Heavy Metals Assimilation by Native and Non-Native Aquatic Macrophyte Species: A Case Study of a River in the Eastern Cape Province of South Africa
Abstract
:1. Introduction
2. Materials and Methods
Study Area
3. Data Collection
3.1. Water Chemistry
3.2. Sediment Chemistry
3.3. Macrophytes Chemical Analysis
4. Data Analysis
5. Results
5.1. Water and Sediment Chemistry
5.2. Swartkops River Sediment Contamination
5.3. Heavy Metal Assimilation along the Swartkops River
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Novelty Statement
References
- Motitsoe, S.N.; Hill, M.P.; Avery, T.S.; Hill, J.M. A new approach to the biological monitoring of freshwater systems: Mapping nutrient loading in two South African rivers, a case study. Water Res. 2020, 171, 115391. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Deswal, S. Phytoremediation capabilities of Salvinia molesta, water hyacinth, water lettuce, and duckweed to reduce phosphorus in rice mill wastewater. Int. J. Phytoremediat. 2020, 22, 1097–1109. [Google Scholar] [CrossRef]
- Geist, J.; Hawkins, S.J. Habitat recovery and restoration in aquatic ecosystems: Current progress and future challenges. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 942–962. [Google Scholar] [CrossRef]
- Mishra, V.K.; Tripathi, B.D. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresourse Technol. 2008, 99, 7091–7097. [Google Scholar] [CrossRef] [PubMed]
- Yamada-Ferraz, T.M.; Sueitt, A.P.E.; Olivveira, A.F.; Botta, C.M.R.; Fadini, P.S.; Nascimento, M.R.L.; Faria, B.M.; Mozeto, A.A. Assessment of Phoslock® application in a tropical eutrophic reservoir: An integrated evaluation from laboratory to field experiments. Environ. Technol. Innov. 2015, 4, 194–205. [Google Scholar] [CrossRef]
- Liu, D.M.; Chen, J.; Shi, Y.P. Advances on methods and easy separated support materials for enzymes immobilization. Trends Anal. Chem. 2018, 102, 332–342. [Google Scholar] [CrossRef]
- Hanif, A.; Bhatti, H.N.; Hanif, M.A. Removal of zirconium from aqueous solution by Ganoderma lucidum: Biosorption and bioremediation studies. Desalination Water Treat. 2015, 53, 195–205. [Google Scholar] [CrossRef]
- Karthika, N.; Jananee, K.; Murugaiyan, V. Remediation of contaminated soil using soil washing-a review. Int. J. Eng. Res. Appl. 2016, 1, 2248–9622. [Google Scholar]
- Chandra, R.; Yadav, S. Potential of Typha angustifolia for phytoremediation of heavy metals from aqueous solution of phenol and melanoidin. Ecol. Eng. 2010, 36, 1277–1284. [Google Scholar] [CrossRef]
- Šostar-Turk, S.; Petrinić, I.; Simonič, M. Laundry wastewater treatment using coagulation and membrane filtration. Resour. Conserv. Recycl. 2005, 44, 185–196. [Google Scholar] [CrossRef]
- Sarma, H. Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. Int. J. Environ. Sci. Technol. 2011, 4, 118–138. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals-concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.E.; Yavas, İ.; Ünay, A.; Abdel-Daim, M.M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef] [Green Version]
- Hejna, M.; Moscatelli, A.; Stroppa, N.; Onelli, E.; Pilu, S.; Baldi, A.; Rossi, L. Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediationsystem. Chemosphere 2020, 241, 125018. [Google Scholar] [CrossRef] [PubMed]
- Auchterlonie, J.; Eden, C.L.; Sheridan, C. The phytoremediation potential of water hyacinth: A case study from Hartbeespoort Dam, South Africa. S. Afr. J. Chem. Eng. 2021, 37, 31–36. [Google Scholar] [CrossRef]
- Sakakibara, M.; Ohmori, Y.; Ha, N.T.H.; Sano, S.; Sera, K. Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean-Soil Air Water 2011, 39, 735–741. [Google Scholar] [CrossRef]
- Hua, J.; Zhang, C.; Yin, Y.; Chen, R.; Wang, X. Phytoremediation potential of three aquatic macrophytes in manganese-contaminated water. Water Environ. J. 2012, 26, 335–342. [Google Scholar] [CrossRef]
- Mishra, V.K.; Tripathi, B.D. Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). J. Hazard. Mater. 2009, 164, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, X.; Yin, D.; Peng, B.; Tan, C.; Liu, Y.; Tan, X.; Wu, S. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichhornia crassipes). J. Environ. Manag. 2015, 153, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Bokhari, S.H.; Ahmad, I.; Mahmood-Ul-Hassan, M.; Mohammad, A. Phytoremediation potential of Lemna minor L. for heavy metals. Int. J. Phytoremediat. 2016, 18, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, H.; Morad, N.; Fizri, F.F.A. Phyto-accumulation of copper from aqueous solutions using Eichhornia crassipes and Centella asiatica. Int. J. Environ. Sci. Dev. 2011, 2, 205–210. [Google Scholar] [CrossRef]
