The Relationships between Plant Developmental Traits and Winter Field Survival in Rye (Secale cereale L.)
Abstract
:1. Introduction
2. Results
2.1. A Multi-Trait Approach to Study WFS
2.2. WFS for Rye Population Displayed Large Variations between Years
Winter Survival Class: Genotype | Origin | Growth Habit | WFS BLUE Score * | LT50 Value (°C) |
---|---|---|---|---|
Very high: | ||||
Leth Coulee Rye | Canada | Winter | 92.5 | −26.8 |
Gauthier | Canada | Winter | 90.1 | −26.2 |
AC Remington | Canada | Winter | 86.2 | −27.0 |
AC Rifle | Canada | Winter | 85.9 | −27.0 |
Musketeer | Canada | Winter | 83.0 | −27.8 |
SM 38R | Canada | Winter | 77.5 | −24.0 |
Prima | Canada | Winter | 77.0 | −27.5 |
Saratovskaja 4 | Russia | Winter | 71.8 | −26.8 |
SM 4R | Canada | Winter | 71.0 | −26.8 |
Pearl | Denmark | Winter | 69.5 | −26.6 |
Kustro | Canada | Winter | 68.8 | −25.8 |
Kharkivska 95 | Ukraine | Winter | 67.9 | −24.8 |
Kharkivska 98 | Ukraine | Winter | 66.9 | −24.0 |
Esprit | Germany | Winter | 66.3 | −22.8 |
Ponsi | Sweden | Winter | 66.0 | −24.8 |
Hazlet | Canada | Winter | 65.5 | −23.6 |
Antelope | Canada | Winter | 65.3 | −26.2 |
Emerald | USA | Winter | 65.2 | −22.0 |
Anna | Finland | Winter | 64.5 | −22.0 |
High: | ||||
R003-4 | Canada | Winter | 64.3 | −24.0 |
Voima | Finland | Winter | 64.2 | −23.8 |
Dakota | Canada | Winter | 64.1 | −26.7 |
Sc-73 | Canada | Winter | 64.0 | −22.4 |
Animo | Netherlands | Winter | 63.6 | −25.2 |
Caribou | Canada | Winter | 63.6 | −23.8 |
Puma | Canada | Winter | 62.4 | −26.0 |
Othello | Sweden | Winter | 62.2 | −22.0 |
Rymin | USA | Winter | 61.9 | −23.4 |
Adams | USA | Winter | 61.5 | −22.8 |
Sangaste | Estonia | Winter | 60.3 | −23.0 |
Visa | Finland | Winter | 59.9 | −24.2 |
Vitallo | Germany | Winter | 59.6 | −23.5 |
Halo | Germany | Winter | 59.5 | −26.2 |
Balbo | Italy | Facultative | 59.4 | −26.0 |
Frontier | Canada | Winter | 58.6 | −24.4 |
Enzi | Finland | Winter | 58.4 | −22.0 |
Explorer | USA | Facultative | 58.4 | −23.4 |
Motto | Poland | Winter | 58.0 | −23.6 |
Dankowskie Selekcyjne | Poland | Winter | 56.7 | −23.8 |
Moderate: | ||||
Galma | Belgium | Winter | 56.6 | −22.6 |
Cougar | Canada | Winter | 56.1 | −24.0 |
Dominant | Netherlands | Winter | 55.8 | −23.6 |
Dankowskie Nowe | Poland | Winter | 54.9 | −24.6 |
Danko | Canada | Winter | 54.2 | −24.8 |
ACE-1 | Canada | Perennial | 54.0 | −19.4 |
Dankowskie Srebrne | Poland | Winter | 53.9 | −24.2 |
Carolkurz | Germany | Winter | 53.2 | −23.8 |
Horton | Canada | Winter | 53.1 | −24.0 |
Kodiak | Canada | Winter | 51.8 | −25.0 |
GC-100 | Russia | Winter | 51.6 | −23.0 |
Amilo | Poland | Winter | 49.2 | −20.8 |
Sellino | Germany | Winter | 48.5 | −21.8 |
R538 | UK | Perennial | 48.1 | −21.6 |
Protector | Germany | Winter | 47.8 | −22.4 |
Toivo | Finland | Winter | 47.5 | −23.8 |
Culpan | Russia | Winter | 47.0 | −22.6 |
Hardy white spring Rye | Austria | Winter | 46.9 | −21.6 |
Maton | USA | Facultative | 46.2 | −19.5 |
Low: | ||||
Stoir | Ukraine | Winter | 43.7 | −22.2 |
Vaschod | Belarus | Winter | 43.7 | −21.2 |
R550 | Czech Republic | Perennial | 43.6 | −21.4 |
Reimann Philipp | Germany | Perennial | 42.4 | −21.0 |
Oklon | USA | Facultative | 40.9 | −19.6 |
Carsten | Germany | Winter | 39.5 | −18.0 |
R903 | Unknown | Perennial | 38.9 | −22.0 |
