | * | * | * | ns | ns | * | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donoso, A.; Rivas, C.; Zamorano, A.; Peña, Á.; Handford, M.; Aros, D. Understanding Alstroemeria pallida Flower Colour: Links between Phenotype, Anthocyanins and Gene Expression. Plants 2021, 10, 55. https://doi.org/10.3390/plants10010055
Donoso A, Rivas C, Zamorano A, Peña Á, Handford M, Aros D. Understanding Alstroemeria pallida Flower Colour: Links between Phenotype, Anthocyanins and Gene Expression. Plants. 2021; 10(1):55. https://doi.org/10.3390/plants10010055
Chicago/Turabian StyleDonoso, Amanda, Constanza Rivas, Alan Zamorano, Álvaro Peña, Michael Handford, and Danilo Aros. 2021. "Understanding Alstroemeria pallida Flower Colour: Links between Phenotype, Anthocyanins and Gene Expression" Plants 10, no. 1: 55. https://doi.org/10.3390/plants10010055
APA StyleDonoso, A., Rivas, C., Zamorano, A., Peña, Á., Handford, M., & Aros, D. (2021). Understanding Alstroemeria pallida Flower Colour: Links between Phenotype, Anthocyanins and Gene Expression. Plants, 10(1), 55. https://doi.org/10.3390/plants10010055