Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture
Abstract
:1. Introduction
2. Field Application of Nano-Enabled Products
2.1. Nano-Enabled Products and Crop Protection
2.1.1. Nano-Pesticides
2.1.2. Nano-Insecticides
2.1.3. Nano-Fungicides
2.1.4. Nano-Herbicides
2.1.5. Nano-Fertilizer
3. Soil Health Improvement
4. Plant Uptake and Translocation of Nano-Enabled Products
5. Conclusions and Concerns Associated with Nano-Enabled Products
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chokheli, V.; Rajput, V.; Dmitriev, P.; Varduny, T.; Minkina, T.; Singh, R.K.; Singh, A. Status and policies of GM crops in Russia. In Policy Issues in Genetically Modified Crops; Singh, P., Borthakur, A., Singh, A.A., Kumar, A., Singh, K.K., Eds.; Academic Press: Cambridge, UK, 2021; pp. 57–74. [Google Scholar]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ok, Y.S.; Adrees, M.; Ibrahim, M.; Zia-Ur-Rehman, M.; Farid, M.; Abbas, F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. J. Hazard. Mater. 2017, 322, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Feynman, R.P. There’s Plenty of Room at the Bottom. Eng. Sci. 1960, 23, 22–36. [Google Scholar]
- Taniguchi, N. Nanotechnology: Integrated Processing Systems for Ultra-Precision and Ultra-FINE products; Oxford Univ. Press: Oxford, UK, 1996. [Google Scholar]
- NNI-Budget. National Nanotechnology Initiative. 2021. Available online: https://www.nano.gov/about-nni/what/funding (accessed on 20 July 2021).
- Rajput, V.D.; Minkina, T.; Kumari, A.; Harish; Singh, V.K.; Verma, K.K.; Mandzhieva, S.; Sushkova, S.; Srivastava, S.; Keswani, C. Coping with the challenges of abiotic stress in plants: New dimensions in the field application of nanoparticles. Plants 2021, 10, 1221. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.K.; Pandey, A.; Hamurcu, M.; Gezgin, S.; Athar, T.; Rajput, V.D.; Gupta, O.P.; Minkina, T. Insight into the prospects for nanotechnology in wheat biofortification. Biology 2021, 10, 1123. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.; Yadav, H.O.S.; Sehrawat, N. Nanobioremediation: A new and a versatile tool for sustainable environmental clean up-Overview. J. Mater. Environ. Sci. 2020, 11, 564–573. [Google Scholar]
- Cecchin, I.; Reddy, K.R.; Thomé, A.; Tessaro, E.F.; Schnaid, F. Nanobioremediation: Integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int. Biodeterior. Biodegrad. 2017, 119, 419–428. [Google Scholar] [CrossRef]
- Rizwan, M.; Singh, M.; Mitra, C.K.; Morve, R.K. Ecofriendly application of nanomaterials: Nanobioremediation. J. Nanoparticles 2014, 2014, 431787. [Google Scholar] [CrossRef] [Green Version]
- Shende, S.; Rajput, V.; Gade, A.; Minkina, T.; Sushkova, S.N.; Mandzhieva, S.S.; Boldyreva, V.E. Metal-based green synthesized nanoparticles: Boon for sustainable agriculture and food security. IEEE Trans. NanoBioscience 2021, 1. [Google Scholar] [CrossRef] [PubMed]
- Knijnenburg, J.T.N.; Posavec, L.; Teleki, A. Nanostructured minerals and vitamins for food fortification and food supplementation. In Nanomaterials for Food Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 63–98. [Google Scholar]
- Shafiq, M.; Anjum, S.; Hano, C.; Anjum, I.; Abbasi, B.H. An overview of the applications of nanomaterials and nanodevices in the food industry. Foods 2020, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Raliya, R.; Saharan, V.; Dimkpa, C.; Biswas, P. Nanofertilizer for precision and sustainable agriculture: Current state and future perspectives. J. Agric. Food Chem. 2017. [Google Scholar] [CrossRef]