- Moyo, P.; Chapungu, L.; Mudzengi, B. Effectiveness of water hyacinth (Eichhornia crassipes) in remediating polluted water: The case of Shagashe River in Masvingo, Zimbabwe. Adv. Appl. Sci. Res. 2013, 4, 55–62. [Google Scholar]
- Muthusaravanan, S.; Sivarajasekar, N.; Vivek, J.S.; Paramasivan, T.; Naushad, M.; Prakashmaran, J.; Gayathri, V.; Al-Duaij, O.K. Phytoremediation of heavy metals: Mechanisms, methods and enhancements. Environ. Chem. Lett. 2018, 16, 1339–1359. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: A review. Crit. Rev. Environ. Sci. Technol. 2010, 41, 168–214. [Google Scholar] [CrossRef]
- Basumatary, B.; Bordoloi, S.; Sarma, H.P. Crude oil-contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water Air Soil Pollut. 2012, 223, 3373–3383. [Google Scholar] [CrossRef]
- Hechmi, N.; Aissa, N.B.; Abdenaceur, H.; Jedidi, N. Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. Environ. Sci. Pollut. Res. 2014, 21, 1304–1313. [Google Scholar] [CrossRef]
- Romanova, T.E.; Shuvaeva, O.V. Fractionation of mercury in water hyacinth and pondweed from contaminated area of gold mine tailing. Water Air Soil Pollut. 2016, 227, 171. [Google Scholar] [CrossRef]
- Ng, Y.S.; Chan, D.J.C. Wastewater phytoremediation by Salvinia molesta. J. Water Process. Eng. 2017, 15, 107–115. [Google Scholar] [CrossRef]
- Bello, A.O.; Tawabini, B.S.; Khalil, A.B.; Boland, C.R.; Saleh, T.A. Phytoremediation of cadmium-, lead-and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecol. Eng. 2018, 120, 126–133. [Google Scholar] [CrossRef]
- da Silva, A.A.; de Oliveira, J.A.; de Campos, F.V.; Ribeiro, C.; dos Santos Farnese, F.; Costa, A.C. Phytoremediation potential of Salvinia molesta for arsenite contaminated water: Role of antioxidant enzymes. Theor. Exp. Plant Physiol. 2018, 30, 275–286. [Google Scholar] [CrossRef]
- Basumatary, B.; Saikia, R.; Das, C.H.; Bordoloi, S. Field note: Phytoremediation of petroleum sludge contaminated field using sedge species, Cyperus rotundus (Linn.) and Cyperus brevifolius (Rottb.). Int. J. Phytoremediat. 2013, 15, 877–888. [Google Scholar] [CrossRef]
- Chayapan, P.; Kruatrachue, M.; Meetam, M.; Pokethitiyook, P. Phytoremediation potential of Cd and Zn by wetland plants, Colocasia esculenta L. Schott., Cyperus malaccensis Lam., and Typha angustifolia L. grown in hydroponics. J. Environ. Biol. 2015, 36, 1179–1183. [Google Scholar]
- Cicero-Fernández, D.; Peña-Fernández, M.; Expósito-Camargo, J.A.; Antizar-Ladislao, B. Long-term (two annual cycles) phytoremediation of heavy metal-contaminated estuarine sediments by Phragmites australis. New Biotechnol. 2017, 38, 56–64. [Google Scholar] [CrossRef]
- Shahid, M.J.; Ali, S.; Shabir, G.; Siddique, M.; Rizwan, M.; Seleiman, M.F.; Afzal, M. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water. Chemosphere 2020, 243, 125353. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Alberti, M.; Booth, D.; Hill, K.; Coburn, B.; Avolio, C.; Coe, S.; Spirandelli, D. The impact of urban patterns on aquatic ecosystems: An empirical analysis in Puget lowland sub-basins. Landsc. Urban Plan. 2007, 80, 345–361. [Google Scholar] [CrossRef]
- Loan, N.T.; Phuong, N.M.; Anh, N.T.N. The role of aquatic plants and microorganism in domestic wastewater treatment. Environ. Eng. Manag. J. 2014, 13, 2031–2038. [Google Scholar] [CrossRef]
- Mishra, S.; Maiti, A. The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: A review. Environ. Sci. Pollut. Res. 2017, 24, 7921–7937. [Google Scholar] [CrossRef] [PubMed]
- Chiudioni, F.; Trabace, T.; Di Gennaro, S.; Palma, A.; Manes, F.; Mancini, L. Phytoremediation applications in natural condition and in mesocosm: The uptake of cadmium by Lemna minuta Kunth, a non-native species in Italian watercourses. Int. J. Phytoremediat. 2017, 19, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Ceschin, S.; Crescenzi, M.; Iannelli, M.A. Phytoremediation potential of the duckweeds Lemna minuta and Lemna minor to remove nutrients from treated waters. Environ. Sci. Pollut. Res. 2020, 27, 15806–15814. [Google Scholar] [CrossRef]
- Kushwaha, A.; Hans, N.; Kumar, S.; Rani, R. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol. Environ. Saf. 2018, 147, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, J.A.; Hill, M.P. The role of eutrophication in the biological control of water hyacinth, Eichhornia crassipes, in South Africa. BioControl 2012, 57, 247–261. [Google Scholar] [CrossRef]
