Role of Benzoic Acid and Lettucenin A in the Defense Response of Lettuce against Soil-Borne Pathogens
Abstract
:1. Introduction
2. Results
2.1. Root Exudation of Benzoic Acid
2.2. Antimicrobial Activity of Benzoic Acid under Realistic Rhizosphere Concentrations
2.3. Protective Role of Benzoic Acid in a Lettuce-R. solani Pathosystem
2.4. Lettucenin A Distribution in Plant Tissues of Lettuce
2.5. Defense Response of Soil-Grown Lettuce against Olpidium sp. Depending on Fertilization History
3. Discussion
3.1. Benzoic Acid—A Root Exudate of Lettuce with Pathogen Defense Effect
3.2. Lettucenin A as Phytoalexin in Lettuce
3.3. Chemical Defense Responses of Lettuce in Soil Culture
4. Materials and Methods
4.1. Plant Cultivation in Hydroponics, Peat Culture Substrate and Soil Culture
4.1.1. Pathogen-Suppressive Effect of Benzoic Acid
4.1.2. Benzoic Acid Released from Roots of Lettuce Cultivated in Hydroponics
4.1.3. Lettuce Cultivation in Minirhizotrons with Soil Culture
4.2. Plating Assay for the Effect of Benzoic Acid on R. Solani
4.3. Benzoic Acid in Root Washings, Rhizosphere Soil Solution and Plant Tissues
4.4. Determination of Lettucenin A in Plant Tissues and Root Exudates
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grisebach, H.; Ebel, J. Phytoalexine und Resistenz von Pflanzen gegenüber Schadorganismen. Biol. Unserer Zeit 1983, 13, 129–136. [Google Scholar] [CrossRef]
- Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Hallmann, J. Einführung in die Thematik. Jul. Kühn Inst. 2010, 155, 2–9. [Google Scholar]
- Hyakumachi, M.; Ui, T. The Role of the overwintered Plant Debris and Sclerotia as Inoculum in the field occurred with Sugarbeet Root Rot. Ann. Phytopath. Soc. Jpn. 1982, 48, 628–633. [Google Scholar] [CrossRef]
- Campbell, R.N. Longevity of Olpidium brassicae in air-dry soil and the persistence of the lettuce big-vein agent. Can. J. Bot. 1985, 63, 2288–2289. [Google Scholar] [CrossRef]
- Grosch, R.; Schneider, J.; Kofoet, A. Characterisation of Rhizoctonia solani Anastomosis Groups Causing Bottom Rot in Field-Grown Lettuce in Germany. Eur. J. Plant Pathol. 2004, 110, 53–62. [Google Scholar] [CrossRef]
- Schreiter, S.; Ding, G.-C.; Grosch, R.; Kropf, S.; Antweiler, K.; Smalla, K. Soil type-dependent effects of a potential biocontrol inoculant on indigenous bacterial communities in the rhizosphere of field-grown lettuce. FEMS Microbiol. Ecol. 2014, 90, 718–730. [Google Scholar] [CrossRef] [Green Version]
- Bender, S.F.; Wagg, C.; van der Heijden, M.G. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol. Evol. 2016, 31, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Jayaraj, J.; Bhuvaneswari, R.; Rabindran, R.; Muthukrishnan, S.; Velazhahan, R. Oxalic acid-induced resistance to Rhizoctonia solaniin rice is associated with induction of phenolics, peroxidase and pathogenesis-related proteins. J. Plant Interact. 2010, 5, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [Green Version]
- Narula, N.; Kothe, E.; Behl, R.K. Role of root exudates in plant-microbe interactions. J. Appl. Bot. Food Qual. 2009, 82, 122–130. [Google Scholar]
- Neal, A.L.; Ahmad, S.; Gordon-Weeks, R.; Ton, J. Benzoxazinoids in Root Exudates of Maize Attract Pseudomonas putida to the Rhizosphere. PLoS ONE 2012, 7, e35498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertin, C.; Yang, X.; Weston, L.A. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 2003, 256, 67–83. [Google Scholar] [CrossRef]