Harach | Canada | Spring | 38.8 | −21.4 |
Danae | Germany | Winter | 37.1 | −21.2 |
Clse 35 | USA | Winter | 36.8 | −20.2 |
Gator | USA | Facultative | 36.0 | −23.2 |
Elbon | USA | Facultative | 35.9 | −17.0 |
L-286-R | Germany | Winter | 35.7 | −16.4 |
R904 | Unknown | Perennial | 35.4 | −19.8 |
Syn 20-L | Germany | Winter | 35.3 | −21.8 |
SR4A-S5 | Canada | Spring | 33.2 | −17.6 |
Dakold | USA | Winter | 31.1 | −20.5 |
Wheeler | USA | Winter | 31.0 | −20.8 |
M.Karlic CT2 | Russia | Winter | 30.5 | −19.5 |
Very low: | ||||
Wintergrazer 70 | USA | Facultative | 25.2 | −20.2 |
Petkus Kurzstroh | Germany | Winter | 24.1 | −19.0 |
Gazelle | Canada | Spring | 23.6 | −19.0 |
Petkus | Germany | Winter | 22.9 | −21.2 |
Prolific Spring | Canada | Spring | 22.1 | −19.2 |
Wren Abruzzi | USA | Facultative | 20.0 | −18.0 |
Extra Early Rye1 | Mexico | Spring | 19.7 | −16.4 |
Somro | Germany | Winter | 16.0 | −18.8 |
R1210 | South Africa | Perennial | 15.7 | −16.0 |
Baltia | Russia | Winter | 15.6 | −16.8 |
R797 | Poland | Perennial | 13.2 | −16.0 |
Fl-Synt | USA | Spring | 12.9 | −16.4 |
Ottawa Select | Canada | Winter | 12.9 | −16.8 |
Gulzow Kunz CT1 | Germany | Winter | 12.4 | −16.2 |
Rogo | Germany | Spring | 12.4 | −16.2 |
Florida 401 | USA | Spring | 7.1 | −15.8 |
L-145-N | Germany | Winter | 0.0 | −17.0 |
L-145-P | Germany | Winter | 0.0 | −16.5 |
L-18-R | Germany | Winter | 0.0 | −16.5 |
2.3. Freezing Tests Provided a Good Estimate of WFS Levels for the Rye Genotypes
2.4. FLN and PGH Values Were Strongly Associated with WFS
2.5. Delayed Anthesis Time Was Weakly Associated with Higher WFS
2.6. Higher WFS Was Associated with Genotypes Growing Tall
2.7. Variation for FLA Did Not Relate to Winter-Hardiness
2.8. Bi-Plot PCA Supported WFS Is Primarily Determined by Developments at SAM during Cold Acclimation
2.9. Heritability Estimates Show Genotype Had High Influence on Traits Analyzed
3. Discussion
3.1. Rye Population Studied Provided a Wide Variation of Winter-Hardiness Levels
3.2. Efficiency of the Cold Acclimation Process Was a Major Factor for WFS
3.3. Developments at SAM Were Closely Associated with WFS and LTT
3.4. WFS and LTT Were Associated with PHT and TIL
3.5. DTA Showed Strongest Association with PGH Displayed during Cold Acclimation
4. Materials and Methods
4.1. Plant Material and Seed Production
4.2. Field Trials for Determination of WFS
4.3. Freezing Tests for Determination of LTT
4.4. Collection of Phenotypic Data for Developmental Traits
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haffke, S.; Kusterer, B.; Fromme, F.J.; Roux, S.; Hackauf, B.; Miedaner, T. Analysis of covariation of grain yield and dry matter yield for breeding dual use hybrid rye. BioEnergy Res. 2014, 7, 424–429. [Google Scholar] [CrossRef]
- Newell, M.A.; Butler, T.J. Forage rye improvement in the southern United States: A review. Crop Sci. 2013, 53, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, R. Hybrid breeding boosted molecular genetics in rye. Russ. J. Genet. Appl. Res. 2016, 6, 569–583. [Google Scholar] [CrossRef]
- Schlegel, R.H.J. RYE: Genetics, Breeding, and Cultivation; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- von Zitzewitz, J.; Szűcs, P.; Dubcovsky, J.; Yan, L.; Francia, E.; Pecchioni, N.; Casas, A.; Chen, T.H.H.; Hayes, P.M.; Skinner, J.S. Molecular and structural characterization of barley vernalization genes. Plant Mol. Biol. 2005, 59, 449–467. [Google Scholar] [CrossRef] [PubMed]