- Hess, M.C.; Mesléard, F.; Buisson, E. Priority effects: Emerging principles for invasive plant species management. Ecol. Eng. 2019, 127, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Tobias, V.D.; Conrad, J.L.; Mahardja, B.; Khanna, S. Impacts of water hyacinth treatment on water quality in a tidal estuarine environment. Biol. Invasions 2019, 21, 3479–3490. [Google Scholar] [CrossRef] [Green Version]
- Coetzee, J.A.; Langa, S.D.F.; Motitsoe, S.N.; Hill, M.P. Biological control of water lettuce, Pistia stratiotes L., facilitates macroinvertebrate biodiversity recovery: A mesocosm study. Hydrobiologia 2020, 847, 3917–3929. [Google Scholar] [CrossRef]
- Huizenga, J.M.; Silberbauer, M.; Dennis, R.; Dennis, I. An inorganic water chemistry dataset (1972–2011) of rivers, dams and lakes in South Africa. Water SA 2013, 39, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Raggy Charters. Algoa Bay, Port Elizabeth. What We See-Marine Species in Port Elizabeth. Available online: https://www.raggycharters.co.za/filter/species/marine-species-in-algoa-bay-port-elizabeth (accessed on 14 May 2013).
- Odume, O.N.; Muller, W.J.; Arimoro, F.O.; Palmer, C.G. The impact of water quality deterioration on macroinvertebrate communities in the Swartkops River, South Africa: A multimetric approach. Afr. J. Aquat. Sci. 2012, 37, 191–200. [Google Scholar] [CrossRef]
- Muller, G. Index of geo-accumulation in sediments of the Rhine River. Geo-J. 1969, 2, 108–118. [Google Scholar]
- Kumar, V.; Thakur, R.K. Pollution load of SIDCUL effluent with reference to heavy metals accumulated in sediments using pollution load index (PLI) and geo-accumulation index (Igeo) at Haridwar (Uttarakhand), India. J. Environ. Biosci. 2017, 31, 163–168. [Google Scholar]
- Martin, J.M.; Meybeck, M. Elemental mass balance of materials carried by major world rivers. Mar. Chem. 1979, 7, 173–206. [Google Scholar] [CrossRef]
- Muller, G. Die Schwermetallbelstung der sedimente des Neckars und seiner Nebenflusse: Eine Bestandsaufnahme. Chem. Ztg. 1981, 105, 157–164. [Google Scholar]
- Islam, M.S.; Ahmed, M.K.; Habibullah-Al-Mamun, M.; Hoque, M.F. Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environ. Earth Sci. 2015, 73, 1837–1848. [Google Scholar] [CrossRef]
- Bubu, A.; Ononugbo, C.P.; Avwiri, G.O. Determination of heavy metal concentrations in sediment of Bonny River, Nigeria. Arch. Curr. Res. Int. 2017, 11, 1–11. [Google Scholar] [CrossRef]
- Atgin, R.S.; El-Agha, O.; Zararsız, A.; Kocatas, A.; Parlak, H.; Tuncel, G. Investigation of the sediment pollution in Izmir Bay: Trace elements. Spectrochim. Acta Part B 2000, 55, 1151–1164. [Google Scholar] [CrossRef]
- Chakravarty, I.M.; Patgiri, A.D. Metal Pollution Assessment in Sediments of the Dikrong River, N.E. India. J. Hum. Ecol. 2009, 27, 63–67. [Google Scholar] [CrossRef]
- Tesfamariam, Z.; Younis, Y.M.H.; Elsanousi, S.S. Assessment of heavy metal status of sediment and water in Mainefhi and Toker drinking-water reservoirs of Asmara City, Eritrea. Am. J. Res. Commun. 2016, 4, 76–88. [Google Scholar]
- Ganugapenta, S.; Nadimikeri, J.; Chinnapolla, S.R.R.B.; Ballari, L.; Madiga, R.; Nirmala, K.; Tella, L.P. Assessment of heavy metal pollution from the sediment of Tupilipalem Coast, southeast coast of India. Int. J. Sediment Res. 2018, 33, 294–302. [Google Scholar] [CrossRef]
- Nirmala, K.; Ramesh, R.; Ambujam, N.K.; Arumugam, K.; Srinivasalu, S. Geochemistry of surface sediments of a tropical brackish water lake in South Asia. Environ. Earth Sci. 2016, 75, 1–11. [Google Scholar]
- Chen, C.W.; Kao, C.M.; Chen, C.F.; Dong, C.D. Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere 2007, 66, 1431–1440. [Google Scholar] [CrossRef]
- Buat-Menard, P.; Chesselet, R. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet. Sci. Lett. 1979, 42, 399–411. [Google Scholar] [CrossRef]
- Zayed, A.; Gowthaman, S.; Terry, N. Phyto-accumulation of trace elements by wetland plants: I. Duckweed. J. Environ. Qual. 1998, 27, 715–721. [Google Scholar] [CrossRef]
- Mellem, J.J.; Baijnath, H.; Odhav, B. Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. Afr. J. Agric. Res. 2012, 7, 591–596. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing (Version 3.6.1) Vienna, Austria; R Foundation for Statistical Computing: Vienna, Australia, 2019; Available online: https://www.R-project.org/ (accessed on 7 April 2019).
