Exogenous Application of Foliar Salicylic Acid and Propolis Enhances Antioxidant Defenses and Growth Parameters in Tomato Plants
Abstract
:1. Introduction
2. Results
2.1. Morphological Characterization and Yield
2.2. Biochemical Compounds Content
2.3. Antioxidant Enzyme Activity
2.4. Chlorophyll and Carotenoid Content
3. Discussion
3.1. Morphological Characterization and Yield
3.2. Biochemical Compounds Content
3.3. Antioxidant Enzyme Activity
3.4. Chlorophyll and Carotenoid Content
4. Materials and Methods
4.1. Experimental Conditions
4.2. Plant Material and Experimental Design
4.3. Field Management and Treatment Description
4.4. Growth and Quality Monitoring and Analysis
4.5. Leaf Pigments
4.6. Biochemical Measurements
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). FAOSTAT. FAO Statistics Division. 2017. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 13 July 2020).
- Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A.K. Bioactivities of Phytochemicals Present in Tomato. J. Food Sci. Technol. 2018, 55, 2833–2849. [Google Scholar] [CrossRef]
- Hagassou, D.; Francia, E.; Ronga, D.; Buti, M. Blossom End-Rot in Tomato (Solanum lycopersicum L.): A Multi-Disciplinary Overview of Inducing Factors and Control Strategies. Sci. Hortic. 2019, 249, 49–58. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Hanel, M.G.L.; Borthwick, A.; Duan, Q.; Ji, D.; Li, H. Global Heat Stress on Health, Wildfires, and Agricultural Crops under Different Levels of Climate Warming. Environ. Int. 2019, 128, 125–136. [Google Scholar] [CrossRef]
- Mathur, S.; Agrawal, D.; Jajoo, A. Photosynthesis: Response to High Temperature Stress. J. Photochem. Photobiol. 2014, 137, 116–126. [Google Scholar] [CrossRef]
- Ohama, N.; Sato, H.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Transcriptional Regulatory Network of Plant Heat Stress Response. Trends Plant Sci. 2017, 22, 53–65. [Google Scholar] [CrossRef]
- Deligios, P.A.; Chergia, A.P.; Sanna, G.; Solinas, S.; Todde, G.; Narvarte, L.; Ledda, L. Climate Change Adaptation and Water Saving by Innovative Irrigation Management Applied on Open Field Globe Artichoke. Sci. Total Environ. 2019, 649, 461–472. [Google Scholar] [CrossRef]
- Shinwari, A.; Ahmad, I.; Khan, I.; Khattak, H.; Azimi, A.S. Thermo-Tolerance in Tomato: Acetyl Salicylic Acid Affects Growth and Yield of Tomato (Solanum lycopersicum L.) under the Agro-Climatic Condition of Islamabad, Pakistan. Adv. Agric. Environ. Sci. 2018, 1, 102–107. [Google Scholar] [CrossRef]
- EL-Saka, I.Z. Tomato Breeding for Heat Stress Conditions. EJAE 2016, 3, 87–93. [Google Scholar]