- Baetz, U.; Martinoia, E. Root exudates: The hidden part of plant defense. Trends Plant Sci. 2014, 19, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Haichar, F.E.Z.; Santaella, C.; Heulin, T.; Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 2014, 77, 69–80. [Google Scholar] [CrossRef]
- Oburger, E.; Jones, D.L. Sampling root exudates–Mission impossible? Rhizosphere 2018, 6, 116–133. [Google Scholar] [CrossRef]
- Neumann, G.; Bott, S.; Ohler, M.; Mock, H.-P.; Lippmann, R.; Grosch, R.; Smalla, K. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front. Microbiol. 2014, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.G.; Lee, B.Y.; Lee, H.J. Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.). Sci. Hortic. 2006, 110, 119–128. [Google Scholar] [CrossRef]
- Badri, D.V.; Vivanco, J.M. Regulation and function of root exudates. Plant Cell Environ. 2009, 32, 666–681. [Google Scholar] [CrossRef]
- Windisch, S.; Bott, S.; Ohler, M.-A.; Mock, H.-P.; Lippmann, R.; Grosch, R.; Smalla, K.; Ludewig, U.; Neumann, G. Rhizoctonia solani and Bacterial Inoculants Stimulate Root Exudation of Antifungal Compounds in Lettuce in a Soil-Type Specific Manner. Agronomy 2017, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Schreiter, S.; Sandmann, M.; Smalla, K.; Grosch, R. Soil Type Dependent Rhizosphere Competence and Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Lettuce. PLoS ONE 2014, 9, e103726. [Google Scholar] [CrossRef] [Green Version]
- Windisch, S.; Sommermann, L.; Babin, D.; Chowdhury, S.P.; Grosch, R.; Moradtalab, N.; Walker, F.; Höglinger, B.; El-Hasan, A.; Armbruster, W.; et al. Impact of Long-Term Organic and Mineral Fertilization on Rhizosphere Metabolites, Root–Microbial Interactions and Plant Health of Lettuce. Front. Microbiol. 2021, 11, 3157. [Google Scholar] [CrossRef]
- Chipley, J.R. Sodium benzoate and benzoic acid. In Antimicrobials in Food; CRC Press: Boca Raton, FL, USA, 2020; p. 48. [Google Scholar]
- Krebs, H.A.; Wiggins, D.; Stubbs, M.; Sols, A.; Bedoya, F. Studies on the mechanism of the antifungal action of benzoate. Biochem. J. 1983, 214, 657–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Li, X.; Cai, K.; Cai, L.; Lu, N.; Shi, J. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms. Appl. Soil Ecol. 2015, 93, 78–87. [Google Scholar] [CrossRef]
- Lanoue, A.; Burlat, V.; Henkes, G.J.; Koch, I.; Schurr, U.; Röse, U.S.R. De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. N. Phytol. 2009, 185, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.-Y.; Seo, K.-H.; Lee, S.-H.; Choi, G.-J.; Jang, K.-S.; Choi, Y.-H.; Cha, B.-J.; Kim, J.-C. Antifungal Activity of Benzoic Acid from Bacillus subtilis GDYA-1 against Fungal Phytopathogens. Res. Plant Dis. 2012, 18, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Jeong, M.-H.; Lee, Y.-S.; Cho, J.-Y.; Ahn, Y.-S.; Moon, J.-H.; Hyun, H.-N.; Cha, G.-S.; Kim, K.-Y. Isolation and characterization of metabolites from Bacillus licheniformis MH48 with antifungal activity against plant pathogens. Microb. Pathog. 2017, 110, 645–653. [Google Scholar] [CrossRef]
- Nehela, Y.; Taha, N.A.; Elzaawely, A.A.; Xuan, T.D.; Amin, M.A.; Ahmed, M.E.; El-Nagar, A. Benzoic Acid and Its Hydroxylated Derivatives Suppress Early Blight of Tomato (Alternaria solani) via the Induction of Salicylic Acid Biosynthesis and Enzymatic and Nonenzymatic Antioxidant Defense Machinery. J. Fungi. 2021, 7, 663. [Google Scholar] [CrossRef]
