Evaluating Ecologically Acceptable Sprout Suppressants for Enhancing Dormancy and Potato Storability: A Review
Abstract
:1. Introduction
2. Naturally Occurring and Ecologically Safe Tuber Sprout Suppressants
2.1. 1,4-Dimethyl Naphthalene
2.1.1. Mode of Action of 1,4-Dimethyl Naphthalene
2.1.2. Evaluation of 1,4-Dimethyl Naphthalene as a Sprout Inhibitor
2.2. 1,4 SIGHT®
2.2.1. Mode of Action of 1,4SIGHT®
2.2.2. Evaluation of 1,4SIGHT® as a Sprout Inhibitor
2.3. S-carvone
2.3.1. Mode of Action of S-carvone
2.3.2. Evaluation of S-carvone as a Sprout Inhibitor
2.4. SmartBlock®
2.4.1. Mode of Action of SmartBlock®
2.4.2. Evaluating SmartBlock® as a Sprouting Inhibitor
2.5. Caraway Seeds and Essential Oils as Alternative Sprout Suppressants
2.6. Aloe Vera Gel
3. Implications of Temperature, Cultivar Type, and Mode of Application on Sprout Suppressant Efficacies
3.1. Temperature
3.2. Cultivar Type
3.3. Mode of Application
4. Conclusions
5. Methodology
5.1. Search Strategy
5.2. Study Selection, Inclusion, and Exclusion Criteria
5.3. Data Extraction
5.4. Data Synthesis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Devaux, A.; Goffart, J.-P.; Petsakos, A.; Kromann, P.; Gatto, M.; Okello, J.; Suarez, V.; Hareau, G. Global food security, contributions from sustainable potato agri-food systems. In The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Campos, H., Ortiz, O., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–35. [Google Scholar]
- Zuraida, N. Sweet potato as an alternative food supplement during rice shortage. J. Litbang Pertan. 2003, 22, 150–155. [Google Scholar]
- Bovell-Benjamin, A.C. Sweet potato: A review of its past, present, and future role in human nutrition. In Advances in Food and Nutrition Research; Taylor, S.L., Ed.; Academic Press: Cambridge, MA, USA, 2007; Volume 52, pp. 1–59. [Google Scholar]
- Kalt, W.; Prange, R.K.; Daniels-Lake, B.J.; Walsh, J.; Dean, P.; Coffin, R. Alternative compounds for the maintenance of processing quality of stored potatoes (Solanum tuberosum). J. Food Process. Preserv. 1999, 23, 71–81. [Google Scholar] [CrossRef]
- Oliveira, J.; Moot, D.; Brown, H.; Gash, A.; Sinton, S. Sprout development of seed potato tuber after different storage conditions. Agron. N. Z. 2012, 42, 53–58. [Google Scholar] [CrossRef]
- Pinhero, R.G.; Yada, R.Y. Postharvest storage of potatoes. In Advances in Potato Chemistry and Technology, 2nd ed.; Singh, J., Kaur, L., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 283–314. [Google Scholar]
- Santos, M.N.d.S.; Araujo, F.F.d.; Lima, P.C.C.; Costa, L.C.d.; Finger, F.L. Changes in potato tuber sugar metabolism in response to natural sprout suppressive compounds. Acta Sci. Agron. 2019, 42, e43234. [Google Scholar] [CrossRef] [Green Version]
- Paula, T.-B.; Nativ, D.; Ravit, F.; Eduard, B.; Hanita, Z.; Oded, S.; Dani, E. Mint essential oil can induce or inhibit potato sprouting by differential alteration of apical meristem. Planta 2010, 232, 179–186. [Google Scholar] [CrossRef]
- Visse-Mansiaux, M.; Tallant, M.; Brostaux, Y.; Delaplace, P.; Vanderschuren, H.; Dupuis, B. Assessment of pre- and post-harvest anti-sprouting treatments to replace CIPC for potato storage. Postharvest Biol. Technol. 2021, 178, 111540. [Google Scholar] [CrossRef]