- Driedonks, N.; Wolters-Arts, M.; Huber, H.; de Boer, G.J.; Vriezen, W.; Mariani, C.; Rieu, I. Exploring the Natural Variation for Reproductive Thermotolerance in Wild Tomato Species. Euphytica 2018, 214, 67. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, V.; Calafiore, R.; Schettini, C.; Rigano, M.M.; Olivieri, F.; Frusciante, L.; Barone, A. Exploiting Genetic and Genomic Resources to Enhance Heat-Tolerance in Tomatoes. Agronomy 2019, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Rady, M.M.; Talaat, N.B.; Abdelhamid, M.T.; Shawky, B.T.; Desoky, E.M. Maize (Zea mays L.) Grains Extract Mitigates the Deleterious Effects of Salt Stress on Common Bean (Phaseolus vulgaris L.) Growth and Physiology. J. Hortic. Sci. Biotechol. 2019, 94, 777–789. [Google Scholar] [CrossRef]
- Jahan, M.S.; Wang, Y.; Shu, S.; Zhong, M.; Chen, Z.; Wu, J.; Sun, J.; Guo, S. Exogenous Salicylic Acid Increases the Heat Tolerance in Tomato (Solanum lycopersicum L.) by Enhancing Photosynthesis Efficiency and Improving Antioxidant Defense System Through Scavenging of Reactive Oxygen Species. Sci. Hortic. 2019, 247, 421–429. [Google Scholar] [CrossRef]
- Sabatino, L.; D’Anna, F.; Iapichino, G.; Moncada, A.; D’Anna, E.; De Pasquale, C. Interactive Effects of Genotype and Molybdenum Supply on Yield and Overall Fruit Quality of Tomato. Front. Plant. Sci. 2019, 9, 1922. [Google Scholar] [CrossRef] [Green Version]
- El Sohaimy, S.; Masry, S. Phenolic Content, Antioxidant and Antimicrobial Activities of Egyptian and Chinese Propolis. Am. Eurasian J. Agric. Environ. Sci. 2014, 14, 1116–11124. [Google Scholar] [CrossRef]
- Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A.; et al. Composition and Functional Properties of Propolis (Bee Glue): A Review. Saudi J. Biol. Sci. 2018, 26, 1695–1703. [Google Scholar] [CrossRef]
- Debab, M.; Toumi-Benali, F.; Dif, M. Antioxidant Activity of Propolis of West Algeria. Phytothérapie 2016, 15, 230–234. [Google Scholar] [CrossRef]
- Silva, R.P.D.; Machado, B.A.S.; DeAbreu Barreto, G.; Costa, S.S.; Andrade, L.N.; Amaral, R.G.; Carvalho, A.A.; Padilha, F.F.; Barbosa, J.D.V.; Umsza-Guez, M.A. Antioxidant, Antimicrobial, Antiparasitic, and Cytotoxic Properties of Various Brazilian Propolis Extracts. PLoS ONE 2017, 12, e017258. [Google Scholar] [CrossRef]
- Boufadi, Y.M.; Van Antwerpen, P.; Chikh Alard, I.; Nève, J.; Djennas, N.; Riazi, A.; Soubhye, J. Antioxidant Effects and Bioavailability Evaluation of Propolis Extract and Its Content of Pure Polyphenols. J. Food Biochem. 2018, 42, e12434. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.; Abdel-Razzak, H.; Wahb-Allah, M.; Alenazi, M.; Alsadon, A.; Dewir, Y.H. Improvement in Growth, Yield, and Fruit Quality of Three Red Sweet Pepper Cultivars by Foliar Application of Humic and Salicylic Acids. HortTechnology 2019, 29, 170–178. [Google Scholar] [CrossRef]
- Khan, M.I.; Fatma, M.; Per, T.S.; Anjum, N.A.; Khan, N.A. Salicylic Acid-Induced Abiotic Stress Tolerance and Underlying Mechanisms in Plants. Front. Plant. Sci. 2015, 6, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Shakirova, F.M.; Sakhabutdinova, A.R.; Bezrukova, M.V.; Fathkutdinova, R.A.; Fatkhutdinova, D.R. Changes in the Hormonal Status of Wheat Seedlings Induced by Salicylic Acid and Salinity. Plant. Sci. 2003, 164, 317–322. [Google Scholar] [CrossRef]