- Grisebach, H.; Ebel, J. Phytoalexine, chemische Abwehrstoffe hoherer Pflanzen? Angew. Chemie 1978, 90, 668–681. [Google Scholar] [CrossRef]
- Takasugi, M.; Ohuchi, M.; Okinaka, S.; Katsui, N.; Masamune, T.; Shirata, A. Chemical Communications Isolation and Structure of Lettucenin A, a Novel Guaianolide Phytoalexin from Lactuca sativa var. capitata (Compositae). J. Chem. Soc. 1985, 10, 621–622. [Google Scholar]
- Yean, H.C.; Atong, M.; Chong, K.P. Lettucenin A and Its Role against Xanthomonas Campestris. J. Agric. Sci. 2009, 1, 87. [Google Scholar] [CrossRef] [Green Version]
- Mai, F.; Glomb, M.A. Lettucenin Sesquiterpenes Contribute Significanlty to the Browning of Lettuce. J. Agric. Food Chem. 2014, 62, 4747–4753. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids Lactones: Benefits to Plants and People. Int. J. Mol. Sci. 2013, 14, 12780–12805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosch, R.; Dealtry, S.; Schreiter, S.; Berg, G.; Mendonça-Hagler, L.; Smalla, K. Biocontrol of Rhizoctonia solani: Complex interaction of biocontrol strains, pathogen and indigenous microbial community in the rhizosphere of lettuce shown by molecular methods. Plant Soil 2012, 361, 343–357. [Google Scholar] [CrossRef]
- Chong, J.; Pierrel, M.-A.; Atanassova, R.; Werck-Reichhart, D.; Fritig, B.; Saindrenan, P. Free and Conjugated Benzoic Acid in Tobacco Plants and Cell Cultures. Induced Accumulation upon Elicitation of Defense Responses and Role as Salicylic Acid Precursors. Plant Physiol. 2001, 125, 318–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiyama, A. The soybean rhizosphere: Metabolites, microbes, and beyond—A review. J. Adv. Res. 2019, 19, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Oros, G.; Kállai, Z. The constitutive defense compounds as potential botanical fungicides. In Bioactive Molecules in Plant Defense; Jogaiah, S., Abdelrahman, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 179–229. [Google Scholar]
- Wright, J.D. Fungal degradation of benzoic acid and related compounds. World J. Microbiol. Biotechnol. 1993, 9, 9–16. [Google Scholar] [CrossRef]
- Talubnak, C.; Parinthawong, N.; Jaenaksorn, T. Phytoalexin production of lettuce (Lactuca sativa L.) grown in hydroponics and its in vitro inhibitory effect on plant pathogenic fungi. Songklanaskarin J. Sci. Technol. 2017, 39, 633–640. [Google Scholar]
- Henry, E.; Yadeta, K.A.; Coaker, G. Recognition of bacterial plant pathogens: Local, systemic and transgenerational immunity. New Phytol. 2013, 199, 908–915. [Google Scholar] [CrossRef] [Green Version]
- Neumann, G.; Römheld, V. Root-induced changes in the availability of nutrients in the rhizosphere. In Plant Roots, the Hidden Half; Waisel, Y., Eshel, A., Kafkafi, U., Eds.; CRC Press: Boca Raton, FL, USA, 2002; pp. 617–649. [Google Scholar]
- Bar-Tal, A.; Bar-Yosef, B.; Chen, Y. Validation of a model of the transport of zinc to an artificial root. J. Soil Sci. 1991, 42, 399–411. [Google Scholar] [CrossRef]
- Blum, U. Effects of Microbial Utilization of Phenolic Acids and their Phenolic Acid Breakdown Products on Allelopathic Interactions. J. Chem. Ecol. 1998, 24, 685–708. [Google Scholar] [CrossRef]