- Suttle, J.C.; Olson, L.L.; Lulai, E.C. The involvement of gibberellins in 1,8-cineole-mediated inhibition of sprout growth in Russet Burbank tubers. Am. J. Potato Res. 2016, 93, 72–79. [Google Scholar] [CrossRef]
- Paul, V.; Ezekiel, R.; Pandey, R. Sprout suppression on potato: Need to look beyond CIPC for more effective and safer alternatives. J. Food Sci. Technol. 2016, 53, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Frazier, M.J.; Olsen, N.; Kleinkopf, G. Organic and Alternative Methods for Potato Sprout Control in Storage; University of Idaho Extension, Idaho Agricultural Experiment Station: Moscow, ID, USA, 2004. [Google Scholar]
- Sharma, A. Essential oil as organic and alternative methods for potato (Solanum tuberosum L.) sprout control in storage. Int. J. Eng. Math. Sci. 2012, 1, 34–39. [Google Scholar]
- Alamar, M.C.; Tosetti, R.; Landahl, S.; Bermejo, A.; Terry, L.A. Assuring potato tuber quality during storage: A future perspective. Front. Plant Sci. 2017, 8, 2034. [Google Scholar] [CrossRef] [Green Version]
- Boivin, M.; Bourdeau, N.; Barnabé, S.; Desgagné-Penix, I. Sprout suppressive molecules effective on potato (Solanum tuberosum) tubers during storage: A review. Am. J. Potato Res. 2020, 97, 451–463. [Google Scholar] [CrossRef]
- Vijay, P.; Ezekiel, R.; Pandey, R. Use of CIPC as a potato sprout suppressant: Health and environmental concerns and future options. Qual. Assur. Saf. Crops Foods 2018, 10, 17–24. [Google Scholar] [CrossRef]
- Sihtmäe, M.; Mortimer, M.; Kahru, A.; Blinova, I. Toxicity of five anilines to crustaceans, protozoa and bacteria. J. Serb. Chem. Soc. 2010, 75, 1291–1302. [Google Scholar] [CrossRef]
- Smith, M.J.; Bucher, G.J.E.i. Tools to study the degradation and loss of the N-phenyl carbamate chlorpropham—A comprehensive review. Environ. Int. 2012, 49, 38–50. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, C.C.C.R.; da Fonseca, M.M.R. Carvone: Why and how should one bother to produce this terpene. Food Chem. 2006, 95, 413–422. [Google Scholar] [CrossRef]
- Gómez-Castillo, D.; Cruz, E.; Iguaz, A.; Arroqui, C.; Vírseda, P. Effects of essential oils on sprout suppression and quality of potato cultivars. Postharvest Biol. Technol. 2013, 82, 15–21. [Google Scholar] [CrossRef]
- Song, X.; Bandara, M.; Tanino, K.K. Potato dormancy regulation: Use of essential oils for sprout suppression in potato storage. Fruit Veg. Cereal Sci. Biotechnol. 2008, 2, 110–117. [Google Scholar]
- Campbell, M.A.; Gleichsner, A.; Hilldorfer, L.; Horvath, D.; Suttle, J. The sprout inhibitor 1,4-dimethylnaphthalene induces the expression of the cell cycle inhibitors KRP1 and KRP2 in potatoes. Funct. Integr. Genom. 2012, 12, 533–541. [Google Scholar] [CrossRef]
- Richard Knowles, N.; Knowles, L.O.; Haines, M.M. 1,4-Dimethylnaphthalene treatment of seed potatoes affects tuber size distribution. Am. J. Potato Res. 2005, 82, 179–190. [Google Scholar] [CrossRef]
- De Blauwer, V.; Demeulemeester, K.; Demeyere, A.; Hofmans, E. Maleic hydrazide: Sprout suppression of potatoes in the field. Commun. Agric. Appl. Biol. Sci. 2012, 77, 343–351. [Google Scholar]
