Phytochemical Analysis and Biological Activity of Three Stachys Species (Lamiaceae) from Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stachy Samples, Culture Media and Bacterial Strains
2.2. Chemicals and Reagents
2.3. Extraction
2.4. Determination of Total Phenolics Content
2.5. Determination of Volatile Compounds
2.6. Determination of Antioxidant Activity
2.7. Determination of Antimicrobial Activity
2.8. Statistical Analysis
3. Results and Discussions
3.1. Total Phenolic Content and Antioxidant Activity
3.2. Determination of Volatile Compounds
3.3. Multivariate Analysis of the Stachy Species
3.4. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kyriacou, M.C.; Rouphael, Y. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 2017, 234, 463–469. [Google Scholar] [CrossRef]
- Klee, H.J. Improving the flavor of fresh fruits: Genomics, biochemistry, and biotechnology. New Phytol. 2010, 187, 44–56. [Google Scholar] [CrossRef]
- Silva Dias, J.; Ryder, E.J. World Vegetable Industry: Production, Breeding, Trends. Hortic. Rev. Am. Soc. Hortic. Sci. 2011, 38, 299–356. [Google Scholar] [CrossRef]
- Vilela, A. Introductory Chapter: Generation of Aromas and Flavours. In Generation of Aromas and Flavours; InTech Open: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Perrino, E.V.; Valerio, F.; Gannouchi, A.; Trani, A.; Mezzapesa, G. Ecological and Plant Community Implication on Essential Oils Composition in Useful Wild Officinal Species: A Pilot Case Study in Apulia (Italy). Plants 2021, 10, 574. [Google Scholar] [CrossRef]
- Marin, P.D.; Grayer, R.J.; Grujic-Jovanovic, S.; Kite, G.C.; Veitch, N.C. Glycosides of of tricetin methyl ethers as chemosystematic markers in Stachys subgenus Betonica. Phytochemistry 2004, 65, 1247–1253. [Google Scholar] [CrossRef]
- Sarvi Moghanlou, K.; Nasr Isfahani, E.; Dorafshan, S.; Tukmechi, A.; Aramli, M.S. Effects of dietary supplementation with Stachys lavandulifolia Vahl extract on growth performance, hemato-biochemical and innate immunity parameters of rainbow trout (Oncorhynchus mykiss). Anim. Feed Sci. Technol. 2018, 237, 98–105. [Google Scholar] [CrossRef]
- Serbetçi, T.; Demirci, B.; Güzel, C.B.; Kültür, S.; Ergüven, M.; Başer, K.H. Essential oil composition, antimicrobial and cytotoxic activities of two endemic Stachys cretica subspecies (Lamiaceae) from Turkey. Nat. Prod. Commun. 2010, 5, 1369–1374. [Google Scholar] [CrossRef] [Green Version]
- Conforti, F.; Menichini, F.; Formisano, C.; Rigano, D.; Senatore, F.; Arnold, N.A.; Piozzi, F. Comparative chemical composition, free radical-scavenging and cytotoxic properties of essential oils of six Stachys species from different regions of the Mediterranean Area. Food Chem. 2009, 116, 898–905. [Google Scholar] [CrossRef]
- El-Ansari, M.A.; Barron, D.; Abdalla, M.F.; Saleh, N.A.M.; Le Quéré, J.L. Flavonoid constituents of Stachys aegyptiaca. Phytochemistry 1991, 30, 1169–1173. [Google Scholar] [CrossRef]