- Gruner, P.; Miedaner, T. Perennial rye: Genetics of perenniality and limited fertility. Plants 2021, 10, 1210. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Luo, X.; Xu, D.; Tian, X.; Song, J.; Xia, X.; Chu, C.; He, Z. Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals. New Phytol. 2021, 230, 1731–1745. [Google Scholar] [CrossRef]
- Trevaskis, B.; Bagnall, D.J.; Ellis, M.H.; Peacock, W.J.; Dennis, E.S. MADS box genes control vernalization-induced flowering in cereals. Proc. Natl. Acad. Sci. USA 2003, 100, 13099–13104. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Loukoianov, A.; Tranquilli, G.; Helguera, M.; Fahima, T.; Dubcovsky, J. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 2003, 100, 6263–6268. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Loukoianov, A.; Blechl, A.; Tranquilli, G.; Ramakrishna, W.; SanMiguel, P.; Bennetzen, J.L.; Echenique, V.; Dubcovsky, J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 2004, 303, 1640–1644. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Fu, D.; Li, C.; Blechl, A.; Tranquilli, G.; Bonafede, M.; Sanchez, A.; Valarik, M.; Yasuda, S.; Dubcovsky, J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 2006, 103, 19581–19586. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Dubcovsky, J. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet. 2012, 8, e1003134. [Google Scholar] [CrossRef] [Green Version]
- Sasani, S.; Hemming, M.N.; Oliver, S.N.; Greenup, A.; Tavakkol-Afshari, R.; Mahfoozi, S.; Poustini, K.; Sharifi, H.-R.; Dennis, E.S.; Peacock, W.J.; et al. The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeum vulgare). J. Exp. Bot. 2009, 60, 2169–2178. [Google Scholar] [CrossRef] [PubMed]
- Mahfoozi, S.; Limin, A.E.; Fowler, D.B. Developmental regulation of low-temperature tolerance in winter wheat. Ann. Bot. 2001, 87, 751–757. [Google Scholar] [CrossRef]
- Diallo, A.O.; Ali-Benali, M.A.; Badawi, M.; Houde, M.; Sarhan, F. Expression of vernalization responsive genes in wheat is associated with histone H3 trimethylation. Mol. Genet. Genom. 2012, 287, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Greenup, A.G.; Sasani, S.; Oliver, S.N.; Talbot, M.J.; Dennis, E.S.; Hemming, M.N.; Trevaskis, B. ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals. Plant Physiol. 2010, 153, 1062–1073. [Google Scholar] [CrossRef] [Green Version]
- Ruelens, P.; De Maagd, R.A.; Proost, S.; Theißen, G.; Geuten, K.; Kaufmann, K. FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nat. Commun. 2013, 4, 2280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winfield, M.O.; Lu, C.; Wilson, I.D.; Coghill, J.A.; Edwards, K.J. Cold- and light-induced changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive growth. BMC Plant Biol. 2009, 9, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, A.; Geuten, K. The role of FLOWERING LOCUS C relatives in cereals. Front. Plant Sci. 2020, 11, 617340. [Google Scholar] [CrossRef]
- Dhillon, T.; Pearce, S.P.; Stockinger, E.J.; Distelfeld, A.; Li, C.; Knox, A.K.; Vashegyi, I.; Vágújfalvi, A.; Galiba, G.; Dubcovsky, J. Regulation of freezing tolerance and flowering in temperate cereals: The VRN-1 connection. Plant Physiol. 2020, 153, 1846–1858. [Google Scholar] [CrossRef] [Green Version]