- Abreu, M.E.; Munné-Bosch, S. Salicylic Acid Deficiency in NahG Transgenic Lines and sid2 Mutants Increases Seed Yield in the Annual Plant Arabidopsis thaliana. J. Exp. Bot. 2009, 60, 1261–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, J.; Senaratna, T.; Sivasithamparam, K. Salicylic Acid Induces Salinity Tolerance in Tomato (Lycopersicon esculentum cv. Roma): Associated Changes in Gas Exchange, Water Relations and Membrane Stabilisation. Plant Growth Regul. 2006, 49, 77–83. [Google Scholar] [CrossRef]
- Faried, H.N.; Ayyub, C.M.; Amjad, M.; Ahmed, R.; Wattoo, F.M.; Butt, M.; Bashir, M.; Shaheen, M.R.; Waqas, M.A. Salicylic Acid Confers Salt Tolerance in Potato Plants by Improving Water Relations, Gaseous Exchange, Antioxidant Activities and Osmoregulation. J. Sci. Food Agric. 2017, 97, 1868–1875. [Google Scholar] [CrossRef]
- Senaratna, T.; Touchell, D.; Bunn, E.; Dixon, K. Acetyl Salicylic Acid (Aspirin) and Salicylic Acid Induce Multiple Stress Tolerance in Bean and Tomato Plants. Plant Growth Regul. 2000, 30, 157–161. [Google Scholar] [CrossRef]
- Tari, I.; Csiszar, J.; Gabriella, S.; Horvath, F.; Pecsvaradi, A.; Kiss, G.; Szepsi, A.; Szabo, M.; Erdei, L. Acclimation of Tomato Plants to Salinity Stress after a Salicylic Acid Pre-treatment. Acta Biol. Szeged. 2002, 46, 55–56. [Google Scholar]
- Szepesi, A.; Csiszar, J.; Bajkan, S.; Gemes, K.; Horvath, F.; Erdei, L.; Deer, A.K.; Simon, M.L.; Tari, I. Role of Salicylic Acid Pre-treatment on the Acclimation of Tomato Plants to Salt- and Osmotic Stress. Acta Biol. Szeged. 2005, 49, 123–125. [Google Scholar]
- Yildirim, E.; Dursun, A. Effect of Foliar Salicylic Acid Applications on Plant Growth and Yield of Tomato under Greenhouse Conditions. Acta Hortic. 2009, 807, 395–400. [Google Scholar] [CrossRef]
- Gharib, F.A. Effect of Salicylic Acid on the Growth, Metabolic Activities and Oil Content of Basil and Marjoram. Int. J. Agric. Biol. 2006, 4, 485–492. [Google Scholar]
- Kosalec, I.; Bakmaz, M.; Pepeljnjak, S.; Vladimir-Knezević, S. Quantitative Analysis of the Flavonoids in Raw Propolis from Northern Croatia. Acta Pharm. 2004, 54, 65–72. [Google Scholar]
- Ahn, M.R.; Kunimasa, K.; Ohta, T.; Kumazawa, S.; Kamihira, M.; Kaji, K.; Uto, Y.; Hori, H.; Nagasawa, H.; Nakayama, T. Suppression of Tumor-Induced Angiogenesis by Brazilian Propolis: Major Component Artepillin C Inhibits In Vitro Tube Formation and Endothelial Cell Proliferation. Cancer Lett. 2007, 252, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Kocot, J.; Kiełczykowska, M.; Luchowska-Kocot, D.; Kurzepa, J.; Musik, I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. Oxidative Med. Cell. Longev. 2018, 7074209. [Google Scholar] [CrossRef] [PubMed]
- Havsteen, B.H. The Biochemistry and Medical Significance of Flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Santos, V.R. Propolis: Alternative Medicine for the Treatment of Oral Microbial Diseases. In Alternative Medicine; Sagakami, H., Ed.; InTechOpen: Rijeka, Croatia, 2018; pp. 133–169. [Google Scholar] [CrossRef] [Green Version]