- Ferhat, M.; Erol, E.; Beladjila, K.A.; Çetintaş, Y.; Duru, M.E.; Öztürk, M.; Kabouche, A.; Kabouche, Z. Antioxidant, anticholinesterase and antibacterial activities of Stachys guyoniana and Mentha aquatica. Pharm. Biol. 2016, 55, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Frezza, C.; Venditti, A.; Maggi, F.; Cianfaglione, K.; Nagy, D.U.; Serafini, M.; Bianco, A.; Armandodoriano, B. Secondary metabolites from Stachys palustris L. In Proceedings of the CIPAM 2016, 6th International Congress of Aromatic and Medicinal Plants, Coimbra, Portugal, 29 May–1 June 2016. [Google Scholar]
- Rahimi Khoigani, S.; Rajaei, A.; Goli, S.A. Evaluation of antioxidant activity, total phenolics, total flavonoids and LC-MS/MS characterisation of phenolic constituents in Stachys lavandulifolia. Nat. Prod. Res. 2017, 31, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Abdullah, S. Screening of local medicinal plant extracts against multi drugs resistance bacteria. Int. J. Bioassays 2016, 5, 4986. [Google Scholar] [CrossRef]
- Grujic-Jovanovic, S.; Skaltsa, H.D.; Marin, P.; Sokovic, M. Composition and antibacterial activity of the essential oil of six Stachys species from Serbia. Flavour Fragr. J. 2004, 19, 139–144. [Google Scholar] [CrossRef]
- Kotsos, M.; Aligiannis, N.; Mitaku, S.; Skaltsounis, A.L.; Charvala, C. Chemistry of Plants from Crete: Stachyspinoside, a New Flavonoid Glycoside And iridoids from Stachys spinosa. Nat. Prod. Lett. 2001, 15, 377–386. [Google Scholar] [CrossRef]
- Lazarević, J.S.; Đorđević, A.S.; Kitić, D.V.; Zlatković, B.K.; Stojanović, G.S. Chemical composition and antimicrobial activity of the essential oil of Stachys officinalis (L.) Trevis. (Lamiaceae). Chem. Biodivers. 2013, 10, 1335–1349. [Google Scholar] [CrossRef]
- Venditti, A.; Bianco, A.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Damiano, S.; Papa, F.; Vittori, S.; Maleci Bini, L.; Giuliani, C.; et al. Phytochemical Analysis, Biological Activity, and Secretory Structures of Stachys annua (L.) L. subsp. annua (Lamiaceae) from Central Italy. Chem. Biodivers. 2015, 12, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Peruzzi, L.; Menichini, F. Phytochemical and biological studies of Stachys species in relation to chemotaxonomy: A review. Phytochemistry 2014, 102, 7–39. [Google Scholar] [CrossRef] [PubMed]
- Uritu, C.M.; Mihai, C.T.; Stanciu, G.D.; Dodi, G.; Alexa-Stratulat, T.; Luca, A.; Leon-Constantin, M.M.; Stefanescu, R.; Bild, V.; Melnic, S.; et al. Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Res. Manag. 2018. [Google Scholar] [CrossRef] [Green Version]
- Eryiğit, T.; Tunctürk, M.; Tunctürk, R. Determination of nutritive value and analysis of mineral elements for wild edible Stachys lavandulifolia Vahl. var. lavandulifolia Growing in Eastern Anatolia. Int. J. Agric. Environ. Food Sci. 2019, 3, 6–9. [Google Scholar] [CrossRef]
- Murata, T.; Endo, Y.; Miyase, T.; Yoshizaki, F. Iridoid glycoside constituents of Stachys lanata. J. Nat. Prod. 2008, 71, 1768–1770. [Google Scholar] [CrossRef]
- Renda, G.; Bektas, N.; Korkmaz, B.; Celik, G.; Sevgi, S.; Yayli, N. Volatile constituents of three Stachys L. Species from Turkey. Marmara Pharm. J. 2017, 21, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Saeedi, M.; Morteza-Semnani, K.; Mahdavi, M.R.; Rahimi, F. Antimicrobial studies on extracts of four species of Stachys. Indian J. Pharm. Sci. 2008, 70, 403–406. [Google Scholar] [CrossRef] [Green Version]
