Impact of Potassium Pre-Harvest Applications on Fruit Quality and Condition of Sweet Cherry (Prunus avium L.) Cultivated under Plastic Covers in Southern Chile Orchards
Abstract
:1. Introduction
2. Results
2.1. Quality and Conditions of Fruits at Harvest
2.2. Quality and Condition of Fruits at Post-Harvest
3. Discussion
4. Materials and Methods
4.1. Plant Material, Treatments and Experimental Design
4.2. Evaluation of Quality and Condition of Fruits at Harvest
4.3. Analysis of Quality and Condition of Fruits at Post-Harvest
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Agriculture Data. Available online: www.fao.org/faostat/en/#data/QC (accessed on 25 August 2021).
- ProChile. Destacado en Prensa: Chile se Convierte en el Mayor Proveedor Mundial de 28 Productos Liderados por Cobre, Cerezas y Salmón. 2021. Available online: https://www.prochile.gob.cl/noticias/detalle-noticia/2021/08/12/chile-se-convierte-en-el-mayor-proveedor-mundial-de-28-productos-liderados-por-cobre-cerezas-y-salm%C3%B3n (accessed on 11 November 2021).
- ASOEX. Estadísticas de Exportación. 2021. Available online: https://www.asoex.cl/estadisticas-de-exportacion.html (accessed on 11 November 2021).
- ODEPA-CIREN. Catastro Frutícola. 2020. Available online: https://www.odepa.gob.cl/estadisticas-del-sector/catastros-fruticolas/catastro-fruticola-ciren-odepa (accessed on 11 November 2021).
- Murakami, Y.; Hernández, R.A. The impacts of China on economic growth: Evidence for Brazil, Chile, and Peru. J. Post Keynes Econ. 2018, 41, 430–454. [Google Scholar] [CrossRef]
- Blanke, M.; Yuri, A. Chile: Record Exports of Fruit Grown by the Andes. Erwerbsobstbau 2020, 62, 175–180. [Google Scholar]
- Redagricola. Como resguardarnos del boom del cerezo. 2017. Available online: https://www.redagricola.com/cl/nuevas-variedades-de-cerezo-tempranas-y-tardias-para-escapar-del-vendaval-productivo/ (accessed on 26 August 2021).
- Roco, L.; Engler, A.; Bravo-Ureta, B.; Jara-Rojas, R. Farm level adaptation decisions to face climatic change and variability: Evidence from Central Chile. Environ. Sci. Policy. 2014, 44, 86–96. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The central Chile mega drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Redagricola. Nuevas Variedades de Cerezo: Tempranas y Tardías, Para Escapar del Vendaval Productivo. 2020. Available online: https://www.redagricola.com/cl/nuevas-variedades-de-cerezo-tempranas-y-tardias-para-escapar-del-vendaval-productivo/ (accessed on 26 August 2021).
- ProChile. ProChile en tu Región. 2021. Available online: https://www.prochile.gob.cl/prochile-en-tu-region-y-en-el-mundo/prochile-en-tu-region/macrozona-sur (accessed on 26 August 2021).
- Pontificia Universidad Católica de Chile. Año Nuevo Chino, Mejoramiento Genético y la Búsqueda de la Cereza Perfecta. 2021. Available online: https://www.uc.cl/noticias/ano-nuevo-chino-mejoramiento-genetico-y-la-busqueda-de-la-cereza-perfecta/ (accessed on 26 August 2021).
- Santibáñez, F. Atlas Agroclimático de Chile, Tomo IV Regiones del Biobío y de La Araucanía, 1st ed.; Universidad de Chile. Facultad de Ciencias Agronómicas, FIA: Santiago, Chile, 2017; p. 74. [Google Scholar]
- Roversi, A.; Ughini, V. Influence of weather conditions of the flowering period on sweet cherry fruit set. Acta Hortic. 1993, 410, 427–433. [Google Scholar] [CrossRef]
- Blanke, M.M.; Lang, G.A.; Meland, M. Chapter 11: Orchard microclimate modification. In Cherries: Botany, Production and Uses, 1st ed.; Quero-García, J., Iezzoni, A., Pulawska, J., Lang, G., Eds.; CABI: Oxfordshire, UK, 2017; pp. 244–268. [Google Scholar]
- Red Agricola. Factores más Influyentes del Potencial Productivo y Calidad de La Fruta en Cerezos. 2018. Available online: https://www.redagricola.com/cl/factores-mas-influyentes-del-potencial-productivo-y-calidad-de-la-fruta-en-cerezo/ (accessed on 26 August 2021).