- Neumann, G. Root exudates and organic composition of plant roots. In Handbook of Methods Used in Rhizosphere Research; Luster, J., Finlay, R., Eds.; Swiss Federal Research Institute WSL: Birmensdorf, Switzerland, 2006. [Google Scholar]
Benzoic Acid [ng g−1 Root FW] | ||
---|---|---|
A. Root Exudate | B. Root Tissue | |
Methanolic extract before alkaline hydrolysis | Methanolic extract after alkaline hydrolysis | |
0.04 ± 0.03 a | 0.03 ± 0.01 a | 0.20 ± 0.02 b |
Parameter | (i) Benzoic Acid Application [3 × 110 µg kg−1 Substrate] | (ii) R. solani Inoculation | (iii) R. solani + Benzoic Acid Application [3 × 110 µg kg−1 Substrate] |
---|---|---|---|
Decline in plant FW (compared with an untreated control) [g plant−1] | 0.29 | 44.22 (*) | 21.6 (**) |
Incubation Temperature | 23–25 °C | 20–22 °C | ||
---|---|---|---|---|
Treatments | R. solani | R. solani + Benzoic Acid | R. solani | R. solani + Benzoic Acid |
Shoot FW [g] | 113.73 a | 131.62 b (+16%) | 83.39 a | 94.36 a (+13%) |
Root FW [g] | 9.82 a | 11.58 b (+18%) | 5.43 a | 8.23 b (+52%) |
Root length [cm] | 1429.2 a | 1510.7 a (+ 6%) | 1196.7 a | 2631.5 b (+120%) |
Fine root length (Ø 0–0.4 mm) [cm] | 1022.7 a | 1182.1 a (+ 16%) | 863.0 a | 2040.3 b (+136%) |
Analysed Plant Tissue | ||||
---|---|---|---|---|
Treatments | Leaves without Symptoms | Leaves with Symptoms of R. solani | CuSO4 Treated Leaves | |
Leaf Content [µg g−1 FW] | Root Content [µg g−1 FW] | |||
Untreated control | 0.17 ± 0.01 | na | na | 0.18 ± 0.01 |
CuSO4 foliar application | 0.17 ± 0.06 | na | 7.96 ± 0.79 * | 0.20 ± 0.01 |
R. solani inoculation | 0.00 | 1.20 ± 0.68 | na | 0.42 ± 0.04 * |
Benzoic acid application | 0.21 ± 0.01 * | na | na | 0.00 |
R. solani + Benzoic acid | 0.12 ± 0.07 | 0.41 ± 0.13 * | na | 0..65 ± 0.14 * |
Treatments | Olpidium- Disease Severity | Plant Biomass | Root Exudates | Root Tissue | Leaf Tissue | |||
---|---|---|---|---|---|---|---|---|
(Visual Rating) | [g Plant−1] | Lettucenin A [ng cm−1 Root] | Benzoic Acid [ng cm−1 Root] | Lettucenin A [µg g−1 FW] | Benzoic Acid [µg g−1 FW] | Lettucenin A [µg g−1 FW] | Benzoic Acid [µg g−1 FW] | |
BIODYN2 CONMIN | +++ | 1.41 b | 0.34 a | 4.06 b | 1.77 a | 0.11 a | 0.49 a | 0.0 a |
+ | 2.64 a | 0.25 a | 1.34 a | 1.33 a | 0.0 b | 0.30 a | 0.0 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Windisch, S.; Walter, A.; Moradtalab, N.; Walker, F.; Höglinger, B.; El-Hasan, A.; Ludewig, U.; Neumann, G.; Grosch, R. Role of Benzoic Acid and Lettucenin A in the Defense Response of Lettuce against Soil-Borne Pathogens. Plants 2021, 10, 2336. https://doi.org/10.3390/plants10112336
Windisch S, Walter A, Moradtalab N, Walker F, Höglinger B, El-Hasan A, Ludewig U, Neumann G, Grosch R. Role of Benzoic Acid and Lettucenin A in the Defense Response of Lettuce against Soil-Borne Pathogens. Plants. 2021; 10(11):2336. https://doi.org/10.3390/plants10112336
Chicago/Turabian StyleWindisch, Saskia, Anja Walter, Narges Moradtalab, Frank Walker, Birgit Höglinger, Abbas El-Hasan, Uwe Ludewig, Günter Neumann, and Rita Grosch. 2021. "Role of Benzoic Acid and Lettucenin A in the Defense Response of Lettuce against Soil-Borne Pathogens" Plants 10, no. 11: 2336. https://doi.org/10.3390/plants10112336
APA StyleWindisch, S., Walter, A., Moradtalab, N., Walker, F., Höglinger, B., El-Hasan, A., Ludewig, U., Neumann, G., & Grosch, R. (2021). Role of Benzoic Acid and Lettucenin A in the Defense Response of Lettuce against Soil-Borne Pathogens. Plants, 10(11), 2336. https://doi.org/10.3390/plants10112336