- Skaltsa, H.D.; Demetzos, C.; Lazari, D.; Sokovic, M. Essential oil analysis and antimicrobial activity of eight Stachys species from Greece. Phytochemistry 2003, 64, 743–752. [Google Scholar] [CrossRef]
- Sârbu, I.; Ștefan, N.; Oprea, A. Vascular Plants from Romania—Illustrated Determinant of Land; Victor B Victor: București, Romania, 2013. [Google Scholar]
- Imbrea, I.; Butnariu, M.; Nicolin, A.; Imbrea, F.; Prodan, M. Valorising the species Stachys officinalis (L.) Trevis. from South-Western Romania. Res. J. Agric. Sci. 2011, 43, 198–203. [Google Scholar]
- Sajjadi, S.E.; Ghanadian, S.M.; Rabbani, M.; Tahmasbi, F. Isolation and Identification of Secondary Metabolites from the Aerial Parts of Stachys lavandulifolia Vahl. Iran. J. Pharm. Res. 2017, 16, 58–63. [Google Scholar] [PubMed]
- Vundać, V.B. Taxonomical and phytochemical characterisation of 10 Stachys taxa recorded in the Balkan peninsula flora: A review. Plants 2019, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Kiliç, Ö.; Özdemir, F.A.; Yildirimli, Ş. Essential oils and fatty acids of Stachys L. taxa, a chemotaxonomic approach. Prog. Nutr. 2017, 19, 49–59. [Google Scholar] [CrossRef]
- Vundac, V.B.; Pfeifhofer, H.W.; Brantner, A.H.; Males, Z.; Plazibat, M. Essential oils of seven Stachys taxa from Croatia. Biochem. Syst. Ecol. 2006, 34, 875–881. [Google Scholar] [CrossRef]
- Meremeti, A.; Karioti, A.; Skaltsa, H.; Heilmann, J.; Sticher, O. Secondary metabolites from Stachys ionica. Biochem. Syst. Ecol. 2004, 32, 139–151. [Google Scholar] [CrossRef]
- Piozzi, F.; Bruno, M. Diterpenoids from Roots and Aerial Parts of the Genus Stachys. Nat. Prod. 2011, 5, 1–11. [Google Scholar]
- Tübitak, U. Use of Stachys Species (Mountain Tea) as Herbal Tea and Food. Rec. Nat. Prod. 2014, 8, 71–82. [Google Scholar]
- Bussmann, R.W.; Sharon, D. Traditional medicinal plant use in Northern Peru: Tracking two thousand years of healing culture. J. Ethnobiol. Ethnomed. 2006, 2, 47. [Google Scholar] [CrossRef] [Green Version]
- Alexandre, E.M.; Silva, S.; Santos, S.A.; Silvestre, A.J.; Duarte, M.F.; Saraiva, J.A. Pintado, M Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food Res. Int. 2019, 115, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nisca, A.; Ștefănescu, R.; Stegăruș, D.I.; Mare, A.D.; Farczadi, L.; Tanase, C. Comparative Study Regarding the Chemical Composition and Biological Activity of Pine (Pinus nigra and P. sylvestris) Bark Extracts. Antioxidants 2021, 10, 327. [Google Scholar] [CrossRef]
- Iancu, I.; Cătana, D.; Pascu, C.; Herman, N. Evaluation of antimicrobial resistance in strains of E. coli isolated from broiler carcasses. Rev. Rom. Med. Vet. 2018, 28, 35–38. [Google Scholar]
- Dušek, K.; Dušková, E.; Smékalová, K. Variability of morphological characteristic and content of active substances in Betonica officinalis L. in the Czech Republic. Agriculture 2009, 55, 102–110. [Google Scholar]
- Matkowski, A.; Piotrowska, M. Antioxidant and free radical scavenging activities of some medicinal plants from the Lamiaceae. Fitoterapia 2006, 77, 346–353. [Google Scholar] [CrossRef]