- Salman, S.R.; Abou-hussein, S.D.; Abdel-Mawgoud, A.R.; El-Nemr, M.A. Fruit Yield and Quality of Watermelon as Affected by Hybrids and Humic Acid Application. J. Appl. Sci. Res. 2005, 1, 51–58. [Google Scholar]
- Eshghi, S.; Garazhian, M. Improving Growth, Yield and Fruit Quality of Strawberry by Foliar and Soil Drench Applications of Humic Acid. Iran Agric. Res. 2015, 34, 14–20. [Google Scholar] [CrossRef]
- Pobiega, K.; Przybył, J.L.; Żubernik, J.; Gniewosz, M. Prolonging the Shelf Life of Cherry Tomatoes by Pullulan Coating with Ethanol Extract of Propolis during Refrigerated Storage. Food Bioprocess Technol. 2020, 13, 1447–1461. [Google Scholar] [CrossRef]
- Guginski-Piva, C.A.; Santos, D.; Idalmir, W.; Júnior, A.; Winter, H.; Daniel, F.; Flores, M.; Pazolini, K. Propolis for the Control of Powdery Mildew and the Induction of Phytoalexins in Cucumber. Idesia 2015, 33, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Weidner, S. Role of Gibberellins and Cytokinins in the Regulation of Germination during Development and Ripening of Triticale caryopses L. Acta Soc. Bot. Pol. 1984, 53, 257–270. [Google Scholar] [CrossRef]
- Zhaoliang, L.; Yueqing, S.; Minzhi, S.; Yahong, S. Effect of Paclobutrazol (PP333) on Plant Histological Structures of Some Crops Shanghai Nongye Xuebao. Acta Agric. Shanghai 1995, 11, 43–47. [Google Scholar]
- Semida, W.M.; Rady, M.M. Presoaking Application of Propolis and Maize Grain Extracts Alleviates Salinity Stress in Common Bean (Phaseolus vulgaris L.). Sci. Hortic. 2014, 168, 210–217. [Google Scholar] [CrossRef]
- Walker, P.; Crane, E. Constituents of Propolis. Apidologie 1987, 18, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Bankova, V.S.; De Castro, S.L.; Marucci, M.C. Propolis: Recent Advances in Chemistry and Plant Origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef]
- Chandra, A.; Anand, A.; Dubey, A. Effect of Salicylic Acid on Morphological and Biochemical Attributes in Cowpea. J. Environ. Biol. 2007, 28, 193–196. [Google Scholar] [PubMed]
- Sayyari, M.; Babalar, M.; Kalantari, S.; Serrano, M.; Valero, D. Effect of Salicylic Acid Treatment on Reducing Chilling Injury in Stored Pomegranates. Postharvest Biol. Technol. 2009, 53, 152–154. [Google Scholar] [CrossRef]
- Hao, W.; Guo, H.; Zhang, J.; Hu, G.; Yao, Y.; Dong, J. Hydrogen Peroxide Is Involved in Salicylic Acid-Elicited Rosmarinic Acid Production in Salvia miltiorrhiza Cell Cultures. Sci. World J. 2014, 843764. [Google Scholar] [CrossRef] [Green Version]
- Mora-Herrera, M.E.; Peralta-Velázquez, J.; López-Delgado, H.A.; García-Velasco, R.; González-Díaz, J.G. Efecto del Ácido Ascórbico Sobre Crecimiento, Pigmentos Fotosintéticos y Actividad Peroxidasa en Plantas de Crisantemo. Rev. Chapingo Ser. Hortic. 2011, 17, 73–81. [Google Scholar] [CrossRef]