- Finger, F.L.; Santos, M.M.d.S.; Araujo, F.F.; Lima, P.C.C.; Costa, L.C.d.; França, C.d.F.M.; Queiroz, M.d.C. Action of essential oils on sprouting of non-dormant potato tubers. Braz. Arch. Biol. Technol. 2018, 61, e18180003. [Google Scholar] [CrossRef] [Green Version]
- De Weerd, J.W.; Thornton, M.K.; Shafii, B. Sprout suppressing residue levels of 1,4-dimethylnaphthalene (1,4-DMN) in potato cultivars. Am. J. Potato Res. 2010, 87, 434–445. [Google Scholar] [CrossRef]
- Şanlı, A.; Karadoğan, T. Carvone containing essential oils as sprout suppressants in potato (Solanum tuberosum L.) tubers at different storage temperatures. Potato Res. 2019, 62, 345–360. [Google Scholar] [CrossRef]
- Nyankanga, R.O.; Murigi, W.W.; Shibairo, S.I.; Olanya, O.M.; Larkin, R.P. Effects of foliar and tuber sprout suppressants on storage of ware potatoes under tropical conditions. Am. J. Potato Res. 2018, 95, 539–548. [Google Scholar] [CrossRef]
- Campbell, M.A.; Gwin, C.; Tai, H.H.; Adams, R. Changes in gene expression in potato meristems treated with the sprout suppressor 1,4-dimethylnaphthalene are dependent on tuber age and dormancy status. PLoS ONE 2020, 15, e0235444. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.; Kleinkopf, G.; Shetty, K. Dimethylnaphthalene and diisopropylnaphthalene for potato sprout control in storage: 1. Application methodology and efficacy. Am. Potato J. 1997, 74, 183–197. [Google Scholar] [CrossRef]
- Meigh, D.F.; Filmer, A.A.E.; Self, R. Growth-inhibitory volatile aromatic compounds produced by Solanum tuberosum tubers. Phytochemistry 1973, 12, 987–993. [Google Scholar] [CrossRef]
- Beveridge, J.; Dalziel, J.; Duncan, H. The assessment of some volatile organic compounds as sprout suppressants for ware and seed potatoes. Potato Res. 1981, 24, 61–76. [Google Scholar] [CrossRef]
- Filmer, A.A.E.; Rhodes, M.J.C. Investigation of sprout-growth-inhibitory compounds in the volatile fraction of potato tubers. Potato Res. 1985, 28, 361–377. [Google Scholar] [CrossRef]
- Baker, A. Use of Natural Sprouting Inhibitors for Potato Storage; Report PT354; Horticultural Research and Development Corporation: Gordon, NSW, Australia, 1997. [Google Scholar]
- Beveridge, J.; Dalziel, J.; Duncan, H. Dimethylnaphthalene as a sprout suppressant for seed and ware potatoes. Potato Res. 1981, 24, 77–88. [Google Scholar] [CrossRef]
- Boylston, T.D.; Powers, J.R.; Weiler, K.M.; Yang, J. Comparison of sensory differences of stored Russet Burbank potatoes treated with CIPC and alternative sprout inhibitors. Am. J. Potato Res. 2001, 78, 99–107. [Google Scholar] [CrossRef]
- AHDB. Evaluation of Alternative Sprout Suppressants; S438 (2011/12); Sutton Bridge Crop Storage Research: Sutton Bridge, UK, 2012. [Google Scholar]
- Spudman. The Value of 1,4SIGHT®. Spudman. 2019. Available online: https://ahdb.org.uk/potatoes (accessed on 18 October 2021).
- Orr, B. Looking Beyond CIPC is in Your Best Interests. Available online: https://spudsmart.com/looking-beyond-cipc-is-in-your-best-interests/ (accessed on 18 October 2021).