- Radnai, E.; Dobos, A.; Veres, K.; Tóth, L.; Máthé, I.; Janicsak, G.; Blunden, G. Essential oils in some Stachys species growing in Hungary. Acta Hortic. 2004, 597, 137–142. [Google Scholar] [CrossRef]
- Dimitrova-Dyulgerova, I.; Merdzhanov, P.; Todorov, K.; Seymenska, D.; Stoyanov, P.; Mladenov, R.; Stoyanova, A. Essential oils composition of Betonica officinalis L. and Stachys sylvatica L. (Lamiaceae) from Bulgaria. C. R. L’acad. Bulg. Sci. 2015, 68, 991–998. [Google Scholar]
- Lashgargahi, Z.; Shafaghat, A. Volatile Constituents of Essential Oils Isolated from Fresh and Dried Stachys lavandulifolia Vahl. and Stachys byzantina C. Koch. Two Lamiaceae from North-West Iran. J. Essent. Oil Bear. Plants 2017, 20, 1302–1309. [Google Scholar] [CrossRef]
- Tirillini, B.; Pellegrino, R.; Bini, L.M. Essential oil composition of Stachys sylvatica L. from Italy. Flavour Fragr. J. 2004, 19, 330–332. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Maggi, F.; Zengin, G.; Asghari, B.; Eskandani, M. Essential oils of hedgenettles (Stachys inflata, S. lavandulifolia, and S. byzantina) have antioxidant, anti-Alzheimer, antidiabetic, and anti-obesity potential: A comparative study. Ind. Crops Prod. 2020, 145, 112089. [Google Scholar] [CrossRef]
- Avar, S.; Maksimović, M.; Vidic, D.; Šolić, M.E. Chemical composition of the essential oil of Stachys menthifolia Vis. Pharm. Biol. 2010, 48, 170–176. [Google Scholar] [CrossRef]
- Chalchat, J.C.; Petrovic, S.D.; Maksimovic, Z.A.; Gorunovic, M.S. Essential oil of Stachys officinalis (L.) Trevis., Lamiaceae from Montenegro. J. Essent. Oil Res. 2001, 13, 286–287. [Google Scholar] [CrossRef]
- Hajdari, A.; Novak, J.; Mustafa, B.; Franz, C. Essential oil composition and antioxidant activity of Stachys sylvatica L. (Lamiaceae) from different wild populations in Kosovo. Nat. Prod. Res. 2012, 26, 1676–1681. [Google Scholar] [CrossRef]
- Khanavi, M.; Hadjiakhoondi, A.; Amin, G.; Amanzadeh, Y.; Rustaiyan, A.; Shafiee, A. Comparison of the volatile composition of Stachys persica Gmel. and Stachys byzantina C. Koch. Oils obtained by hydrodistillation and steam distillation. Z. Naturforsch. C 2004, 59, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, R.; De Giulio, B.; Petriccione, M.; Martignetti, A.; Malorni, L.; Zampella, L.; Laurino, C.; Pellicano, M.P. Comparative analysis of volatile metabolites, quality and sensory attributes of Actinidia chinensis fruit. Food Chem. 2020, 316, 126340. [Google Scholar] [CrossRef]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Ed-Dra, A.; Filali, F.R.; Lo Presti, V.; Zekkori, B.; Nalbone, L.; Bouymajane, A.; Trabelsi, N.; Lamberta, F.; Bentayeb, A.; Giuffrida, A.; et al. Chemical composition, antioxidant capacity and antibacterial action of five Moroccan essential oils against Listeria monocytogenes and different serotypes of Salmonella enterica. Microb. Pathog. 2020, 149, 104510. [Google Scholar] [CrossRef] [PubMed]