- Hammad, D.M. Cu, Ni and Zn phytoremediation and translocation by water hyacinth plant at different aquatic environments. Aust. J. Basic Appl. Sci. 2011, 5, 11–22. [Google Scholar]
- Wang, Z.; Zhang, Z.; Zhang, J.; Zhang, Y.; Liu, H.; Yan, S. Large-scale utilization of water hyacinth for nutrient removal in Lake Dianchi in China: The effects on the water quality, macrozoobenthos and zooplankton. Chemosphere 2012, 89, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.M.; Shaltout, K.H.; Moghanm, F.S.; Youssef, M.S.; El-Mohsnawy, E.; Haroun, S.A. Bioaccumulation and translocation of nine heavy metals by Eichhornia crassipes in Nile Delta, Egypt: Perspectives for phytoremediation. Int. J. Phytoremediat. 2019, 21, 821–830. [Google Scholar] [CrossRef]
- Donatus, M. Removal of heavy metals from industrial effluent using Salvinia molesta. Int. J. Chemtech. Res. 2016, 9, 608–613. [Google Scholar]
- Eid, E.M.; Shaltout, K.H.; El-Sheikh, M.A.; Asaeda, T. Seasonal courses of nutrients and heavy metals in water, sediment and above-and below-ground Typha domingensis biomass in Lake Burullus (Egypt): Perspectives for phytoremediation. Flora Morphol. Distrib. Funct. Ecol. Plants 2012, 207, 783–794. [Google Scholar] [CrossRef]
- Binning, K.; Baird, D. Survey of heavy metals in the sediments of the Swartkops River Estuary, Port Elizabeth South Africa. Water SA 2001, 27, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Odume, O.N. An Evaluation of Macroinvertebrates-Based Biomonitoring and Ecotoxicological Assessments of Deteriorating Environmental Water Quality in the Swartkops River, South Africa. Ph.D. Thesis, Rhodes University, Makhanda, South Africa, 2014. [Google Scholar]
- Adams, J.B.; Pretorius, L.; Snow, G.C. Deterioration in the water quality of an urbanised estuary with recommendations or improvement. Water SA 2019, 45, 86–96. [Google Scholar]
- Jernström, J.; Lehto, J.; Dauvalter, V.A.; Hatakka, A.; Leskinen, A.; Paatero, J. Heavy metals in bottom sediments of Lake Umbozero in Murmansk Region, Russia. Environ. Monit. Assess. 2010, 161, 93–105. [Google Scholar] [CrossRef]
- Hadad, H.R.M.; Maine, A.; Bonetto, C.A. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere 2006, 63, 1744–1753. [Google Scholar] [CrossRef] [PubMed]
- Schaller, J.; Vymazal, J.; Brackhage, C. Retention of resources (metals, metalloids and rare earth elements) by autochthonously/allochthonously dominated wetlands: A review. Ecol. Eng. 2013, 53, 106–114. [Google Scholar] [CrossRef]
- Chandra, R.; Yadav, S. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus. Int. J. Phytorem. 2011, 13, 580–591. [Google Scholar] [CrossRef]