- Sharma, P.; Bhatt, D.; Zaidi, M.G.; Saradhi, P.P.; Khanna, P.K.; Arora, S. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol. 2012, 167, 2225–2233. [Google Scholar] [CrossRef] [PubMed]
- Shende, S.S.; Rajput, V.D.; Gorovtsov, A.V.; Harish; Saxena, P.; Minkina, T.M.; Chokheli, V.A.; Jatav, H.S.; Sushkova, S.N.; Kaur, P.; et al. Interaction of nanoparticles with microbes. In Plant-Microbes-Engineered Nano-Particles (PM-ENPs) Nexus in Agro-Ecosystems: Understanding the Interaction of Plant, Microbes and Engineered Nano-Particles (ENPS); Singh, P., Singh, R., Verma, P., Bhadouria, R., Kumar, A., Kaushik, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 175–188. [Google Scholar]
- Rajput, V.D.; Singh, A.; Singh, V.K.; Minkina, T.M.; Sushkova, S. Impact of nanoparticles on soil resource. In Nanomaterials for Soil Remediation; Amrane, A., Mohan, D., Nguyen, T.A., Assadi, A.A., Yasin, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 65–85. [Google Scholar]
- Duncan, T.V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid. Interface Sci. 2011, 363, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Rajput, V.; Minkina, T.; Mazarji, M.; Shende, S.; Sushkova, S.; Mandzhieva, S.; Burachevskaya, M.; Chaplygin, V.; Singh, A.; Jatav, H. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Ann. Agric. Sci. 2020, 65, 137–143. [Google Scholar] [CrossRef]
- Ali, S.S.; Al-Tohamy, R.; Koutra, E.; Moawad, M.S.; Kornaros, M.; Mustafa, A.M.; Mahmoud, Y.A.G.; Badr, A.; Osman, M.E.H.; Elsamahy, T.; et al. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. Sci. Total. Environ. 2021, 792, 148359. [Google Scholar] [CrossRef]
- Yadav, R.K.; Singh, N.B.; Singh, A.; Yadav, V.; Bano, C.; Khare, S.; Vegetas, N. Expanding the horizons of nanotechnology in agriculture: Recent advances, challenges and future perspectives. Vegetos 2020, 33, 203–221. [Google Scholar] [CrossRef]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; Rehman, H.u.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total. Environ. 2020, 721, 137778. [Google Scholar] [CrossRef]
- Schwab, F.; Zhai, G.; Kern, M.; Turner, A.; Schnoor, J.L.; Wiesner, M.R. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—Critical review. Nanotoxicology 2016, 10, 257–278. [Google Scholar] [CrossRef]
- Biju, V.; Itoh, T.; Anas, A.; Sujith, A.; Ishikawa, M. Semiconductor quantum dots and metal nanoparticles: Syntheses, optical properties, and biological applications. Anal. Bioanal. Chem. 2008, 391, 2469–2495. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Hasan, M.K.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules 2019, 24, 2558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. Amst. 2017, 15, 11–23. [Google Scholar] [CrossRef]
- Petosa, A.R.; Rajput, F.; Selvam, O.; Öhl, C.; Tufenkji, N. Assessing the transport potential of polymeric nanocapsules developed for crop protection. Water Res. 2017, 111, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Biol. Macromol. 2015, 77, 36–51. [Google Scholar] [CrossRef]
- Faizan, M.; Sehar, S.; Rajput, V.D.; Faraz, A.; Afzal, S.; Minkina, T.; Sushkova, S.; Adil, M.F.; Yu, F.; Alatar, A.A.; et al. Modulation of cellular redox status and antioxidant defense system after synergistic application of Zinc oxide nanoparticles and salicylic acid in rice (Oryza sativa) plant under arsenic stress. Plants 2021, 10, 2254. [Google Scholar] [CrossRef] [PubMed]
- Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot. 2012, 35, 64–70. [Google Scholar] [CrossRef]
- Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjan, A.; Rajput, V.D.; Minkina, T.; Bauer, T.; Chauhan, A.; Jindal, T. Nanoparticles induced stress and toxicity in plants. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100457. [Google Scholar] [CrossRef]
- Marcous, A.; Rasouli, S.; Ardestani, F. Low-density polyethylene films loaded by titanium dioxide and zinc oxide nanoparticles as a new active packaging system against Escherichia coli O157:H7 in fresh calf minced meat. Packag. Technol. Sci. 2017, 30, 693–701. [Google Scholar] [CrossRef]
- Lushchak, V.I.; Matviishyn, T.M.; Husak, V.V.; Storey, J.M.; Storey, K.B. Pesticide toxicity: A mechanistic approach. EXCLI J. 2018, 17, 1101–1136. [Google Scholar] [CrossRef]
- Chaud, M.; Souto, E.B.; Zielinska, A.; Severino, P.; Batain, F.; Oliveira-Junior, J.; Alves, T. Nanopesticides in agriculture: Benefits and challenge in agricultural productivity, toxicological risks to human health and environment. Toxics 2021, 9, 131. [Google Scholar] [CrossRef] [PubMed]
- Zobir, S.A.; Ali, A.; Adzmi, F.; Sulaiman, M.R.; Ahmad, K. A review on nanopesticides for plant protection synthesized using the supramolecular chemistry of layered hydroxide hosts. Biology 2021, 10, 1077. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Chen, F.; Shen, Y.; Qian, K.; Wang, Y.; Sun, C.; Zhao, X.; Cui, B.; Gao, F.; Zeng, Z.; et al. Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials 2018, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, J.-M.; Guillard, C. Photocatalytic degradation of pesticides in agricultural used waters. Comptes Rendus De L’académie Des Sci. Ser. IIC Chem. 2000, 3, 417–422. [Google Scholar] [CrossRef]
- Karimi, H.; Mahdavi, S.; Asgari Lajayer, B.; Moghiseh, E.; Rajput, V.D.; Minkina, T.; Astatkie, T. Insights on the bioremediation technologies for pesticide-contaminated soils. Environ. Geochem. Health 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H. Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants? Agric. Ecosyst. Environ. 2018, 253, 98–112. [Google Scholar] [CrossRef]
- Lu, W.; Lu, M.-L.; Zhang, Q.-P.; Tian, Y.-Q.; Zhang, Z.-X.; Xu, H.-H. Octahydrogenated retinoic acid-conjugated glycol chitosan nanoparticles as a novel carrier of azadirachtin: Synthesis, characterization, and in vitro evaluation. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 3932–3940. [Google Scholar] [CrossRef]
- Worrall, E.A.; Hamid, A.; Mody, K.T.; Mitter, N.; Pappu, H.R. Nanotechnology for plant disease management. Agronomy 2018, 8, 285. [Google Scholar] [CrossRef] [Green Version]
- Servin, A.; Elmer, W.; Mukherjee, A.; De la Torre-Roche, R.; Hamdi, H.; White, J.C.; Bindraban, P.; Dimkpa, C. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanoparticle Res. 2015, 17, 92. [Google Scholar] [CrossRef]
- de Oliveira, J.L. Nano-biopesticides: Present concepts and future perspectives in integrated pest management. In Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture; Jogaiah, S., Singh, H.B., Fraceto, L.F., Lima, R.d., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 1–27. [Google Scholar]
- Okey-Onyesolu, C.F.; Hassanisaadi, M.; Bilal, M.; Barani, M.; Rahdar, A.; Iqbal, J.; Kyzas, G.Z. Nanomaterials as nanofertilizers and nanopesticides: An overview. ChemistrySelect 2021, 6, 8645–8663. [Google Scholar] [CrossRef]