- Kord, M.; Hathout, T. Changes on Some Growth Criteria, Metabolic Activities and Endogenous Hormones in Tomato Plants Consequent to Spraying with Different Concentrations of Salicylaldehyde. Egypt J. Physiol. Sci. 1992, 16, 117–139. [Google Scholar]
- El-Yazal, M.A.S. Impact of Propolis Extract as Foliar Spray on Growth, Yield and Some Chemical Composition of Spinach (Spinacia oleracea L.) Plants Grown under Calcareous Saline Soil. Int. J. Empir. Educ. Res. 2019, 3, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, U.; Pradhan, D. High Temperature-Induced Oxidative Stress in Lens culinaris, Role of Antioxidants and Amelioration of Stress by Chemical Pre-treatments. J. Plant Interact. 2011, 6, 43. [Google Scholar] [CrossRef]
- Garbero, M.; Pedranzani, H.; Zirulnik, F.; Molina, A.; Pérez-Chaca, M.; Vigliocco, A.; Abdala, G. Short-Term Cold Stress in Two Cultivars of Digitaria eriantha: Effects on Stress-Related Hormones and Antioxidant Defense System. Acta Physiol. Plant 2011, 33, 497–507. [Google Scholar] [CrossRef]
- Li, T.; Hu, Y.; Du, X.; Tang, H.; Shen, C.; Wu, J. Salicylic Acid Alleviates the Adverse Effects of Salt Stress in Torreya grandis cv. Merrillii Seedlings by Activating Photosynthesis and Enhancing Antioxidant Systems. PLoS ONE 2014, 9, e109492. [Google Scholar] [CrossRef] [PubMed]
- El-Esawi, M.A.; Elansary, H.O.; El-Shanhorey, N.A.; Hamid, A.; Mohamed, A.; Ali, H.M.; Elsheikh, M.S. Salicylic Acid Regulated Antioxidant Mechanisms and Gene Expression Enhance Rosemary Performance under Saline Conditions. Front. Physiol. 2017, 8, 716. [Google Scholar] [CrossRef] [PubMed]
- Hayat, S.; Hasan, S.A.; Fariduddin, Q.; Ahmad, A. Growth of Tomato (Lycopersicon esculentum) in Response to Salicylic Acid under Water Stress. J. Plant. Interact. 2008, 3, 297–304. [Google Scholar] [CrossRef]
- Bankova, V.; Popov, S.; Manolova, N.; Maximova, V.; Gegoug, G.; Serkedjieva, J.; Auzunov, S. The Chemical Composition of Some Propolis Fractions with Antiviral Action. Acta Microbiol. Bulg. 1988, 23, 52–57. [Google Scholar] [PubMed]
- Scheller, S.; Wilczok, T.; Imielski, S.; Krol, W.; Gabrys, J.; Shani, J. Free Radical Scavenging by Ethanol Extract of Propolis. Int. J. Radiat. Biol. 1990, 57, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Noweer, E.M.A.; Dawood, M.G. Efficiency of Propolis Extract on Faba Bean Plants and Its Role against Nematode Infection. Comm. Appl. Sci. 2009, 74, 593–603. [Google Scholar]
- Salama, M.I.; Elaidy, A.A.; El-Sammak, A.; Abou-Khashab, A.M. Leaf Pigment and Nutrient Element Content of Roumi Red Grape Nurslings as Affected by Salinity and Some Growth Regulators. Tanta J. of Agric. Res. 1992, 18, 382–391. [Google Scholar]
- Adil, W.; Ahlam, M.; Muneeb, R.; Seema, A.; Hussain, M. Bee Propolis (Bee’s Glue): A Phytochemistry Review. J. Crit. Rev. 2017, 4, 9–13. [Google Scholar] [CrossRef]
- Climate Alexandria. Available online: https://en.climate-data.org/africa/egypt/alexandria-governorate/alexandria-515/#climate-graph (accessed on 13 February 2020).