- González, M.E.; Valderrama, N.F.; Bastías, R.M.; Baeza, R.; Valdebenito, A.M.; Díaz, G.; Shackel, K.A. Evaluation of induced pitting damage of late season cherries’ Regina’ and ’Sweetheart’ using an impact energy method. Chil. J. Agric. Res. 2016, 76, 471–478. [Google Scholar] [CrossRef]
- John, A.; Cline, J.C.; Meland, M.; Sekse, L.; Webster, A.D. Rain Cracking of Sweet Cherries: II. Influence of Rain Covers and Rootstocks on Cracking and Fruit Quality. Soil Plant Sci. 2009, 45, 224–230. [Google Scholar]
- Correia, S.; Schouten, R.; Silva, A.; Gonçalves, B. Sweet cherry fruit cracking mechanisms and prevention strategies: A review. Sci. Hortic. 2018, 240, 269–377. [Google Scholar] [CrossRef]
- Rios, J.C.; Robledo, F.; Schreiber, L.; Zeisler, V.; Lang, E.; Carrasco, B.; Silva, H. Association between the concentration of n-alkanes and tolerance to cracking in commercial varieties of sweet cherry fruits. Sci. Hortic. 2015, 197, 57–65. [Google Scholar] [CrossRef]
- Blanco, V.; Zoffoli, J.P.; Ayala, M. High tunnel cultivation of sweet cherry (Prunus avium L.): Physiological and production variables. Sci. Hortic. 2019, 251, 108–117. [Google Scholar] [CrossRef]
- Lang, G.; Sage, L.; Wilkinson, T. Ten years of studies on systems to modify sweet cherry production environments: Retractable roofs, high tunnels, and rain-shelters. Acta Hortic. 2016, 1130, 83–90. [Google Scholar] [CrossRef]
- Thomidis, T.; Exadaktylou, E. Effect of a plastic rain shield on fruit cracking and cherry diseases in Greek orchards. J. Crop Prot. 2013, 52, 125–129. [Google Scholar] [CrossRef]
- Red Agricola. Avances en la Producción de Cerezas Bajo Cobertura. 2019. Available online: https://www.redagricola.com/cl/avances-en-la-produccion-de-cerezas-bajo-coberturas/ (accessed on 26 August 2021).
- Blanco, V.; Zoffoli, J.P.; Ayala, M. Influence of High Tunnel Microclimate on Fruit Quality and Calcium Concentration in ‘Santina’ Sweet Cherries in a Mediterranean Climate. Agronomy 2021, 11, 1186. [Google Scholar] [CrossRef]
- Mitcham, E.J.; Crisosto, C.H. Post-harvest handling systems: Stone fruits. III Sweet cherry. In Post-Harvest Technology of Horticultural Crops, 3rd ed.; Kader, A.A., Ed.; University of California, Division of Agricultural and Natural Resources: Richmond, CA, USA, 2002; pp. 353–356. [Google Scholar]
- Arakawa, O.; Hori, Y.; Ogata, R. Relative effectiveness and interaction of ultraviolet-B, red and blue light in anthocyanin synthesis of apple fruit. Physiol. Plant. 1985, 64, 323–327. [Google Scholar] [CrossRef]
- Yener, H.; Altuntaş, Ö. Effects of potassium fertilization on leaf nutrient content and quality attributes of sweet cherry fruits (Prunus avium L.). J. Plant Nutr. 2021, 44, 946–957. [Google Scholar] [CrossRef]
- Nagy, P.; Thurzó, S.; Vágó, I.; Holb, I. Effect of foliar application of K and Ca on leaf and fruit contents in a sweet cherry orchard. Cereal. Res. Commun. 2007, 35, 817–820. [Google Scholar]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar]
- Lester, G.; Jifon, J.; Rogers, G. Supplemental foliar potassium applications during muskmelon fruit development can improve fruit quality, ascorbic acid, and beta-carotene contents. J. Amer. Soc. Hort. Sci. 2005, 130, 649–653. [Google Scholar] [CrossRef]