- Maric, M.; Antonijevic, M.; Alagic, S. The investigation of the possibility for using some wild and cultivated plants as hyperaccumulators of heavy metals from contaminated soil. Environ. Sci. Pollut. Res. 2013, 20, 1181–1188. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, B.; Manchanda, V.K. Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ. Sci. Pollut. Res. 2015, 22, 946–962. [Google Scholar] [CrossRef]
- Vymazal, J.; Březinová, T. Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: A review. Chem. Eng. J. 2016, 290, 232–242. [Google Scholar] [CrossRef]
- Bonanno, G. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol. Environ. Saf. 2013, 97, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Goulet, R.R.; Lalonde, J.D.; Munger, C.; Dupuis, S.; Dumont-Frenette, G.; Prémont, S.; Campbell, P.G. Phytoremediation of effluents from aluminum smelters: A study of Al retention in mesocosms containing aquatic plants. Water Res. 2005, 39, 2291–2300. [Google Scholar] [CrossRef]
Sediment Indices | Heavy Metals | Sites | H-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
IGEO | As | 2.94 ± 1.70 | 0.79 ± 0.89 | −0.64 ± 1.71 | 1.15 ± 1.45 | 1.81 ± 0.81 | 1.53 ± 1.45 | 0.34 ± 0.57 | 0.81 ± 2.58 | 0.03 ± 1.22 | 0.26 ± 0.63 | 17.16 |
Cd | −2.32 ± 2.15 | −3.07 ± 3.03 | −4.44 ± 2.87 | −5.00 ± 3.62 | −3.09 ± 2.88 | −1.10 ± 2.46 | −2.56 ± 3.15 | −1.19 ± 2.67 | −2.06 ± 2.86 | −2.12 ± 2.94 | 8.26 | |
Cr | 9.38 ± 0.44 | 9.76 ± 0.85 | 9.91 ± 0.85 | 9.69 ± 0.89 | 11.06 ± 0.86 | 9.77 ± 0.79 | 9.07 ± 0.55 | 9.29 ± 0.85 | 8.90 ± 0.91 | 8.85 ± 0.57 | 19.08 | |
Cu | 5.60 ± 0.65 | 7.14 ± 0.23 | 6.41 ± 0.58 | 5.48 ± 1.37 | 7.02 ± 1.66 | 6.45 ± 1.26 | 4.41 ± 0.50 | 6.20 ± 0.57 | 5.38 ± 0.58 | 4.92 ± 0.21 | 26.47 | |
Fe | 15.11 ± 0.86 | 14.67 ± 0.81 | 14.79 ± 0.45 | 13.80 ± 0.84 | 12.50 ± 0.96 | 13.97 ± 0.64 | 12.70 ± 1.11 | 14.33 ± 0.96 | 13.86 ± 0.61 | 13.91 ± 1.10 | 24.32 | |
Hg | −6.64 ± 3.63 | −6.20 ± 2.52 | −6.29 ± 2.03 | −7.02 ± 2.09 | −6.07 ± 2.09 | −7.62 ± 3.05 | −6.97 ± 1.65 | −6.36 ± 1.71 | −7.09 ± 2.52 | −6.67 ± 1.78 | 5.05 | |
Pb | 7.44 ± 0.62 | 7.61 ± 0.81 | 8.04 ± 0.60 | 6.75 ± 1.19 | 7.95 ± 0.58 | 5.33 ± 3.02 | 5.04 ± 3.15 | 6.29 ± 1.48 | 3.81 ± 3.56 | 3.66 ± 3.43 | 26.19 | |
Zn | 8.77 ± 0.66 | 11.83 ± 0.64 | 11.37 ± 0.16 | 10.46 ± 1.12 | 12.16 ± 1.17 | 10.06 ± 0.93 | 9.06 ± 0.84 | 10.22 ± 0.93 | 9.44 ± 0.29 | 8.79 ± 0.36 | 21.40 | |
EF | As | 0.02 ± 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17.08 |
Cd | 0.01 ± 0.01 | 0 | 0 | 0.01 ± 0.02 | 0 | 0 | 0 | 0 | 0 | 0 | 8.26 | |
Cr | 0.01 ± 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20.39 | |
Cu | 0.01 ± 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26.47 | |