- Khan, W.; Prithiviraj, B.; Smith, D.L. Photosynthetic Responses of Corn and Soybean to Foliar Application of Salicylates. J. Plant Physiol. 2003, 160, 485–492. [Google Scholar] [CrossRef]
- Hull, H.M.; Morton, H.L.; Wharrie, J.R. Environmental Influence on Cuticle Development and Resultant Foliar Penetration. Bot. Rev. 1975, 41, 421–452. [Google Scholar] [CrossRef]
- Abo-elyousr, K.; Selaim, M.A.; El-Sharkawy, R.M.; Bagy, H.M.M.K. Effectiveness of Egyptian Propolis on Control of Tomato Bacterial Wilt Caused by Ralstonia solanacearum. J. Plant Dis. Prot. 2017, 124, 467–472. [Google Scholar] [CrossRef]
- Taha, S.S.; Osman, A.S. Influence of Potassium Humate on Biochemical and Agronomic Attributes of Bean Plants Grown on Saline Soil. J. Hortic. Sci. Biotechnol. 2018, 93, 545–554. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 15th ed.; AOAC: Arlington, VA, USA, 1990. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Ordoñez, A.A.L.; Gomez, J.G.; Vattuone, M.A.; Isla, M.I. Antioxidant Activities of Sechium edule (Jacq.) Swart Extracts. Food Chem. 2006, 97, 452–458. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases I. Occurrence in Higher Plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Aebi, H. Catalase In Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Thomas, R.L.; Jen, J.J.; Morr, C.V. Changes in Soluble and Bound Peroxidase, IAA Oxidase during Tomato Fruit Development. J. Food Sci. 1982, 47, 158–161. [Google Scholar] [CrossRef]
Treatments | Length (cm) | Height (cm) | Branch (no. plant−1) | Leaf (no. plant−1) | Flower Cluster (no. plant−1) | Leaf Area (cm2 plant−1) |
---|---|---|---|---|---|---|
SA1 † | 90.0 cd | 87.7 cd | 8.0 ab | 55.3 ab | 10.0 cdef | 753.6 cde |
SA2 | 88.3 de | 85.7 d | 7.0 abc | 49.3 abcd | 9.7 cdef | 942.0 cde |
SA3 | 84.3 de | 79.7 de | 7.0 abc | 47.0 cde | 8.6 def | 1413 abc |
SA4 | 80.0 de | 78.3 de | 5.3 bcd | 39.7 efg | 8.0 ef | 2025 a |
SA5 | 78.0 e | 73.3 e | 5.0 cd | 33.7 g | 7.0 f | 134.3 e |
PR1 ‡ | 90.0 cd | 86.3 d | 7.0 abc | 35.0 fg | 11.6 bcde | 1077 bcd |
PR2 | 99.7 bc | 96.0 bc | 7.0 abc | 45.6 cde | 12.3 bcd | 1119 bcd |
PR3 | 102.3 b | 97.3 b | 7.3 abc | 46.6 cde | 13.6 abc | 1830 ab |
PR4 | 102.7 b | 99.0 b | 7.7 abc | 47.3 bcde | 15.3 ab | 752.3 cde |
PR5 | 104.7 b | 100.6 b | 8.3 a | 52.3 abc | 17.0 a | 1123 bcd |
SA+PR § | 116.3 a | 113.6 a | 8.7 a | 56.0 a | 15.3 ab | 1178 bcd |
Control | 53.3 f | 48.3 f | 3.7 d | 42.6 def | 9.0 def | 434.8 de |
Treatments | Fruit (no. plant−1) | Fruit Weight (g unit−1) | Early Yield (kg FW m−2) | Total Yield (kg FW m−2) |
---|---|---|---|---|
SA1 † | 15.7 abc | 95.5 a | 1.3 cde | 5.2 bc |
SA2 | 14.0 bcd | 95.3 a | 1.2 de | 5.0 bcde |
SA3 | 13.7 bcd | 82.8 d | 1.0 e | 4.8 cdef |
SA4 | 12.3 cd | 80.2 d | 1.0 e | 4.1 ef |
SA5 | 12.0 d | 72.3 e | 0.9 e | 4.0 f |