- Lester, G.E.; Jifon, J.; Makus, D. Supplemental foliar potassium applications with or without a surfactant can enhance netted muskmelon quality. HortScience 2006, 41, 741–744. [Google Scholar] [CrossRef]
- Lester, G.; Jifon, J.; Stewart, W. Foliar potassium improves cantaloupe marketable and nutritional quality. Better Crops. 2007, 91, 24–25. [Google Scholar]
- Kanai, S.; Ohkura, K.; Adu-Gyamfi, J.; Mohapatra, P.; Nguyen, N.; Saneoka, H.; Fujita, K. Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. J. Exp. Bot. 2007, 58, 2917–2928. [Google Scholar] [CrossRef] [PubMed]
- Stiles, W. Phosphorus, potassium, magnesium and sulfur soil management. In Tree Fruit Nutrition; Peterson, A.B., Stevens, R.G., Eds.; Good Fruit Grower: Yakima, WA, USA, 1994; pp. 63–70. [Google Scholar]
- Hoying, S.; Fargione, M.; Iungerman, K. Diagnosing apple tree nutritional status: Leaf analysis interpretation and deficiency symptoms. N. Y. Fruit Q. 2004, 12, 16–19. [Google Scholar]
- Nava, G.; Roque-Dechen, A.; Ribeiro-Nachtiga, G. Nitrogen and potassium fertilization affect apple fruit quality in southern Brazil. Commun. Soil Sci. Plant Anal. 2007, 39, 96–107. [Google Scholar] [CrossRef]
- Solhjoo, S.; Gharaghani, A.; Fallahi, E. Calcium and Potassium Foliar Sprays Affect Fruit Skin Color, Quality Attributes, and Mineral Nutrient Concentrations of “Red Delicious” Apples. Int. J. Fruit Sci. 2017, 17, 358–373. [Google Scholar] [CrossRef]
- Moradinezhad, F.; Jahani, M. Effect of potassium permanganate, 1-Methylcyclopropene and modified atmosphere packaging on post-harvest losses and quality of fresh apricot cv. Shahroudi. J. Hortic. Post-Harvest Res. 2019, 2, 39–48. [Google Scholar]
- Ucgun, K. Effects of Nitrogen and Potassium Fertilization on Nutrient Content and Quality Attributes of Sweet Cherry Fruits. Not. Bot. Horti Agrobot. Cluj Napoca. 2018, 47, 114–118. [Google Scholar] [CrossRef]
- Simon, G. Review on rain induced fruit cracking of sweet cherries (Prunus avium L.), its causes and the possibilities of prevention. Int. J. Hortic. Sci. 2006, 12, 27–35. [Google Scholar]
- Richardson, D.G. Rain-cracking of ‘Royal Ann’ sweet cherries: Fruit physiological relationships, water temperature, orchard treatments, and cracking index. Acta Hortic. 1998, 468, 677–682. [Google Scholar] [CrossRef]
- Zadravec, P.; Usenik, V.; Stampar, F. Influence of rain protective tree covering on sweet cherry fruit quality. Eur. J. Hortic. Sci. 2009, 74, 49–53. [Google Scholar]
- Børve, J.; Kaar, E.; Sekse, L.; Meland, M.; Vangdal, E. Rain Protective Covering of Sweet Cherry Trees—Effects of Different Covering Methods on Fruit Quality and Microclimate. HortTechnology 2003, 13, 143–148. [Google Scholar] [CrossRef]
- Gill, P.; Ganaie, M.Y.; Wasakhasingh, D.; Navprem, S. Effect of foliar sprays of potassium on fruit size and quality of ‘Patharnakh’ pear. Indian J. Hortic. 2012, 69, 512–516. [Google Scholar]
- Guyer, D.E.; Sinha, N.; Chang, T.S.; Cash, J.N. Phytochemical and sensory characteristics of selected Michigan sweet cherry cultivars. J. Food Qual. 1993, 16, 355–370. [Google Scholar] [CrossRef]
- Cheryl, R.; Hampson, K.S.; McKenzie, D.L.; Herbert, L.; Lu, R.; Li, L.; Cliff, M.A. Determining the optimum firmness for sweet cherries using Just-About-Right sensory methodology. Post-Harvest Biol Technol. 2014, 91, 104–111. [Google Scholar]