Hg | 1.09 ± 1.70 | 0.93 ± 1.31 | 0.66 ± 0.87 | 0.38 ± 0.46 | 0.71 ± 0.80 | 0.46 ± 0.76 | 0.33 ± 0.42 | 0.51 ± 0.62 | 0.52 ± 0.74 | 0.44 ± 0.58 | 1.76 | |
Pb | 0.01 ± 0 | 0.01 ± 0 | 0.02 ± 0 | 0 | 0.02 ± 0 | 0.01 ± 0 | 0 | 0 | 0 | 0 | 26.19 | |
Zn | 0 | 0.01 ± 0 | 0 ± 0 | 0 | 0.02 ± 0 | 0 | 0 | 0 | 0 | 0 | 35.80 | |
PLI | April | 0.86 | 0.63 | 0.43 | 0.25 | 1.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 |
May | 0.00 | 0.00 | 0.63 | 0.43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | |
June | 0.19 | 0.38 | 0.69 | 0.00 | 0.56 | 0.64 | 0.00 | 0.40 | 0.46 | 0.00 | 9 | |
July | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 | |
Aug | 0.52 | 0.00 | 0.90 | 0.98 | 0.85 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9 |
Plant Species | Heavy Metals | Sites | H-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
T. capensis | As | 0.05 ± 0.07 | 0.25 ± 0.24 | 2.18 ± 2.89 | 0.39 ± 0.48 | 0.21 ± 0.12 | 0.37 ± 0.43 | 0.11 ± 0.24 | 1.55 ± 2.83 | 0.66 ± 1.25 | 0.08 ± 0.17 | 13.05 |
Cd | 0 | 0.07 ± 0.11 | 0.57 ± 0.611 | 1.10 ± 1.17 | 0.08 ± 0.09 | 1.75 ± 3.90 | 0.06 ± 0.13 | 0.03 ± 0.06 | 0.04 ± 0.09 | 0.05 ± 0.10 | 13.22 | |
Cr | 0.65 ± 0.22 | 0.66 ± 0.58 | 0.50 ± 0.36 | 0.64 ± 2.91 | 0.23 ± 0.14 | 0.44 ± 0.22 | 0.44 ± 0.49 | 0.45 ± 0.32 | 0.57 ± 0.42 | 0.76 ± 0.63 | 8.88 | |
Cu | 3.33 ± 1.77 | 1.32 ± 0.30 | 1.91 ± 0.70 | 3.86 ± 2.91 | 1.97 ± 2.97 | 1.93 ± 1.04 | 4.35 ± 1.74 | 1.99 ± 1.16 | 2.86 ± 0.90 | 3.87 ± 1.06 | 21.11 | |
Fe | 0.34 ± 0.22 | 0.46 ± 0.28 | 0.39 ± 0.24 | 0.77 ± 0.65 | 2.10 ± 1.68 | 0.25 ± 0.08 | 0.76 ± 0.43 | 0.23 ± 0.16 | 0.41 ± 0.23 | 0.51 ± 0.38 | 16.06 | |
Hg | 4.19 ± 6.65 | 0.76 ± 0.60 | 0.93 ± 0.98 | 1.16 ± 1.15 | 0.57 ± 0.31 | 3.82 ± 4.57 | 0.83 ± 0.78 | 1.12 ± 1.45 | 1.42 ± 2.23 | 0.72 ± 0.54 | 1.83 | |
Pb | 0.08 ± 0.10 | 0.05 ± 0.05 | 0.04 ± 0.05 | 0.13 ± 0.12 | 0 ± 0.01 | 0.12 ± 0.17 | 0.19 ± 0.23 | 0.22 ± 0.30 | 0.07 ± 0.10 | 0.09 ± 0.13 | 2.76 | |
Zn | 2.21 ± 1.01 | 0.24 ± 0.10 | 0.33 ± 0.07 | 0.76 ± 0.84 | 0.24 ± 0.25 | 1.81 ± 1.22 | 5.47 ± 2.79 | 2.34 ± 3.05 | 2.50 ± 0.89 | 4.18 ± 1.86 | 37.34 | |
C. sexangularis | As | 0.05 ± 0.06 | 0.25 ± 0.24 | 2.35 ± 2.95 | 0.39 ± 0.48 | 0.23 ± 0.19 | 0.48 ± 0.63 | 0.11 ± 0.24 | 1 ± 1.75 | 0.48 ± 0.52 | 0.08 ± 0.18 | 11.20 |
Cd | 0.21 ± 0.35 | 0.12 ± 0.22 | 0.37 ± 0.60 | 1.10 ± 1.17 | 0.22 ± 0.34 | 0.14 ± 0.32 | 0.06 ± 0.13 | 0.04 ± 0.08 | 0.03 ± 0.07 | 0.05 ± 0.10 | 11.02 | |
Cr | 0.57 ± 0.16 | 0.55 ± 0.38 | 0.58 ± 0.50 | 0.64 ± 0.35 | 0.21 ± 0.12 | 0.52 ± 0.32 | 0.68 ± 0.52 | 0.60 ± 0.55 | 0.65 ± 0.47 | 0.98 ± 0.47 | 11.49 | |
Cu | 2.34 ± 1.50 | 1.73 ± 0.21 | 2.21 ± 0.59 | 3.86 ± 2.91 | 2.13 ± 2.90 | 2.30 ± 2.11 | 4.35 ± 1.74 | 1.24 ± 0.41 | 2.59 ± 2.29 | 3.87 ± 1.06 | 25.39 | |