- Campbell, M.; Adams, R.; Dobry, E.; Dobson, K.; Stefanick, V.; Till, J. The sprout regulating compound 1,4-dimethylnaphthalene exhibits fungistatic activity. J. Agron. Res. 2019, 1, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Toxopeus, H.; Bouwmeester, H.J. Improvement of caraway essential oil and carvone production in The Netherlands. Ind. Crops Products 1992, 1, 295–301. [Google Scholar] [CrossRef]
- Čížková, H.; Vacek, J.; Voldřich, M.; Ševčík, R.; Kratka, J. Caraway essential oil as potential inhibitor of potato sprouting. Rostl. Výrob. 2000, 46, 501–507. [Google Scholar]
- Oosterhaven, K.; Poolman, B.; Smid, E. S-carvone as a natural potato sprout inhibiting, fungistatic and bacteristatic compound. Ind. Crops Products 1995, 1, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Bandara, M.; Nash, B.; Thomson, J.; Pond, J.; Wahab, J.; Tanino, K.K. Use of essential oils in sprout suppression and disease control in potato storage. Fruit Veg. Cereal Sci. Biotechnol. 2009, 3, 95–101. [Google Scholar]
- Kerstholt, R.P.V.; Ree, C.M.; Moll, H.C. Environmental life cycle analysis of potato sprout inhibitors. Ind. Crops Prod. 1997, 6, 187–194. [Google Scholar] [CrossRef]
- Oosterhaven, K.; Hartmans, K.J.; Huizing, H.J. Inhibition of potato (Solanum tuberosum) sprout growth by the monoterpene S-carvone: Reduction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity without effect on its mRNA level. J. Plant Physiol. 1993, 141, 463–469. [Google Scholar] [CrossRef]
- Oosterhaven, J. Different Aspects of S-carvone, a Natural Potato Sprout Growth Inhibitor. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 1995. [Google Scholar]
- Huchelmann, A.; Gastaldo, C.; Veinante, M.; Zeng, Y.; Heintz, D.; Tritsch, D.; Schaller, H.; Rohmer, M.; Bach, T.J.; Hemmerlin, A. S-carvone suppresses cellulase-induced capsidiol production in Nicotiana tabacum by interfering with protein isoprenylation. Plant Physiol. 2014, 164, 935–950. [Google Scholar] [CrossRef] [Green Version]
- Hartmans, K.J.; Diepenhorst, P.; Bakker, W.; Gorris, L.G.M. The use of carvone in agriculture: Sprout suppression of potatoes and antifungal activity against potato tuber and other plant diseases. Ind. Crops Products 1995, 4, 3–13. [Google Scholar] [CrossRef]
- Baydar, H.; Karadogan, T. The effects of volatile oils on in vitro potato sprout growth. Potato Res. 2003, 46, 1–8. [Google Scholar] [CrossRef]
- Costa, E.; Silva, M.; Galhano, C.I.C.; Moreira Da Silva, A.M.G. A new sprout inhibitor of potato tuber based on carvone/β-cyclodextrin inclusion compound. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Knowles, L.O.; Knowles, N.R. Toxicity and metabolism of exogenous α,β-unsaturated carbonyls in potato (Solanum tuberosum L.) tubers. J. Agric. Food Chem. 2012, 60, 11173–11181. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Flath, R.A.; Mon, T.R.; Teranishi, R.; Guentert, M. Volatile constituents of apricot (Prunus armeniaca). J. Agric. Food Chem. 1990, 38, 471–477. [Google Scholar] [CrossRef]
- Immaraju, J.A. Development of SmartBlock® as a Global Replacement for Chlorpropham (CIPC); AMVAC Chemical Corporation: Newport Beach, CA, USA, 2020; p. 1. [Google Scholar]
- European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance (3E)-3-decen-2-one (applied for as 3-decen-2-one). Eur. Food Saf. Auth. J. 2015, 13, 3932. [Google Scholar] [CrossRef]
- Immaraju, J.A.; Zatylny, A.A. Treatment of potatoes and root vegetables during storage. U.S. Patent 9,686,982, 14 February 2017. [Google Scholar]
- Knowles, N.; Knowles, L. Alpha, beta unsaturated aliphatic aldehydes and ketones constitute a new class of potato sprout inhibitors. Am. J. Potato Res. 2007, 85, 17. [Google Scholar]