- Stockinger, E.J.; Skinner, J.S.; Gardner, K.G.; Francia, E.; Pecchioni, N. Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant J. 2007, 51, 308–321. [Google Scholar] [CrossRef]
- Guy, C.; Kaplan, F.; Kopka, J.; Selbig, J.; Hincha, D.K. Metabolomics of temperature stress. Physiol. Plant. 2008, 132, 220–235. [Google Scholar] [CrossRef]
- Hüner, N.P.A.; Bode, R.; Dahal, K.; Hollis, L.; Rosso, D.; Krol, M.; Ivanov, A.G. Chloroplast redox imbalance governs phenotypic plasticity: The “grand design of photosynthesis” revisited. Front. Plant Sci. 2012, 3, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uemura, M.; Tominaga, Y.; Nakagawara, C.; Shigematsu, S.; Minami, A.; Kawamura, Y. Responses of the plasma membrane to low temperatures. Physiol. Plant. 2006, 126, 81–89. [Google Scholar] [CrossRef]
- Francia, E.; Barabaschi, D.; Tondelli, A.; Laidò, G.; Rizza, F.; Stanca, A.M.; Busconi, M.; Fogher, C.; Stockinger, E.J.; Pecchioni, N. Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor. Appl. Genet. 2007, 115, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Galiba, G.; Vágújfalvi, A.; Li, C.; Soltész, A.; Dubcovsky, J. Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci. 2009, 176, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Vágújfalvi, A.; Aprile, A.; Miller, A.; Dubcovsky, J.; Delugu, G.; Galiba, G.; Cattivelli, L. The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol. Genet. Genom. 2005, 274, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Kosová, K.; Prášil, I.T.; Vítámvás, P. The relationship between vernalization- and photoperiodically-regulated genes and the development of frost tolerance in wheat and barley. Biol. Plant. 2008, 52, 601–615. [Google Scholar] [CrossRef]
- Fowler, D.B.; Byrns, B.M.; Greer, K.J. Overwinter low-temperature responses of cereals: Analyses and simulation. Crop Sci. 2014, 54, 2395–2405. [Google Scholar] [CrossRef] [Green Version]
- Skinner, D.Z.; Bellinger, B.S. Differential response of wheat cultivars to components of the freezing process in saturated soil. Crop Sci. 2011, 51, 69. [Google Scholar] [CrossRef] [Green Version]
- Rapacz, M.; Jurczyk, B.; Sasal, M. Deacclimation may be crucial for winter survival of cereals under warming climate. Plant Sci. 2017, 256, 5–15. [Google Scholar] [CrossRef]
- Ponomareva, M.L.; Gorshkov, V.Y.; Ponomarev, S.N.; Korzun, V.; Miedaner, T. Snow mold of winter cereals: A complex disease and a challenge for resistance breeding. Theor. Appl. Genet. 2021, 134, 419–433. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Hanson, P.J.; Post, W.M.; Kaiser, D.P.; Yang, B.; Nemani, R.; Pallardy, S.G.; Meyers, T. The 2007 eastern US spring freeze: Increased cold damage in a warming world? Bioscience 2008, 58, 253–262. [Google Scholar] [CrossRef]
- Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Chang. 2014, 4, 637–643. [Google Scholar] [CrossRef]
- Båga, M.; Fowler, D.B.; Chibbar, R.N. Identification of genomic regions determining the phenological development leading to floral transition in wheat (Triticum aestivum L.). J. Exp. Bot. 2009, 60, 3575–3585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, D.B.; Limin, A.E.; Mahfoozi, S.; Sarhan, F. Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley. Plant Physiol. 2001, 127, 1676–1681. [Google Scholar] [CrossRef] [PubMed]