Fe | 0.38 ± 0.20 | 0.28 ± 0.14 | 0.39 ± 0.23 | 0.77 ± 0.65 | 2.37 ± 2.17 | 0.67 ± 0.44 | 0.76 ± 0.43 | 0.24 ± 0.13 | 0.31 ± 0.09 | 0.51 ± 0.38 | 15.87 | |
Hg | 0.30 ± 0.13 | 0.471 ± 0.55 | 0.88 ± 0.85 | 1.16 ± 1.15 | 0.66 ± 0.41 | 2.64 ± 2.68 | 0.83 ± 0.78 | 0.48 ± 0.39 | 1.04 ± 1.57 | 0.72 ± 0.54 | 10.10 | |
Pb | 0.09 ± 0.09 | 0.05 ± 0.05 | 0.05 ± 0.05 | 0.13 ± 0.12 | 0.06 ± 0.08 | 0.08 ± 0.10 | 0.19 ± 0.23 | 0.16 ± 0.14 | 0.09 ± 0.10 | 0.09 ± 0.13 | 3.77 | |
Zn | 4.74 ± 2.59 | 0.97 ± 0.56 | 0.29 ± 0.06 | 0.76 ± 0.84 | 0.28 ± 0.32 | 0.86 ± 0.40 | 5.47 ± 2.79 | 2.45 ± 1.28 | 3.75 ± 0.91 | 4.18 ± 1.86 | 38.49 | |
P. australis | As | 0.10 ± 0.08 | 0.11 ± 0.16 | 1.75 ± 2.44 | 0.14 ± 0.31 | 0.09 ± 0.20 | 0.18 ± 0.30 | 0.01 ± 0.03 | 0.08 ± 0.11 | 0.15 ± 0.20 | 0.09 ± 0.20 | 4.25 |
Cd | 0.19 ± 0.41 | 0.072 ± 0.11 | 0.98 ± 1.72 | 2.67 ± 5.29 | 0.02 ± 0.04 | 0 | 0 | 0 | 0 | 0.07 ± 0.15 | 15.76 | |
Cr | 0.59 ± 0.41 | 0.29 ± 0.24 | 0.25 ± 0.17 | 0.25 ± 0.19 | 0.10 ± 0.18 | 0.53 ± 0.40 | 0.63 ± 0.53 | 0.64 ± 0.52 | 0.86 ± 0.63 | 0.70 ± 0.79 | 12.02 | |
Cu | 1.38 ± 0.73 | 0.58 ± 0.34 | 0.89 ± 0.20 | 1.41 ± 0.97 | 0.47 ± 0.42 | 1.85 ± 1.94 | 2.06 ± 1.65 | 0.86 ± 0.64 | 1.82 ± 1.52 | 1.97 ± 1.34 | 11.73 | |
Fe | 0.38 ± 0.28 | 0.36 ± 0.34 | 0.46 ± 0.36 | 1.30 ± 1.74 | 0.88 ± 1.17 | 0.33 ± 0.31 | 0.54 ± 0.48 | 0.14 ± 0.13 | 0.47 ± 0.66 | 0.38 ± 0.16 | 9.58 | |
Hg | 0.31 ± 0.18 | 0.53 ± 0.58 | 0.64 ± 0.81 | 0.60 ± 0.54 | 0.28 ± 0.47 | 1.46 ± 1.37 | 0.91 ± 1.28 | 0.51 ± 0.61 | 1.47 ± 2.49 | 0.78 ± 0.67 | 4.12 | |
Pb | 0.07 ± 0.07 | 0.04 ± 0.05 | 0.04 ± 0.06 | 0.07 ± 0.10 | 0 | 0.04 ± 0.09 | 0.09 ± 0.13 | 0.07 ± 0.10 | 0.03 ± 0.08 | 0.09 ± 0.13 | 2.30 | |
Zn | 3.70 ± 1.72 | 1.40 ± 1.00 | 1.67 ± 1.13 | 2.36 ± 2.72 | 0.63 ± 0.57 | 3.27 ± 2.55 | 2.56 ± 1.84 | 1.56 ± 1.13 | 6.53 ± 9.05 | 6.18 ± 4.23 | 16.43 | |
P. crassipes | As | 0 | 0.15 ± 0.16 | 0 | 0 | 0.13 ± 0.12 | 0.23 ± 0.51 | 0 | 1.54 ± 2.64 | 1.08 ± 1.34 | 0.10 ± 0.17 | 23.15 |
Cd | 0 | 1.18 ± 2.61 | 0.09 ± 0.15 | 0.25 ± 0.43 | 0.41 ± 0.86 | 0.03 ± 0.07 | 0.07 ± 0.15 | 0.04 ± 0.08 | 0.03 ± 0.07 | 0.06 ± 0.13 | 4.28 | |
Cr | 0 | 0.45 ± 0.21 | 0.35 ± 0.22 | 0.40 ± 0.20 | 0.13 ± 0.07 | 0.29 ± 0.14 | 0.37 ± 0.28 | 0.51 ± 0.28 | 0.82 ± 0.42 | 0.80 ± 0.62 | 28.32 | |
Cu | 0 | 1.70 ± 0.66 | 2.79 ± 0.99 | 7.10 ± 7.08 | 3.43 ± 4.21 | 1.99 ± 1.38 | 8.01 ± 4.07 | 2.23 ± 0.68 | 3.93 ± 2.60 | 4.86 ± 3.09 | 24.40 | |
Fe | 0 | 0.52 ± 0.29 | 0.41 ± 0.24 | 0.86 ± 0.63 | 1.88 ± 0.99 | 0.27 ± 0.15 | 0.77 ± 0.54 | 0.81 ± 0.73 | 0.98 ± 0.64 | 1.15 ± 0.95 | 29.94 | |
Hg | 0 | 0.41 ± 0.36 | 0.44 ± 0.85 | 0.55 ± 1.08 | 0.33 ± 0.24 | 1.25 ± 1.21 | 1.29 ± 1.48 | 0.59 ± 0.52 | 1.35 ± 2.19 | 1.10 ± 0.78 | 20.76 | |