- Estia, M.; Cinquantaa, L.; Sinesiob, F.; Monetab, E.; Di Matteoc, M. Physicochemical and sensory fruit characteristics of two sweet cherry cultivars after cool storage. Food Chem. 2002, 76, 399–405. [Google Scholar] [CrossRef]
- Erogul, D. Effect of Pre-harvest Calcium Treatments on Sweet Cherry Fruit Quality. Not. Bot. Horti. Agrobot. Cluj-Napoca 2014, 42, 150–153. [Google Scholar]
- Hocking, B.; Tyerman, S.D.; Burton, R.A.; Gilliham, M. Fruit Calcium: Transport and Physiology. Front. Plant Sci. 2016, 7, 569. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, M.A.; Hyrczyk, K.; Lopez, R.G. Comparison of High Tunnel and Field Production of Specialty Cut Flowers in the Midwest. HortScience 2012, 47, 1265–1269. [Google Scholar] [CrossRef]
- Bastias, R.; Diez, F.; Finot, V.L. Absolute and relative growth rates as indicators of fruit development phases in sweet cherry Prunus avium. Chil. J. Agric. Anim. 2014, 30, 24–2014. [Google Scholar]
- Retamal, J.; Bastías, R.M.; Wilckens, R.; Paulino, L. Influence of microclimatic conditions under high tunnels on the physiological and productive responses in blueberry ’O’Neal’. Chil. J. Agric. Res. 2015, 75, 291–297. [Google Scholar] [CrossRef]
- Hansen, P. Crop load and nutrient translocation. In Symposium on Mineral Nutrition and Fruit Quality of Temperate Zone Fruit Trees. Acta Hortic. 1979, 92, 21–215. [Google Scholar]
- Conti, T.; Geiger, D. Potassium nutrition and translocation in sugar beet. Plant Physiol. 1982 70, 168–172. [CrossRef]
- Díaz-Mula, H.; Castillo, S.; Martínez-Romero, D.; Valero, D.; Zapata, P.; Guillén, F.; Serrano, M. Sensory, nutritive, and functional properties of sweet cherry as affected by cultivar and ripening stage. Food Sci. Technol. Int. 2009, 15, 535–543. [Google Scholar] [CrossRef]
- Durán-Soria, S.; Pott, D.M.; Osorio, S.; Vallarino, J.G. Sugar Signaling During Fruit Ripening. Front. Plant Sci. 2020, 564917. [Google Scholar]
- Marsal, J.; Lopez, G.; Campo, J.; Mata, M.; Arbones, A.; Girona, J. Post-harvest regulated deficit irrigation in ‘Summit’ sweet cherry: Fruit yield and quality in the following season. Irrig. Sci. 2010, 28, 181–189. [Google Scholar] [CrossRef]
- Batista-Silva, W.; Nascimento, V.; Medeiros, D.; Nunes-Nesi, A.; Ribeiro, D.; Zsögön, A.; Araújo, W. Modifications in organic acid profiles during fruit development and ripening: Correlation or causation? Front. Plant Sci. 2018, 9, 1689. [Google Scholar] [CrossRef] [PubMed]
- Blando, F.; Oomah, B.D. Sweet and Sour Cherries: Origin, Distribution, Nutritional Composition and Health Benefits. Trends Food Sci. Technol. 2019, 86, 517–529. [Google Scholar] [CrossRef]
- Wang, S.Y.; Camp, M.J. Temperature after bloom affects plant growth and fruit quality of strawberry. Sci. Hortic. 2000, 85, 183–199. [Google Scholar] [CrossRef]
- Araujo, W.L.; Nunes-Nesi, A.; Nikoloski, Z.; Sweetlove, L.J.; Fernie, A.R. Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant Cell Environ. 2012, 35, 1–21. [Google Scholar] [CrossRef]
- Spironello, A.; Quaggio, J.; Teixeira, L.; Furlani, P.; Sigrist, J. Pineapple yield and fruit quality effected by NPK fertilization in a tropical soil. Rev. Bras. Frutic. 2004, 26, 155–159. [Google Scholar] [CrossRef]
- Alva, A.; Mattos, D., Jr.; Paramasivam, S.; Patil, B.; Dou, H.; Sajwan, K. Potassium management for optimizing citrus production and quality. Int. J. Fruit Sci. 2006, 6, 3–43. [Google Scholar] [CrossRef]