- Limin, A.E.; Fowler, D.B. Morphological and cytological characters associated with low-temperature tolerance in wheat (Triticum aestivum L. em Thell.). Can. J. Plant Sci. 2000, 80, 687–692. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. Plant adaptation to cold climates. F1000Research 2016, 5, 2769. [Google Scholar] [CrossRef]
- Tan, L.; Li, X.; Liu, F.; Sun, X.; Li, C.; Zhu, Z.; Fu, Y.; Cai, H.; Wang, X.; Xie, D.; et al. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 2008, 40, 1360–1364. [Google Scholar] [CrossRef]
- Quarrie, S.A.; Quarrie, P.S.; Radosevic, R.; Rancic, D.; Kaminska, A.; Barnes, J.D.; Leverington, M.; Ceoloni, C.; Dodig, D. Dissecting a wheat QTL for yield present in a range of environments: From the QTL to candidate genes. J. Exp. Bot. 2006, 57, 2627–2637. [Google Scholar] [CrossRef] [Green Version]
- Kirby, E.J.M.; Appleyard, M.; Simpson, N.A. Co-ordination of stem elongation and Zadoks growth stages with leaf emergence in wheat and barley. J. Agric. Sci. 1994, 122, 21–29. [Google Scholar] [CrossRef]
- McKim, S.M. How plants grow up. J. Integr. Plant Biol. 2019, 61, 257–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, E.-M.; Tsvetkova, N.; Rotter, B.; Siekmann, D.; Schwefel, K.; Krezdorn, N.; Plieske, J.; Winter, P.; Melz, G.; Voylokov, A.V.; et al. Gene expression profiling and fine mapping identifies a gibberellin 2-oxidase gene co-segregating with the dominant dwarfing gene Ddw1 in rye (Secale cereale L.). Front. Plant Sci. 2019, 10, 857. [Google Scholar] [CrossRef] [PubMed]
- Grądzielewska, A.; Milczarski, P.; Molik, K.; Pawłowska, E. Identification and mapping of a new recessive dwarfing gene dw9 on the 6RL rye chromosome and its phenotypic effects. PLoS ONE 2020, 15, e0229564. [Google Scholar] [CrossRef] [Green Version]
- Hellewell, K.B.; Rasmusson, D.C.; Gallo-Meagher, M. Enhancing yield of semi-dwarf barley. Crop Sci. 2000, 40, 352–358. [Google Scholar] [CrossRef]
- Peng, J.; Richards, D.E.; Hartley, N.M.; Murphy, G.P.; Devos, K.M.; Flintham, J.E.; Beales, J.; Fish, L.J.; Worland, A.J.; Pelica, F.; et al. “Green revolution” genes encode mutant gibberellin response modulators. Nature 1999, 400, 256–261. [Google Scholar] [CrossRef]
- Sang, M.; Shi, H.; Wei, K.; Ye, M.; Jiang, L.; Sun, L.; Wu, R. A dissection model for mapping complex traits. Plant J. 2019, 97, 1168–1182. [Google Scholar] [CrossRef] [PubMed]
- Bahrani, H.; Thoms, K.; Båga, M.; Larsen, J.; Graf, R.; Laroche, A.; Sammynaiken, R.; Chibbar, R.N. Preferential accumulation of glycosylated cyanidins in winter-hardy rye (Secale cereale L.) genotypes during cold acclimation. Environ. Exp. Bot. 2019, 164, 203–212. [Google Scholar] [CrossRef]
- Acharya, S.N.; Mir, Z.; Moyer, J.R. ACE-1 perennial cereal rye. Can. J. Plant Sci. 2004, 84, 819–821. [Google Scholar] [CrossRef]
- Knox, A.K.; Li, C.; Vágújfalvi, A.; Galiba, G.; Stockinger, E.J.; Dubcovsky, J. Identification of candidate CBF genes for the frost tolerance locus Fr-Am2 in Triticum monococcum. Plant Mol. Biol. 2008, 67, 257–270. [Google Scholar] [CrossRef]
- Zhu, J.; Pearce, S.; Burke, A.; See, D.R.; Skinner, D.Z.; Dubcovsky, J.; Garland-Campbell, K. Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat. Theor. Appl. Genet. 2014, 127, 1183–1197. [Google Scholar] [CrossRef] [Green Version]