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; Van Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulyaningsih, S.; Sporer, F.; Zimmermann, S.; Reichling, J.; Wink, M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine 2010, 17, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Jagani, S.; Chelikani, R.; Kim, D.S. Effects of phenol and natural phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Biofouling 2009, 25, 321–324. [Google Scholar] [CrossRef] [PubMed]
Plant Sample Extract | TPC (mg GAE/g) ± SD * | DPPH Scavenging Activity (%) ± SD * | DPPH (EC50) μg/mL ± SD * | TE (mM/g Dry Extract) ± SD * |
---|---|---|---|---|
Stachys byzantina | 222 ± 0.34 | 63.8 ± 0.3 | 12.7 ± 0.01 | 556 ± 62 |
Stachys officinalis | 232 ± 0.43 | 65.2 ± 0.5 | 11.2 ± 0.01 | 602 ± 75 |
Stachts sylvatica | 197 ± 0.27 | 53.1 ± 0.2 | 14.5 ±0.01 | 444 ± 58 |
Compound Name | S. byzantine (%) | S. officinalis (%) | S. sylvatica (%) | Compound Classification |
---|---|---|---|---|
Docosane | 0.7 | 0.4 | 0.9 | FAD1 |
Hexadecanoic acid | 0.2 | 1.1 | 0.1 | FAD2 |
Tetradecanoic acid | 0.1 | 0.3 | 0.1 | FAD3 |
Tricosane | 0.2 | 0 | 0 | FAD4 |
Hexadecan-1-ol | 0.2 | 0.1 | 0.1 | FAD5 |
1-hexanol | 0 | 0.1 | 0.2 | GL1 |
Decanoic acid | 0.2 | 1 | 0.8 | GL2 |
3-octanone | 0.2 | 0.1 | 1.2 | O1 |
5-Amino-1-ethylprazole | 0.5 | 0.1 | 0.4 | O2 |
Allylbenzene | 0.4 | 1.5 | 1.3 | O3 |
Ninanal | 0.3 | 0 | 0.4 | O4 |
2-Thujene | 0.2 | 0.1 | 0 | MH1 |
Camphene | 0.6 | 1.1 | 0.8 | MH2 |
Limonene | 10.8 | 15.7 | 19.5 | MH3 |
α-Terpinene | 2.1 | 2.1 | 2.2 | MH4 |
Β-Myrcene | 0.5 | 1.7 | 0 | MH5 |
Β-Pinene | 15.2 | 10.5 | 14.3 | MH6 |
Lavandulol | 0.5 | 0.1 | 0.7 | OM1 |
Linalool | 3.2 | 5.4 | 2.5 | OM2 |
Linalool acetate | 0.3 | 0.5 | 0.8 | OM3 |
Nerol | 0.8 | 0.7 | 1.8 | OM4 |
Nerolidol | 2.7 | 2.8 | 4.7 | OM5 |
Caryophyllene oxide | 1.9 | 5.7 | 1.8 | OS1 |
Germacrene D | 24.6 | 25.2 | 21.9 | SH1 |
α-Copaene | 0.9 | 0.1 | 0.2 | SH2 |
α-Humulene | 2.7 | 1.4 | 1.1 | SH3 |
β-Bourbonene | 0.1 | 1.2 | 2 | SH4 |
β-Caryophyllene | 8.9 | 9.9 | 13.3 | SH5 |
β-Copaene | 1.9 | 2.4 | 1.6 | SH6 |
β-Cubenene | 10.1 | 0.1 | 0.1 | SH7 |
β-Farnesene | 0.2 | 1 | 0.5 | SH8 |
β-Gurjunene | 1.3 | 0.3 | 1.1 | SH9 |
TOTAL (%) | 97.5 | 95.8 | 98.4 | |
MH | 29.4 | 31.2 | 36.8 | |
OM | 7.5 | 9.5 | 10.5 | |
SH | 50.7 | 41.6 | 41.8 | |
OS | 1.9 | 5.7 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stegăruș, D.I.; Lengyel, E.; Apostolescu, G.F.; Botoran, O.R.; Tanase, C. Phytochemical Analysis and Biological Activity of Three Stachys Species (Lamiaceae) from Romania. Plants 2021, 10, 2710. https://doi.org/10.3390/plants10122710
Stegăruș DI, Lengyel E, Apostolescu GF, Botoran OR, Tanase C. Phytochemical Analysis and Biological Activity of Three Stachys Species (Lamiaceae) from Romania. Plants. 2021; 10(12):2710. https://doi.org/10.3390/plants10122710
Chicago/Turabian StyleStegăruș, Diana Ionela, Ecaterina Lengyel, George Florian Apostolescu, Oana Romina Botoran, and Corneliu Tanase. 2021. "Phytochemical Analysis and Biological Activity of Three Stachys Species (Lamiaceae) from Romania" Plants 10, no. 12: 2710. https://doi.org/10.3390/plants10122710
APA StyleStegăruș, D. I., Lengyel, E., Apostolescu, G. F., Botoran, O. R., & Tanase, C. (2021). Phytochemical Analysis and Biological Activity of Three Stachys Species (Lamiaceae) from Romania. Plants, 10(12), 2710. https://doi.org/10.3390/plants10122710