- Faizan, M.; Rajput, V.D.; Al-Khuraif, A.A.; Arshad, M.; Minkina, T.; Sushkova, S.; Yu, F. Effect of foliar fertigation of chitosan nanoparticles on cadmium accumulation and toxicity in Solanum lycopersicum. Biology 2021, 10, 666. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, K.; Upadhyay, N.; Kumar, N.; Tripathi, D.K.; Chauhan, D.K.; Sharma, S.; Sahi, S. Potential applications and avenues of nanotechnology in sustainable agriculture. In Nanomaterials in Plants, Algae, and Microorganisms; Tripathi, D.K., Ahmad, P., Sharma, S., Chauhan, D.K., Dubey, N.K., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 473–500. [Google Scholar]
- Xu, L.; Cao, L.-D.; Li, F.-M.; Wang, X.-J.; Huang, Q.-L. Utilization of chitosan-lactide copolymer nanoparticles as controlled release pesticide carrier for pyraclostrobin against colletotrichum Gossypii southw. J. Dispers. Sci. Technol. 2014, 35, 544–550. [Google Scholar] [CrossRef]
- Hernandez-Diaz, J.A.; Garza-Garcia, J.J.; Zamudio-Ojeda, A.; Leon-Morales, J.M.; Lopez-Velazquez, J.C.; Garcia-Morales, S. Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. J. Sci. Food Agric. 2020, 101, 1270–1287. [Google Scholar] [CrossRef] [PubMed]
- Malandrakis, A.A.; Kavroulakis, N.; Chrysikopoulos, C.V. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci. Total. Environ. 2019, 670, 292–299. [Google Scholar] [CrossRef]
- Chen, J.; Wu, L.; Lu, M.; Lu, S.; Li, Z.; Ding, W. Comparative Study on the Fungicidal Activity of Metallic MgO Nanoparticles and Macroscale MgO Against Soilborne Fungal Phytopathogens. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangakkara, U.R.; Stamp, P. Influence of different weed categories on growth and yields of maize (Zea mays) grown in a minor (dry) season of the humid tropics/Einfluss verschiedener Schadpflanzengruppen auf Wachstum und Ertrag von Mais (Zea mays) in einer humiden Tropenzone während der Trockenzeit. J. Plant Dis. Prot. 2006, 113, 81–85. [Google Scholar]
- Song, G.; Hou, W.; Gao, Y.; Wang, Y.; Lin, L.; Zhang, Z.; Niu, Q.; Ma, R.; Mu, L.; Wang, H. Effects of CuO nanoparticles on Lemna minor. Bot. Stud. 2016, 57, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalau, C.M.; Mohedano Rde, A.; Schmidt, E.C.; Bouzon, Z.L.; Ouriques, L.C.; dos Santos, R.W.; da Costa, C.H.; Vicentini, D.S.; Matias, W.G. Toxicological effects of copper oxide nanoparticles on the growth rate, photosynthetic pigment content, and cell morphology of the duckweed Landoltia punctata. Protoplasma 2015, 252, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Rajput, V.D.; Singh, A.; Minkina, T.M.; Shende, S.S.; Kumar, P.; Verma, K.K.; Bauer, T.; Gorobtsova, O.; Deneva, S.; Sindireva, A. Potential applications of nanobiotechnology in plant nutrition and protection for sustainable agriculture. In Nanotechnology in Plant Growth Promotion and Protection; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2021; pp. 79–92. [Google Scholar]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Fraceto, L.F.; Grillo, R.; de Medeiros, G.A.; Scognamiglio, V.; Rea, G.; Bartolucci, C. Nanotechnology in agriculture: Which innovation potential does it have? Front. Environ. Sci. 2016, 4. [Google Scholar] [CrossRef]
- He, H.; Liu, Y.; You, S.; Liu, J.; Xiao, H.; Tu, Z. A review on recent treatment technology for herbicide atrazine in contaminated environment. Int. J. Environ. Res. Public Health 2019, 16, 5129. [Google Scholar] [CrossRef] [Green Version]