- Francia, E.; Morcia, C.; Pasquariello, M.; Mazzamurro, V.; Milc, J.A.; Rizza, F.; Terzi, V.; Pecchioni, N. Copy number variation at the HvCBF4–HvCBF2 genomic segment is a major component of frost resistance in barley. Plant Mol. Biol. 2016, 92, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Rizza, F.; Karsai, I.; Morcia, C.; Badeck, F.-W.; Terzi, V.; Pagani, D.; Kiss, T.; Stanca, A.M. Association between the allele compositions of major plant developmental genes and frost tolerance in barley (Hordeum vulgare L.) germplasm of different origin. Mol. Breed. 2016, 36, 156. [Google Scholar] [CrossRef]
- Erath, W.; Bauer, E.; Fowler, D.B.; Gordillo, A.; Korzun, V.; Ponomareva, M.; Schmidt, M.; Schmiedchen, B.; Wilde, P.; Schön, C.-C. Exploring new alleles for frost tolerance in winter rye. Theor. Appl. Genet. 2017, 130, 2151–2164. [Google Scholar] [CrossRef]
- Li, Y.; Böck, A.; Haseneyer, G.; Korzun, V.; Wilde, P.; Schön, C.-C.; Ankerst, D.P.; Bauer, E. Association analysis of frost tolerance in rye using candidate genes and phenotypic data from controlled, semi-controlled, and field phenotyping platforms. BMC Plant Biol. 2011, 11, 146. [Google Scholar] [CrossRef] [Green Version]
- Fowler, D.; Chauvin, L.; Limin, A.; Sarhan, F. The regulatory role of vernalization in the expression of low-temperature-induced genes in wheat and rye. Theor. Appl. Genet. 1996, 93, 554–559. [Google Scholar] [CrossRef]
- Ganeshan, S.; Vitamvas, P.; Fowler, D.B.; Chibbar, R.N. Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. J. Exp. Bot. 2008, 59, 2393–2402. [Google Scholar] [CrossRef]
- Mayer, B.F.; Bertrand, A.; Charron, J.-B. Treatment analogous to seasonal change demonstrates the integration of cold responses in Brachypodium distachyon. Plant Physiol. 2020, 182, 1022–1038. [Google Scholar] [CrossRef] [Green Version]
- Leuendorf, J.E.; Frank, M.; Schmülling, T. Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Sci. Rep. 2020, 10, 689. [Google Scholar] [CrossRef] [Green Version]
- Gaudet, D.A.; Laroche, A.; Yoshida, M. Low temperature-wheat-fungal interactions: A carbohydrate connection. Physiol. Plant. 1999, 106, 437–444. [Google Scholar] [CrossRef]
- Fowler, D.B.; Limin, A.E. Interactions among factors regulating phenological development and acclimation rate determine low-temperature tolerance in wheat. Ann. Bot. 2004, 94, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Kuhlemeier, C. Phyllotaxis. Curr. Biol. 2017, 27, R882–R887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galinha, C.; Bilsborough, G.; Tsiantis, M. Hormonal input in plant meristems: A balancing act. Semin. Cell Dev. Biol. 2009, 20, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Diallo, A.O.; Agharbaoui, Z.; Badawi, M.A.; Ali-Benali, M.A.; Moheb, A.; Houde, M.; Sarhan, F. Transcriptome analysis of an mvp mutant reveals important changes in global gene expression and a role for methyl jasmonate in vernalization and flowering in wheat. J. Exp. Bot. 2014, 65, 2271–2286. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, S.E.; Rashotte, A.M.; Shipp, M.J.; Robertson, D.; Muday, G.K. Mutations in the gravity persistence signal loci in Arabidopsis disrupt the perception and/or signal transduction of gravitropic stimuli. Plant Physiol. 2002, 130, 1426–1435. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.W.A. Identification of loci on chromosome 5A of wheat involved in control of cold hardiness, vernalization, leaf length, rosette growth habit, and height of hardened plants. Genome 1990, 33, 247–259. [Google Scholar] [CrossRef]