Pb | 0 | 0.11 ± 0.12 | 0.01 ± 0.01 | 0.04 ± 0.07 | 0.08 ± 0.08 | 0.09 ± 0.12 | 0.21 ± 0.25 | 0.24 ± 0.33 | 0.09 ± 0.11 | 0.21 ± 0.24 | 12.82 | |
Zn | 0 | 2.46 ± 2.08 | 1.35 ± 0.51 | 2.95 ± 2.44 | 1.65 ± 1.68 | 3.36 ± 1.25 | 8.34 ± 5.74 | 2.32 ± 1.18 | 4.47 ± 1.93 | 5.94 ± 3.38 | 27.70 | |
S. pectinata | As | 0 | 0.23 ± 0.28 | 2.69 ± 4.51 | 0.29 ± 0.29 | 0.18 ± 0.18 | 0.38 ± 0.57 | 0.22 ± 0.34 | 2.88 ± 6.40 | 0.44 ± 0.70 | 0.20 ± 0.33 | 11.42 |
Cd | 0 | 0.14 ± 0.22 | 0.18 ± 0.28 | 0.49 ± 0.85 | 0.13 ± 0.17 | 0 | 0.15 ± 0.33 | 0.07 ± 0.16 | 0.06 ± 0.13 | 0.05 ± 0.12 | 13.37 | |
Cr | 0 | 0.71 ± 0.54 | 0.64 ± 0.47 | 0.74 ± 0.44 | 0.65 ± 0.33 | 1.58 ± 0.88 | 1.60 ± 0.64 | 0.99 ± 0.77 | 1.60 ± 1.44 | 0.97 ± 0.37 | 27.33 | |
Cu | 0 | 112.32 ± 141.42 | 83.46 ± 76.84 | 178.19 ± 262.57 | 112.59 ± 117.41 | 809.31 ± 1561.55 | 52.59 ± 45.09 | 33.02 ± 27.44 | 54.84 ± 65.20 | 19.88 ± 22.27 | 15.11 | |
Fe | 0 | 2.01 ± 2.34 | 1.54 ± 1.68 | 3.79 ± 5.46 | 11.76 ± 8.44 | 3.26 ± 1.87 | 18.77 ± 17.96 | 2.70 ± 1.81 | 3.47 ± 2.15 | 3.96 ± 4.83 | 23.64 | |
Hg | 0 | 13.17 ± 17.67 | 9.38 ± 10.54 | 19.85 ± 30.46 | 9.40 ± 10.92 | 71.04 ± 128.50 | 6.87 ± 9.13 | 1.13 ± 1.18 | 7.19 ± 8.81 | 2.09 ± 2.51 | 16.77 | |
Pb | 0 | 0.31 ± 0.10 | 0.23 ± 0.09 | 0.61 ± 0.35 | 0.28 ± 0.10 | 0.52 ± 0.36 | 0.70 ± 1.04 | 0.49 ± 0.47 | 0.40 ± 0.45 | 0.48 ± 0.63 | 13.94 | |
Zn | 0 | 5.79 ± 2.63 | 5.60 ± 1.80 | 10.99 ± 5.59 | 5.41 ± 6.69 | 18.95 ± 13.17 | 15.86 ± 16.06 | 4.42 ± 3.00 | 8.73 ± 1.35 | 11.22 ± 4.40 | 22.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tshithukhe, G.; Motitsoe, S.N.; Hill, M.P. Heavy Metals Assimilation by Native and Non-Native Aquatic Macrophyte Species: A Case Study of a River in the Eastern Cape Province of South Africa. Plants 2021, 10, 2676. https://doi.org/10.3390/plants10122676
Tshithukhe G, Motitsoe SN, Hill MP. Heavy Metals Assimilation by Native and Non-Native Aquatic Macrophyte Species: A Case Study of a River in the Eastern Cape Province of South Africa. Plants. 2021; 10(12):2676. https://doi.org/10.3390/plants10122676
Chicago/Turabian StyleTshithukhe, Getrude, Samuel N. Motitsoe, and Martin P. Hill. 2021. "Heavy Metals Assimilation by Native and Non-Native Aquatic Macrophyte Species: A Case Study of a River in the Eastern Cape Province of South Africa" Plants 10, no. 12: 2676. https://doi.org/10.3390/plants10122676
APA StyleTshithukhe, G., Motitsoe, S. N., & Hill, M. P. (2021). Heavy Metals Assimilation by Native and Non-Native Aquatic Macrophyte Species: A Case Study of a River in the Eastern Cape Province of South Africa. Plants, 10(12), 2676. https://doi.org/10.3390/plants10122676