- Vadivel, E.; Shanmugavelu, K. Effect of increasing rates of potash on banana quality cv. Robusta. Rev. Potasse 1978, 24, 1–4. [Google Scholar]
- Ramesh Kumar, A.; Kumar, N. Sulfate of potash foliar spray effects on yield, quality, and post-harvest life of banana. Bett. Crops. 2007, 91, 22–24. [Google Scholar]
- Lopez-Bucio, J.; Nieto-Jacobo, M.; Ramırez-Rodrıguez, V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2007, 160, 1–13. [Google Scholar] [CrossRef]
- Burstrom, H. Calcium and plant growth. Biol. Rev. 1968, 43, 287–316. [Google Scholar] [CrossRef]
- Wyn Jones, R.; Pollard, A. Proteins, enzymes and inorganic ions. Encyclopedia of Plant Physiology. New Ser. 1983, 15, 528–562. [Google Scholar]
- Maeshima, M. Vacuolar H+-pyrophosphatase. BBA 2000, 1465, 37–51. [Google Scholar] [CrossRef]
- Leigh, R. Potassium homeostasis and membrane transport. J. Plant. Nutr. Soil Sci. 2001, 164, 193–198. [Google Scholar] [CrossRef]
- Lobit, P.; Génard, M.; Soing, P.; Habib, R. Modelling malic acid accumulation in fruits: Relationships with organic acids, potassium, and temperature. J. Exp. Bot. 2006, 57, 1471–1483. [Google Scholar] [CrossRef] [PubMed]
- Kodur, S. Effects of juice pH and potassium on juice and wine quality, and regulation of potassium in grapevines through rootstocks (Vitis): A short review. Vitis J. Grapevine Res. 2011, 50, 1–6. [Google Scholar]
- Wallberg, B.; Sagredo, K. Vegetative and reproductive development of ‘Lapins’ sweet cherry trees under rain protective covering. In X International Symposium on Integrating Canopy, Rootstock and Environmental Physiology in Orchard Systems. Acta Hortic. 2012, 1058, 411–417. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology, 2nd ed.; Sinauer Associates Publishers: Sunderland, MS, USA, 1998; Available online: http://dx.doi.org/10.1071/PP9840361 (accessed on 9 December 2021).
- Havlin, J.; Beaton, J.; Tisdale, S.; Nelson, W. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 7th ed.Pearson Educational, Inc.: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Ghourab, M.; Wassel, O.; Raya, N. Response of cotton plant to foliar application of (Pottasin-P) TM under two levels of nitrogen fertilizer. Egypt J. Agric. Res. 2000, 78, 781–793. [Google Scholar]
- Cakmak, I.; Hengeler, C.; Marschner, H. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J. Exp. Bot. 1994, 45, 1245–1250. [Google Scholar] [CrossRef]
- Abd El-Latif, K.; Osman, E.; Abdullah, R.; Abdel Kader, N. Response of potato plants to potassium fertilizer rates and soil moisture deficit. Adv. Appl. Sci. Res. 2011, 2, 388–397. [Google Scholar]
- Patil, R. Role of potassium humate on growth and yield of soybean and black gram. Int. J. Pharma Bio. Sci. 2011, 2, 242–246. [Google Scholar]
- Wang, S.; Song, M.; Guo, J.; Huang, Y.; Zhang, F.; Xu, C.; Xiao, Y.; Zhang, L. The potassium channel FaTPK1 plays a critical role in fruit quality formation in strawberry (Fragaria × ananassa). Plant Biotechnol. J. 2018, 16, 737–748. [Google Scholar] [CrossRef]
- Shen, C.; Wang, J.; Shi, X.; Kang, Y.; Xie, C.; Peng, L. Transcriptome analysis of differentially expressed genes induced by low and high potassium levels provides insight into fruit sugar metabolism of pear. Front. Plant Sci. 2017, 8, 938. [Google Scholar] [CrossRef]
- Amjad, Z.; Koutsoukos, P. Evaluation of maleic acid-based polymers as scale inhibitors and dispersants for industrial water applications. Desalination 2014, 335, 55–63. [Google Scholar] [CrossRef]