- Marone, D.; Rodriguez, M.; Saia, S.; Papa, R.; Rau, D.; Pecorella, I.; Laidò, G.; Pecchioni, N.; Lafferty, J.; Rapp, M.; et al. Genome-wide association mapping of prostrate/erect growth habit in winter durum wheat. Int. J. Mol. Sci. 2020, 21, 394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuczyńska, A.; Mikołajczak, K.; Ćwiek, H. Pleiotropic effects of the sdw1 locus in barley populations representing different rounds of recombination. Electron. J. Biotechnol. 2014, 17, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhou, G.; Broughton, S.; Westcott, S.; Zhang, X.; Xu, Y.; Xu, L.; Li, C.; Zhang, W. Towards the identification of a gene for prostrate tillers in barley (Hordeum vulgare L.). PLoS ONE 2018, 13, e0192263. [Google Scholar] [CrossRef] [Green Version]
- Eremina, M.; Rozhon, W.; Poppenberger, B. Hormonal control of cold stress responses in plants. Cell. Mol. Life Sci. 2016, 73, 797–810. [Google Scholar] [CrossRef]
- Chen, Y.; Carver, B.F.; Wang, S.; Zhang, F.; Yan, L. Genetic loci associated with stem elongation and winter dormancy release in wheat. Theor. Appl. Genet. 2009, 118, 881–889. [Google Scholar] [CrossRef]
- Trevaskis, B.; Hemming, M.N.; Dennis, E.S.; Peacock, W.J. The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci. 2007, 12, 352–357. [Google Scholar] [CrossRef]
- Deng, W.; Casao, M.C.; Wang, P.; Sato, K.; Hyes, P.M.; Finnegan, E.J.; Trevaskis, B. Direct links between the vernalization response and other key traits of cereal crops. Nat. Commun. 2015, 6, 6882. [Google Scholar] [CrossRef] [PubMed]
- Corbesier, L.; Vincent, C.; Jang, S.; Fornara, F.; Fan, Q.; Searle, I.; Giakountis, A.; Farrona, S.; Gissot, L.; Turnbull, C.; et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 2007, 316, 1030–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, C.B.; Li, C. Genetic architecture of flowering phenology in cereals and opportunities for crop improvement. Front. Plant Sci. 2016, 7, 1906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boden, S.A.; Weiss, D.; Ross, J.J.; Davies, N.W.; Trevaskis, B.; Chandler, P.M.; Swain, S.M. EARLY FLOWERING3 regulates flowering in spring barley by mediating gibberellin production and FLOWERING LOCUS T expression. Plant Cell 2014, 26, 1557–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, K.P.; Sarath, G.; Mitchell, R.B. Micromesh fabric pollination bags for switchgrass. Crop Sci. 2014, 54, 1621–1623. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Ceccarelli, S.; Hamblin, J. Estimation of heritability from varietal trials data. Theor. Appl. Genet. 1993, 86, 437–441. [Google Scholar] [CrossRef]
- Piepho, H.P.; Richter, C.; Williams, E. Nearest neighbour adjustment and linear variance models in plant breeding trials. Biom. J. 2008, 50, 164–189. [Google Scholar] [CrossRef]
- Chavent, M.; Kuentz-Simonet, V.; Saracco, J. Orthogonal rotation in PCAMIX. Adv. Data Anal. Classif. 2012, 6, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Rabanus-Wallace, M.T.; Hackauf, B.; Mascher, M.; Lux, T.; Wicker, T.; Gundlach, H.; Baez, M.; Houben, A.; Mayer, K.F.; Guo, L.; et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat. Genet. 2021, 53, 564–573. [Google Scholar] [CrossRef]