PR1 ‡ | 13.3 bcd | 73.0 e | 1.7 bcd | 4.3 cdef |
PR2 | 14.0 bcd | 80.7 d | 1.8 bc | 5.0 bcde |
PR3 | 15.7 abc | 83.7 d | 2.1 ab | 5.1 bcd |
PR4 | 16.7 ab | 88.0 c | 2.2 ab | 5.8 ab |
PR5 | 18.0 a | 93.3 ab | 2.5 a | 6.3 a |
SA+PR § | 16.0 ab | 91.3 bc | 2.6 a | 6.7 a |
Control | 11.0 d | 66.2 f | 1.0 e | 4.2 def |
Treatments | Total Soluble Solids (%) | Total Flavonoids (mg g−1 FW) | Total Phenolic (mg g−1 FW) | Protein Content (mg g−1 FW) | Proline (mg g−1 FW) |
---|---|---|---|---|---|
SA1 † | 4.63 c | 130.80 k | 136.73 j | 43.55 e | 0.107 k |
SA2 | 4.66 bc | 169.76 j | 142.03 i | 46.10 de | 0.114 i |
SA3 | 4.57 c | 213.40 h | 154.90 h | 51.45 bcde | 0.117 h |
SA4 | 4.33 d | 221.00 f | 155.23 g | 57.95 bc | 0.319 d |
SA5 | 3.90 f | 222.60 d | 161.26 d | 74.75 a | 0.649 a |
PR1 ‡ | 3.30 g | 211.10 i | 159.60 f | 47.45 cde | 0.111 j |
PR2 | 4.13 e | 221.00 f | 160.06 e | 49.90 bcde | 0.111 j |
PR3 | 4.60 c | 221.80 e | 167.46 c | 54.75 bcde | 0.141 f |
PR4 | 4.80 b | 222.80 c | 174.80 b | 56.95 bcd | 0.145 e |
PR5 | 5.20 a | 225.90 a | 193.20 a | 60.20 b | 0.394 c |
SA+PR § | 5.27 a | 223.76 b | 131.63 k | 50.95 bcde | 0.516 b |
Control | 4.33 d | 220.03 g | 128.73 l | 48.95 bcde | 0.127 g |
Parameter | Value |
---|---|
Moisture (%) | 7.05 |
Proteins (%) | 11.03 |
Fats (%) | 23.12 |
Fibers (%) | 51.02 |
Carbohydrates (%) | 6.02 |
Ash (%) | 2.11 |
Resin (%) | 57.92 |
Insoluble matter (%) | 40.91 |
Volatile substances (%) | 3.33 |
Total phenolic content (mg GAE g−1 sample DW) | 253.70 |
Total flavonoid content (mg quercetin g−1 sample DW) | 76.77 |
Total alkaloid (g 100 g−1 FW) | 5.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Hady, N.A.A.A.; ElSayed, A.I.; El-saadany, S.S.; Deligios, P.A.; Ledda, L. Exogenous Application of Foliar Salicylic Acid and Propolis Enhances Antioxidant Defenses and Growth Parameters in Tomato Plants. Plants 2021, 10, 74. https://doi.org/10.3390/plants10010074
El-Hady NAAA, ElSayed AI, El-saadany SS, Deligios PA, Ledda L. Exogenous Application of Foliar Salicylic Acid and Propolis Enhances Antioxidant Defenses and Growth Parameters in Tomato Plants. Plants. 2021; 10(1):74. https://doi.org/10.3390/plants10010074
Chicago/Turabian StyleEl-Hady, Nouran Ahmed Abdo Abd, Abdelaleim Ismail ElSayed, Sayed Soliman El-saadany, Paola A. Deligios, and Luigi Ledda. 2021. "Exogenous Application of Foliar Salicylic Acid and Propolis Enhances Antioxidant Defenses and Growth Parameters in Tomato Plants" Plants 10, no. 1: 74. https://doi.org/10.3390/plants10010074
APA StyleEl-Hady, N. A. A. A., ElSayed, A. I., El-saadany, S. S., Deligios, P. A., & Ledda, L. (2021). Exogenous Application of Foliar Salicylic Acid and Propolis Enhances Antioxidant Defenses and Growth Parameters in Tomato Plants. Plants, 10(1), 74. https://doi.org/10.3390/plants10010074