- Nandhini, A.R.; Harshiny, M.; Gummadi, S.N. Chlorpyrifos in environment and food: A critical review of detection methods and degradation pathways. Environ. Sci. Process. Impacts 2021, 23, 1255–1277. [Google Scholar] [CrossRef] [PubMed]
- Akalin, G.O.; Pulat, M. Controlled release behavior of zinc-loaded carboxymethyl cellulose and carrageenan hydrogels and their effects on wheatgrass growth. J. Polym. Res. 2020, 27, 1–11. [Google Scholar] [CrossRef]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Ghasabkolaei, N.; Janalizadeh Choobbasti, A.; Roshan, N.; Ghasemi, S.E. Geotechnical properties of the soils modified with nanomaterials: A comprehensive review. Arch. Civ. Mech. Eng. 2017, 17, 639–650. [Google Scholar] [CrossRef]
- Chen, H.; Yada, R. Nanotechnologies in agriculture: New tools for sustainable development. Trends Food Sci. Technol. 2011, 22, 585–594. [Google Scholar] [CrossRef]
- Iqbal, M.; Umar, S.; Mahmooduzzafar. Nano-fertilization to enhance nutrient use efficiency and productivity of crop plants. In Nanomaterials and Plant Potential; Husen, A., Iqbal, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 473–505. [Google Scholar]
- Mejias, J.H.; Salazar, F.; Pérez Amaro, L.; Hube, S.; Rodriguez, M.; Alfaro, M. Nanofertilizers: A cutting-edge approach to increase nitrogen use efficiency in grasslands. Front. Environ. Sci. 2021, 9. [Google Scholar] [CrossRef]
- Shekhawat, G.S.; Mahawar, L.; Rajput, P.; Rajput, V.D.; Minkina, T.; Singh, R.K. Role of engineered carbon nanoparticles (CNPs) in promoting growth and metabolism of Vigna radiata (L.) Wilczek: Insights into the biochemical and physiological responses. Plants 2021, 10, 1317. [Google Scholar] [CrossRef] [PubMed]
- Karami, A.; Sepehri, A. Beneficial role of MWCNTs and SNP on growth, physiological and photosynthesis performance of barley under NaCl stress. J. Soil Sci. Plant Nutr. 2018, 18, 752–771. [Google Scholar] [CrossRef] [Green Version]
- Kumari, A.; Kumari, P.; Rajput, V.D.; Sushkova, S.N.; Minkina, T. Metal(loid) nanosorbents in restoration of polluted soils: Geochemical, ecotoxicological, and remediation perspectives. Environ. Geochem. Health 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Iranpour, B.; Haddad, A. The influence of nanomaterials on collapsible soil treatment. Eng. Geol. 2016, 205, 40–53. [Google Scholar] [CrossRef]
- Joko, T.; Anggoro, S.; Sunoko, H.R.; Rachmawati, S. Pesticides usage in the soil quality degradation potential in Wanasari Subdistrict, Brebes, Indonesia. Appl. Environ. Soil Sci. 2017, 2017, 5896191. [Google Scholar] [CrossRef]
- Prashar, P.; Shah, S. Impact of fertilizers and pesticides on soil microflora in agriculture. In Sustainable Agriculture Reviews: Volume 19; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 331–361. [Google Scholar]
- Zhao, F.; Xin, X.; Cao, Y.; Su, D.; Ji, P.; Zhu, Z.; He, Z. Use of carbon nanoparticles to improve soil fertility, crop growth and nutrient uptake by corn (Zea mays L.). Nanomaterials 2021, 11, 2717. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Zhao, F.; Zhao, H.; Goodrich, S.L.; Hill, M.R.; Sumerlin, B.S.; Stoffella, P.J.; Wright, A.L.; He, Z. Comparative assessment of polymeric and other nanoparticles impacts on soil microbial and biochemical properties. Geoderma 2020, 367, 114278. [Google Scholar] [CrossRef]
- Nair, R. Plant response Strategies to engineered metal oxide nanoparticles: A review. In Phytotoxicity of Nanoparticles; Springer: Cham, Switzerland, 2018; pp. 377–393. [Google Scholar] [CrossRef]