- Yap, P.S.X.; Yusoff, K.; Lim, S.-H.E.; Chong, C.-M.; Lai, K.-S. Membrane disruption properties of essential oils—A double-edged sword? Processes 2021, 9, 595. [Google Scholar] [CrossRef]
- Daniels-Lake, B.J. The combined effect of CO2 and ethylene sprout inhibitor on the fry colour of stored potatoes (Solanum tuberosum L.). Potato Res. 2013, 56, 115–126. [Google Scholar] [CrossRef]
- Hasan, M.U.; Malik, A.U.; Anwar, R.; Khan, A.S.; Haider, W.M.; Riaz, R.; Ali, S.; Rehman, R.N.U.; Ziaf, K. Postharvest Aloe vera gel coating application maintains the quality of harvested green chilies during cold storage. J. Food Biochem. 2021, 45, e13682. [Google Scholar] [CrossRef] [PubMed]
- Jodhani, K.A.; Nataraj, M. Synergistic effect of aloe gel (Aloe vera L.) and lemon (Citrus limon L.) peel extract edible coating on shelf life and quality of banana (Musa spp.). J. Food Meas. Charact. 2021, 15, 2318–2328. [Google Scholar] [CrossRef]
- Dhall, R. Advances in edible coatings for fresh fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Hassan, J.; Anwar, R.; Khan, A.S.; Ahmad, S.; Malik, A.U.; Nafees, M.; Hussain, Z.; Inam-ur-Raheem, M. Chitosan-based edible coating delays fungal decay and maintains quality of strawberries during storage. Int. J. Agric. Biol. 2020, 24, 486–492. [Google Scholar]
- Lin, D.; Zhao, Y. Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compr. Rev. Food Sci. Food Saf. 2007, 6, 60–75. [Google Scholar] [CrossRef]
- Mahajan, B.C.; Tandon, R.; Kapoor, S.; Sidhu, M.K. Natural coatings for shelf-life enhancement and quality maintenance of fresh fruits and vegetables—A review. J. Postharvest Technol. 2018, 6, 12–26. [Google Scholar]
- Murigi, W.; Nyankanga, R.; Shibairo, S. Effect of storage temperature and postharvest tuber treatment with chemical and biorational inhibitors on suppression of sprouts during potato storage. J. Hortic. Res. 2021, 29, 83–94. [Google Scholar] [CrossRef]
- Paré, G.; Trudel, M.-C.; Jaana, M.; Kitsiou, S. Synthesizing information systems knowledge: A typology of literature reviews. Inf. Manag. 2015, 52, 183–199. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009, 151, W65–W94. [Google Scholar] [CrossRef] [Green Version]
- Paré, G.; Kitsiou, S. Methods for literature reviews. In Handbook of eHealth Evaluation: An Evidence-Based Approach; Lau, F., Kuziemsky, C., Eds.; University of Victoria: Victoria, BC, Canada, 2017; pp. 157–179. [Google Scholar]
Treatment | Dosage | Temp. | Type of Cultivar | Application | Shelf-Life Extension (±) + Extended − Did Not Extend | Ref. | ||
---|---|---|---|---|---|---|---|---|
Number | Stage | Method | ||||||
1,4Sight® | 0.02 mL/kg | 9 °C | Russet Burbank | 1 Repeated after 9 weeks | After curing | Applied as an aqueous spray | Russet Burbank −70 days compared to CIPC | [4] |
1,4-DMN | 0.1 mL/kg | 23 °C | Shangi Asante Kenya Mpya | 1 | After curing | Liquid fog | Asante +10 days compared to control. −70 days compared to CIPC. Kenya Mpya +18 days compared to control. −48 days compared to CIPC. Shangi 0 days compared to control. −105 days compared to control. | [28] |
Treatment | Dosage | Temp. | Type of Cultivar | Application | Storage Period | Ref. | ||
---|---|---|---|---|---|---|---|---|
Number | Stages | Method | ||||||
1,4-DMN | 0.1 mL/kg | 10 ± 0.5 °C | Record Redskin Maris Peer Red Craigs Royal | 1 | After curing | Alumina carrier | 98 days | [35] |
1,4Sight® | 0.2 mL/kg | 7–8 °C | Russet Burbank | 3 | After a brief curing period | Swing fogger | 330 days | [34] |
1,4-DMN | 0.04 mL/kg 0.01 mL/kg | 4, 7, and 9 °C | Umatilla Russet Ranger Russet Russet Burbank | 3 | After curing | Thermal fog | 200 days | [23] |
