The Survival of Pear Dormant Buds at Ultra-Low Temperatures
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anonym. Fruit Harvest 2020, Including 3 and 5 Year Comparisons. Sklizeň Ovoce 2020, Včetně 3 a 5letých Srovnání. Available online: http://eagri.cz/public/web/file/668403/Skliznen_ovoce_2020_a_3lete_a_5lete_srovnani.pdf (accessed on 30 August 2021). (In Czech).
- Towill, L.E.; Forsline, P.L.; Walters, C.; Waddell, J.W.; Laufmann, J. Cryopreservation of Malus germplasm using a winter vegetative bud method: Results from 1915 accessions. CryoLetters 2004, 25, 323–334. [Google Scholar] [PubMed]
- Bilavčík, A.; Zámečník, J.; Grospietsch, M.; Faltus, M.; Jadrná, P. Dormancy development during cold hardening of in vitro cultured Malus domestica Borkh. plants in relation to their frost resistance and cryotolerance. Trees 2012, 26, 1181–1192. [Google Scholar] [CrossRef]
- Faltus, M.; Bilavčík, A.; Zámečník, J. Thermal analysis of grapevine shoot tips during dehydration and vitrification. VITIS—J. Grapevine Res. 2015, 54, 243–245. [Google Scholar]
- Reed, B.; Denoma, J.; Luo, J.; Chang, Y.; Towill, L. Cryopreservation and long-term storage of pear germplasm. Vitr. Cell. Dev. Biol.-Plant 1998, 34, 256–260. [Google Scholar] [CrossRef]
- Sedlak, J.; Paprstein, F.; Bilavcik, A.; Zamecnik, J. Adaptation of apple and pear plants to in vitro conditions and to low temperature. Acta Hortic 2001, 560, 457–460. [Google Scholar] [CrossRef]
- Benelli, C.; De Carlo, A.; Engelmann, F. Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol. Adv. 2013, 31, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Tyler, N.J.; Stushnoff, C. Dehydration of dormant apple buds at different stages of cold acclimation to induce cryopreservability in different cultivars. Can. J. Plant Sci. 1988, 68, 1169–1176. [Google Scholar] [CrossRef] [Green Version]
- Sakai, A.; Nishiyama, Y. Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen. HortScience 1978, 13, 225–227. [Google Scholar]
- Oka, S.; Yakuwa, H.; Sate, K.; Niino, T. Survival and shoot formation in vitro of pear winter buds cryopreserved in liquid nitrogen. HortScience 1991, 26, 65–66. [Google Scholar] [CrossRef]
- Suzuki, M.; Niino, T.; Akihama, T.; Oka, S. Shoot Formation and Plant Regeneration of Vegetative Pear Buds Cryopreserved at −150 °C. J. Jpn. Soc. Hort. Sci. 1997, 66, 29–34. [Google Scholar] [CrossRef]
- Guyader, A.; Guisnel, R.; Simonneau, F.; Rocand, B.; Le Bras, C.; Grapin, A.; Chatelet, P.; Dussert, S.; Engelmann, F.; Feugey, L. First results on cryopreservation by dormant bud technique of a set of Malus and Pyrus cultivars from the INRA Biological Resources Centre. In Proceedings of the COST Action 871 Cryopreservation of Crop Species in Europe Final Meeting, Angers, France, 8–11 February 2011; Grapin, A., Keller, J., Lynch, P., Panis, B., Revilla, A., Engelmann, F., Eds.; OPOCE: Luxembourg, 2012; pp. 141–144. [Google Scholar] [CrossRef]
- Towill, L.E.; Ellis, D.D. Cryopreservation of dormant buds. In Plant Cryopreservation. A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 421–442. [Google Scholar] [CrossRef]