- Alqudah, A.M.; Sallam, A.; Baenziger, P.S.; Börner, A. GWAS: Fast-forwarding gene identification and characterization in temperate cereals: Lessons from barley—A review. J. Adv. Res. 2020, 22, 119–135. [Google Scholar] [CrossRef] [PubMed]
Trait | WFS 2014/15 | WFS 2015/16 | WFS 2016/17 | WFS 2017/18 | WFS 2018/19 | WFS-BLUE |
---|---|---|---|---|---|---|
Low temperature tolerance (LTT) 1 | 0.70 *** | 0.62 *** | 0.82 *** | 0.54 *** | 0.81 *** | 0.90 *** |
Winter field survival 2014/15 | 0.44 ** | 0.54 *** | 0.37 ** | 0.63 *** | 0.66 *** | |
Winter field survival 2015/16 | 0.66 *** | 0.17 | 0.49 *** | 0.76 *** | ||
Winter field survival 2016/17 | 0.36 ** | 0.67 *** | 0.91 *** | |||
Winter field survival 2017/18 | 0.58 *** | 0.59 *** | ||||
Winter field survival 2018/19 | 0.88 *** | |||||
Winter field survival BLUE score 2 |
LTT | FLN | PGH | DTA | PHT | TIL | FLA | |
---|---|---|---|---|---|---|---|
Winter field survival (WFS) 1 | 0.90 *** | 0.80 *** | 0.61 *** | 0.25 * | 0.34 *** | 0.30 ** | 0.13 |
Low temperature tolerance (LTT) 2 | 0.71 *** | 0.59 *** | 0.17 | 0.39 *** | 0.36 *** | 0.14 | |
Final leaf number (FLN) 1 | 0.43 *** | 0.14 | 0.28 ** | 0.26 * | 0.11 | ||
Prostrate growth habit (PGH) 1 | 0.43 *** | 0.03 | 0.06 | 0.11 | |||
Days to anthesis (DTA) 1 | −0.29 ** | −0.25 * | 0.13 | ||||
Plant height (PHT) 1 | 0.72 *** | 0.05 | |||||
Top internode length (TIL) 1 | 0.05 | ||||||
Flag leaf area (FLA) 1 |
Trait 1 | Mean Sum of Squares | |||
---|---|---|---|---|
Genotype (G) | Environment (E) | G × E | Heritability (h2) | |
Winter field survival (WFS) | 65,990.78 *** | 3,303,871.00 *** | 13,242.97 *** | 0.48 |
Final leaf number (FLN) | 177.85 *** | 196.48 *** | 9.30 *** | 0.81 |
Prostrate growth habit (PGH) | 28.02 *** | 15.57 *** | 6.38 *** | 0.45 |
Days to anthesis (DTA) | 6546.93 *** | 2173.40 *** | 285.18 *** | 0.84 |
Plant height (PHT) | 23,717.40 *** | 15,098.94 *** | 1815.25 *** | 0.74 |
Top internode length (TIL) | 4077.32 *** | 871.38 *** | 314.83 *** | 0.74 |
Flag leaf area (FLA) | 2547.20 *** | 1901.13 *** | 184.37 *** | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahrani, H.; Båga, M.; Larsen, J.; Graf, R.J.; Laroche, A.; Chibbar, R.N. The Relationships between Plant Developmental Traits and Winter Field Survival in Rye (Secale cereale L.). Plants 2021, 10, 2455. https://doi.org/10.3390/plants10112455
Bahrani H, Båga M, Larsen J, Graf RJ, Laroche A, Chibbar RN. The Relationships between Plant Developmental Traits and Winter Field Survival in Rye (Secale cereale L.). Plants. 2021; 10(11):2455. https://doi.org/10.3390/plants10112455
Chicago/Turabian StyleBahrani, Hirbod, Monica Båga, Jamie Larsen, Robert J. Graf, Andre Laroche, and Ravindra N. Chibbar. 2021. "The Relationships between Plant Developmental Traits and Winter Field Survival in Rye (Secale cereale L.)" Plants 10, no. 11: 2455. https://doi.org/10.3390/plants10112455
APA StyleBahrani, H., Båga, M., Larsen, J., Graf, R. J., Laroche, A., & Chibbar, R. N. (2021). The Relationships between Plant Developmental Traits and Winter Field Survival in Rye (Secale cereale L.). Plants, 10(11), 2455. https://doi.org/10.3390/plants10112455