1,4-DMN | 0.056 mL/kg | 15 +/2 °C | Russet Burbank Shepody FL1879 Russet Norkotah | 1 | Non-dormant/ slightly ‘peeping’ stage | Dribbling from a pipette onto gauze that was placed on top of the return air pipe. | 66 days | [26] |
Treatment | Dosage (mL/kg) | Temp. | Type of Cultivar | Application | Shelf-Life | Ref. | ||
---|---|---|---|---|---|---|---|---|
Number | Stage | Method | ||||||
S-carvone | Bintje 0.6 Agria 0.6 | 5–7 °C | Bintjie Agria | After 42 days | After wound-healing | Swing fog apparatus | Bintje +15 days compared to CIPC. Agria 0 days compared to CIPC. | [49] |
S-carvone | 0.080 | 9 °C | Russet Burbank | Once after 112 days | Before the appearance of sprouts. | Fine mist | +70 days compared to control. | [4] |
S-carvone | 0.6 | 9.85 °C | Monalisa | Every 7 days | After curing | Regular sprinkling | +21 days compared to control. | [51] |
S-carvone | 0.6 | 5 °C, 10 °C 15 °C | Agria | 24 times for 7 days | After curing | Wick freshener | 5 °C +60 days compared to control. +0 days compared to CIPC. 10 °C +75 days compared to the control. +0 days compared to CIPC. 15 °C +90 days compared to the control. +15 days compared to CIPC. | [27] |
Treatment | Dosage (mL/kg) | Temp. | Type of Cultivar | Application | Storage Period | Ref. | ||
---|---|---|---|---|---|---|---|---|
Number | Stages | Method | ||||||
SmartBlock® | 0.115 | 6 °C 9 °C | Saturna Russet Burbank | 1 application 4 applications (After every 42 days) | After curing | Cyclomatic fogging system | 84 days 168 days | [37] |
SmartBlock® | 0.1 and 0.3 | 4 °C 7.5 °C | Binje Monalisa Nicola | 1 application 3 applications (After every 56 days) | After 25% of the shorter dormancy tubers started sprouting | Thermal (hot) fogging | 168 days | [54] |
SmartBlock® | 0.115 | 21 °C | Cultivar type not specified. | 1 application | Over 90% of the potato tubers had sprouted being 5 cm to 10 cm and as long as 25 cm. | Thermal fogging | 21 days | [56] |
Treatment | Dosage (mL/kg) | Temp. (°C) | Type of Cultivar | Application | Shelf-Life | Ref. | ||
---|---|---|---|---|---|---|---|---|
Number | Stage | Method | ||||||
Caraway seeds | 9.85 | Monalisa | Every 7 days | After curing | Homogenous distribution | 0 days compared to the control. | [51] | |
Caraway seed oil | 155 | 8 | Agria Kennebec | 1 | After curing | Vapor inside a box with a filter paper. | 25 days out of 70 days. | [20] |
Caraway and Dill essential oils | Caraway—0.048 * (0.96 mL/20 kg) Dill—0.035 * (0.69 mL/20 kg) CIPC—0.02 * (0.4 mL/20 kg) | 5 10 15 | Agria | 24 times for 7 days | After curing | Wick freshener | 5 °C +90 ± 60 ** days compared to control. +30 ± 0 ** days compared to CIPC. 10 °C +135 ± 90 ** days compared to control. +60 ± 15 ** days compared to ClPC. 15 °C +150 ± 105 ** days compared to control. +75 ± 30 ** days compared to CIPC. | [27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumbo, N.; Magwaza, L.S.; Ngobese, N.Z. Evaluating Ecologically Acceptable Sprout Suppressants for Enhancing Dormancy and Potato Storability: A Review. Plants 2021, 10, 2307. https://doi.org/10.3390/plants10112307
Gumbo N, Magwaza LS, Ngobese NZ. Evaluating Ecologically Acceptable Sprout Suppressants for Enhancing Dormancy and Potato Storability: A Review. Plants. 2021; 10(11):2307. https://doi.org/10.3390/plants10112307
Chicago/Turabian StyleGumbo, Nyasha, Lembe Samukelo Magwaza, and Nomali Ziphorah Ngobese. 2021. "Evaluating Ecologically Acceptable Sprout Suppressants for Enhancing Dormancy and Potato Storability: A Review" Plants 10, no. 11: 2307. https://doi.org/10.3390/plants10112307
APA StyleGumbo, N., Magwaza, L. S., & Ngobese, N. Z. (2021). Evaluating Ecologically Acceptable Sprout Suppressants for Enhancing Dormancy and Potato Storability: A Review. Plants, 10(11), 2307. https://doi.org/10.3390/plants10112307