- Zhumagulova, Z.B.; Kovalchuk, I.Y.; Reed, B.M.; Kampitova, G.A.; Turdiev, T.T. Effect of pretreatment methods of dormant pear buds on viability after cryopreservation. World Appl. Sci. J. 2014, 30, 330–334. [Google Scholar] [CrossRef]
- Tanner, J.D.; Minas, I.S.; Chen, K.Y.; Jenderek, M.M.; Wallner, S.J. Antimicrobial forcing solution improves recovery of cryopreserved temperate fruit tree dormant buds. Cryobiology 2020, 92, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Vogiatzi, C.; Grout, B.W.W.; Wetten, A. Cryopreservation of winter-dormant apple: III—bud water status and survival after cooling −30 °C and during recovery from cryopreservation. CryoLetters 2012, 33, 160–168. [Google Scholar]
- Stushnoff, C. Cryopreservation of apple genetic resources. Can. J. Plant Sci. 1987, 67, 1151–1154. [Google Scholar] [CrossRef] [Green Version]
- Höfer, M. Cryopreservation of winter-dormant apple buds: Establishment of a duplicate collection of Malus germplasm. Plant Cell Tissue Organ Cult. (PCTOC) 2015, 121, 647–656. [Google Scholar] [CrossRef]
- Jenderek, M.M.; Forsline, P.; Postman, J.; Stover, E.; Ellis, D. Effect of geographical location, year, and cultivar on survival of Malus sp. dormant buds stored in vapors of liquid nitrogen. HortScience 2011, 46, 1230–1234. [Google Scholar] [CrossRef] [Green Version]
- Bilavčík, A.; Zámečník, J.; Faltus, M. Cryotolerance of apple tree bud is independent of endodormancy. Front. Plant Sci. 2015, 6, 695. [Google Scholar] [CrossRef] [Green Version]
- Dereuddre, J.; Scottez, C.; Arnaud, Y.; Duron, M. Effects of cold hardening on cryopreservation of axillary pear (Pyrus communis L. cv Beurré Hardy) shoot tips of in vitro plantlets. Comptes Rendus Acad. Sci. Ser. III-Sci. Vie-Life Sci. 1990, 310, 265–272. [Google Scholar]
- Sedlak, J.; Paprstein, F.; Bilavcik, A.; Zamecnik, J. In vitro cultures and cryopreservation as a tool for conserving of fruit species. Bull. Bot. Gard. 2004, 13, 65–67. [Google Scholar]
- Damiano, C.; Caboni, E.; Frattarelli, A.; Condello, E.; Arias, M.; Engelmann, F. Cryopreservation of Fruit Tree Species through Encapsulation-Dehydration at the CRA—Fruit Research Centre of Rome. In Proceedings of the 1st International Symposium on Cryopreservation in Horticultural Species, Leuven, Belgium, 5–8 April 2009; pp. 187–190. [Google Scholar]
- Chang, Y.J.; Reed, B.M. Extended alternating-temperature cold acclimation and culture duration improve pear shoot cryopreservation. Cryobiology 2000, 40, 311–322. [Google Scholar] [CrossRef]
- Dereuddre, J.; Scottez, C.; Arnaud, Y.; Duron, M. Resistance of alginate-coated axillary shoot tips of pear tree (Pyrus communis L. cv Beurré Hardy) in vitro plantlets to dehydration and subsequent freezing in liquid nitrogen: Effects of previous cold hardening. Comptes Rendus l’Académie Sci. Série III Sci. Vie 1990, 310, 317–323. [Google Scholar]
- Valencia-Quintana, R.; Gómez-Arroyo, S.; Waliszewski, S.M.; Sánchez-Alarcón, J.; Gómez-Olivares, J.L.; Flores-Márquez, A.R.; Villalobos-Pietrini, R. Evaluation of the genotoxic potential of dimethyl sulfoxide (DMSO) in meristematic cells of the root of Vicia faba. Toxicol. Environ. Health Sci. 2012, 4, 154–160. [Google Scholar] [CrossRef]