- Pérez-de-Luque, A. Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Front. Environ. Sci. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Rajput, V.D.; Minkina, T.M.; Behal, A.; Sushkova, S.N.; Mandzhieva, S.; Singh, R.; Gorovtsov, A.; Tsitsuashvili, V.S.; Purvis, W.O.; Ghazaryan, K.A.; et al. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environ. Nanotechnol. Monit. Manag. 2018, 9, 76–84. [Google Scholar] [CrossRef]
- Sevilem, I.; Miyashima, S.; Helariutta, Y. Cell-to-cell communication via plasmodesmata in vascular plants. Cell Adh. Migr. 2013, 7, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiol, D.F.; Terrile, M.C.; Frik, J.; Mesas, F.A.; Álvarez, V.A.; Casalongué, C.A. Nanotechnology in plants: Recent advances and challenges. J. Chem. Technol. Biotechnol. 2021, 96, 2095–2108. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Fedorenko, A.; Sushkova, S.; Mandzhieva, S.; Lysenko, V.; Duplii, N.; Fedorenko, G.; Dvadnenko, K.; Ghazaryan, K. Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Sci. Total. Environ. 2018, 645, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
Nano-Enabled Products, Manufacturing Firm | * NPs | Properties | Applications |
---|---|---|---|
Nanocu; BioNano Technology, Egypt | Cu | Anti-fungal activity properties | Use as an antifungal agent with growth enhancer and improve root vigor property |
Nano Cube® Marinus Complete Plus 30l; Dennerle, Germany | Ag | Algicidal properties | Applicable for management of algae |
Blue Lagoon UV-Block; Dennerle, Germany | Ag | Algicidal properties | To prevent algal infection and growth in agriculture ponds |
Nanosept® Aqua Super; Nanosept, Hungary | Ag | Bactericide, fungicide and virucide | Broad-spectrum plant protectant, control of yield-robbing diseases |
Nanosept® Aqua; Nanosept, Hungary | Ag | Disinfecting agent | Broad-spectrum antimicrobial applications |
Nano-Enabled Products, Manufacturing Firm | * NPs | Properties | Applications |
---|---|---|---|
Nano Fertilizer; Silvertech Kimya Sanayi ve Ticaret Ltd., Turkey | ZnO, TiO2 | Plant growth acceleration, Crop yield enhancement, Photosynthesis improvement | Increase the use efficiency of plant nutrients and reduce the soil toxicity |
Nubiotek® Hyper Fe+Mg; Bioteksa, Mexico | Fe, Mg | Nubiotek® Hyper Fe+Mg nano-enabled fertilizer functions as activator improve the vegetative development | It ensures sustained growth of plants in all the phenological stages, without negative incidences in the production due to environmental factors |
Nubiotek® Ultra Ca; Bioteksa, Mexico | Ca | Nubiotek® Ultra Ca effectively helps the crop, in general, tolerate different scenarios of climatic stress, aggressive presence of pests or diseases with great performance | An enantiomorphic, amiphyloid and coloid that allows the Ca element to penetrate quickly and effectively into the tissues of the crops |
Fértil Calmag; HPL Agronegocios, Brazil | Mg | Product with a high concentration of Mg with high-tech liquid solution of NPs | Mg quelatizados allow a greater solubility without decantation, has a high concentration and high availability of nutrients for plants with immediate reaction |
Nanovec TSS 80; Laboratórios Bio-Médicin, Brazil | Mg, Mo, Zn | Nanovec TSS 80 nanocapsules composed of Mg, Mo, and Zn compatible with plant cells and transport nutrients into the plants without loss | Useful for leguminous plants, improve germination, root systems and absorbent radicels; the plant absorbs more water and nutrients from the soil, resisting drought periods; increase number of nodules. It transforms the nitrate into protein, improving the use of N and biological fixation of nitrogen |
Fertile Calcium 25; HPL Agronegocios, Brazil | Ca | Fértil Calcium 25 is easy to apply, it neutralizes the phytotoxic effect of Al | It is a fluid fertilizer with a high concentration of Ca with rapid root absorption; it prevents diseases in Ca deficient areas |
Lithocal, Litho Plant, Brazil | Ca, Mg | It is composed of nano-Ca and Mg particles, recommended for application directly to the soil, in the form of spraying in total area | An essential elements for crops, promoting root system, enhance nutrients uptake, better resisting the periods of drought, increasing tillering sprouts and vegetative vigor |
Fosvit K30; Kimitec Group, Spain | P, K | Fertilizer with a high content of P (30%) and K (20%) | A self-defense enhancer against fungal diseases such as omicosis (mildew), promotes the formation of phytoalexins, it distribution K within plant tissues |
Nano Bor 20%; Alert Biotech, India | B | Used as micronutrient | It is useful for extreme rainfall regions with acidic and sandy soil with deficient of organic matter |
Nano Zinc (Soil Application 21%); Alert Biotech, India | Zn | This product is intended for dealing Zinc deficiency related issue of crops | It prevented the chlorosis of rice and was very effective in curing all such deficiency-related issues |
Nano Nutrients for Crops; NanoLandBaltic, Lithuania | SiO2 | Product contains particles 3–50 nm | Used for crops, flowers, trees, and creepers, when it is sprayed on to leaves it delivers all nutrients to chlorophyll directly and enhance the efficiency of photosynthesis |
Nano Zinc Chelate Fertilizer; AFME TRADING GROUP, United Kingdom | Zn | Growth enhancer | It provide one or more nutrient metal elements to plants and increase the growth and development |
Nano Iron and Calcium, Potassium Chelate Fertilizer; Afme Trading Group, United Kingdom | Fe, Ca | Plant growth regulater and accelerater | Helps to make up for Fe/Ca/K deficiency |
Nano-Ag Answer®; Urth Agriculture, USA | Ag | Useful for plant and soil microorganism | It is help in plants and mycorhizal fungi to uptake the nutrients and eventually contribute more organic matter fixation for plants |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajput, V.D.; Singh, A.; Minkina, T.; Rawat, S.; Mandzhieva, S.; Sushkova, S.; Shuvaeva, V.; Nazarenko, O.; Rajput, P.; Komariah; et al. Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture. Plants 2021, 10, 2727. https://doi.org/10.3390/plants10122727
Rajput VD, Singh A, Minkina T, Rawat S, Mandzhieva S, Sushkova S, Shuvaeva V, Nazarenko O, Rajput P, Komariah, et al. Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture. Plants. 2021; 10(12):2727. https://doi.org/10.3390/plants10122727
Chicago/Turabian StyleRajput, Vishnu D., Abhishek Singh, Tatiana Minkina, Sapna Rawat, Saglara Mandzhieva, Svetlana Sushkova, Victoria Shuvaeva, Olga Nazarenko, Priyadarshani Rajput, Komariah, and et al. 2021. "Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture" Plants 10, no. 12: 2727. https://doi.org/10.3390/plants10122727
APA StyleRajput, V. D., Singh, A., Minkina, T., Rawat, S., Mandzhieva, S., Sushkova, S., Shuvaeva, V., Nazarenko, O., Rajput, P., Komariah, Verma, K. K., Singh, A. K., Rao, M., & Upadhyay, S. K. (2021). Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture. Plants, 10(12), 2727. https://doi.org/10.3390/plants10122727