- Tanner, J.D.; Chen, K.Y.; Jenderek, M.M.; Wallner, S.J.; Minas, I.S. Determining the effect of pretreatments on freeze resistance and survival of cryopreserved temperate fruit tree dormant buds. Cryobiology 2021, 101, 87–94. [Google Scholar] [CrossRef] [PubMed]
Variety | Water Content (%) | |||
---|---|---|---|---|
2011 | 2012 | Average | Δ 2011–2012 | |
‘Amfora’ | 38.7 | 37.7 | 38.2 | 1.0 |
‘Beurré Hardy’ | 40.5 | 34.5 | 37.5 | 6.0 |
‘Bosc’ | 38.3 | 37.2 | 37.7 | 1.1 |
‘Clapp’s Favourite’ | 40.8 | 37.9 | 39.4 | 2.9 |
‘Conference’ | 40.8 | 37.9 | 39.3 | 3.0 |
‘Dicolor’ | 41.5 | 35.0 | 38.2 | 6.6 |
‘Erika’ | 41.5 | 32.3 | 36.9 | 9.2 |
‘Lucas’ | 37.1 | 35.6 | 36.3 | 1.5 |
‘Williams’ | 40.8 | 37.1 | 38.9 | 3.8 |
‘Williams Red’ | 41.2 | 35.3 | 38.3 | 5.8 |
Average | 40.1 | 36.0 | 38.1 | 4.1 |
SD | 1.46 | 1.73 | 0.95 | 2.59 |
Variety | Regeneration (%) | ||||
---|---|---|---|---|---|
2011 | SD | 2012 | SD | Δ 2011–2012 | |
‘Amfora’ | 65.8 cde | 15.9 | 29.2 cd | 11.79 | 36.2 |
‘Beurré Hardy’ | 79.2 de | 5.9 | 29.2 cd | 5.89 | 48.7 |
‘Bosc’ | 33.3 ab | 21.2 | 0.0 a | 0.00 | 33.3 |
‘Clapp’s Favourite’ | 83.3 de | 11.8 | 37.5 d | 10.21 | 45.8 |
‘Conference’ | 71.7 cde | 24.6 | 12.5 abc | 10.21 | 56.7 |
‘Dicolor’ | 29.2 ab | 15.6 | 16.2 abc | 15.73 | 13.2 |
‘Erika’ | 46.7 bc | 11.2 | 0.0 a | 0.00 | 46.2 |
‘Lucas’ | 75.8 cde | 18.3 | 11.1 abc | 15.71 | 64.9 |
‘Williams’ | 50.0 bcd | 10.2 | 20.8 bcd | 5.89 | 29.2 |
‘Williams Red’ | 8.3 a | 5.9 | 4.2 ab | 5.89 | 4.0 |
Average | 54.3 | 16.1 | 37.8 | ||
SD | 23.71 | 12.33 | 17.87 |
Variety | Max. Regrowth a (%) | Published Results | |||
---|---|---|---|---|---|
Max. Regrowth [%] | Source b | Method c | Ref. | ||
‘Amfora’ | 66 | ||||
‘Beurré Hardy’ | 79 | 40 | iv | En-Dehy | [21] |
‘Beurré Hardy’ | 79 | 60 | iv | DMSO/TSF | [25] |
‘Bosc’ | 33 | 90 | iv | PGD/TSF | [24] |
‘Clapp’s Favourite’ | 83 | 14 | iv | En-Dehy | [22] |
‘Clapp’s Favourite’ | 83 | ~33 | db | Dehy-TSF-Graft | [12] |
‘Conference’ | 72 | 50 | db | Dehy-TSF-Graft | [12] |
‘Dicolor’ | 29 | ||||
‘Erika’ | 47 | ||||
‘Lucas’ | 76 | 44 | iv | En-Dehy | [22] |
‘Williams’ | 50 | 26 | iv | En-Dehy | [23] |
‘Williams’ d | 50 | ~30 | db | Dehy-TSF-iv | [27] |
‘Williams’ | 50 | 92 | db | Dehy-TSF-Graft | [12] |
‘Williams Red’ | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilavcik, A.; Faltus, M.; Zamecnik, J. The Survival of Pear Dormant Buds at Ultra-Low Temperatures. Plants 2021, 10, 2502. https://doi.org/10.3390/plants10112502
Bilavcik A, Faltus M, Zamecnik J. The Survival of Pear Dormant Buds at Ultra-Low Temperatures. Plants. 2021; 10(11):2502. https://doi.org/10.3390/plants10112502
Chicago/Turabian StyleBilavcik, Alois, Milos Faltus, and Jiri Zamecnik. 2021. "The Survival of Pear Dormant Buds at Ultra-Low Temperatures" Plants 10, no. 11: 2502. https://doi.org/10.3390/plants10112502
APA StyleBilavcik, A., Faltus, M., & Zamecnik, J. (2021). The Survival of Pear Dormant Buds at Ultra-Low Temperatures. Plants, 10(11), 2502. https://doi.org/10.3390/plants10112502