- Van Brunt, J.; Sultenfuss, J. Functions of Potassium in plants. Bett Crops. 1998, 82, 4–5. [Google Scholar]
- Lemaire-Chamley, M.; Petit, J.; Garcia, V.; Just, D.; Baldet, P.; Germain, V.; Fegard, M.; Mouassite, M.; Cheniclet, C.; Rothan, C. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol. 2005, 139, 750–769. [Google Scholar] [CrossRef]
- Balbontín, C.; Ayala, H.M.; Bastías, R.; Tapia, G.; Ellena, M.; Torres, C.; Silva, H. Cracking in sweet cherries: A comprehensive review from a physiological, molecular, and genomic perspective. Chil. J. Agric. Res. 2013, 73, 66–72. [Google Scholar] [CrossRef]
- Mika, A.; Buler, Z.; Wojcik, K.; Konopacka, D. Influence of the plastic cover on the protection of sweet cherry fruit against cracking, on the microclimate under cover and fruit quality. Hortic. Res. 2019, 27, 31–38. [Google Scholar] [CrossRef]
- Measham, P.; Bound, S.; Wilson, S.; Gracie, A. Vascular Flow of Water Induces Side Cracking in Sweer Cherry (Prunus avium L.). Adv. Hort. Sci 2010, 24, 243–248. [Google Scholar]
- Measham, P.; Wilson, S.; Gracie, A.; Bound, S. Tree water relations: Flow and fruit. Agric. Water Manag. 2014, 137, 59–67. [Google Scholar] [CrossRef]
- Schmitz-Eiberger, M.; Blanke, M. Bioactive components in forced sweet cherry fruit (Prunus avium L.), antioxidative capacity and allergenic potential as dependent on cultivation under cover LWT-Food. Sci. Technol. 2012, 46, 388–392. [Google Scholar] [CrossRef]
- Rubauskis, E.; Skrivele, M.; Ruisa, S.; Feldmane, D. Effects of voen cover on the growth and yield of two sweet cherry cultivars. Proc. Latv. Acad. Sci. 2013, 67, 157–159. [Google Scholar] [CrossRef]
- Christensen, J.V. Cracking in Cherries VII. Cracking susceptibility in relation to fruit size and firmness. Acta Agric. Scand. 1975, 25, 301–312. [Google Scholar] [CrossRef]
- Linke, M.; Herppich, W.B.; Geyer, M. Green peduncles may indicate post-harvest freshness of sweet cherries. Post-Harvest Biol. Technol. 2010, 58, 135–141. [Google Scholar] [CrossRef]
- Sekse, L. Respiration and storage potential in Norwegian-grown sweet cherries. Acta Hort. 1996, 410, 357–362. [Google Scholar] [CrossRef]
- Wei, F.; Fu, M.; Li, J.; Yang, X.; Chen, Q.; Tian, S. Chlorine dioxide delays the reddening of post-harvest green peppers by 815 affecting the chlorophyll degradation and carotenoid synthesis pathways. Post-Harvest Biol. Technol. 2019, 156, 110939. [Google Scholar] [CrossRef]
- Porritt, S.W.; Lopatecki, L.E.; Meheriuk, M. Surface pitting—A storage disorder of sweet cherries. Can. J. Plant Sci. 1971, 51, 409–414. [Google Scholar] [CrossRef]
- Instituto Nacional de Investigación Agropecuaria (INIA). Available online: https://agrometeorologia.cl/ (accessed on 12 November 2021).
- Defilippi, B.; Manríquez, D. Evaluación de sistemas de medición de firmeza para uva de mesa y cerezas utilizados en la industria frutícola. Rev. Frutícola 2011, 2, 26–32. [Google Scholar]
Treatment | Significance | ||||||||
---|---|---|---|---|---|---|---|---|---|
Farm | Season | Fruit Parameter | Covered | Uncovered | Potassium | Cover | Cover × Potassium | ||
K− | K+ | K− | K+ | ||||||
Perquenco | 2019 | Firmness (g mm−1) | 296 ± 22 Cb | 315 ± 21 BCa | 333 ± 22 BCb | 375 ± 25 Aa | *** | *** | ns |
2020 | 298 ± 32 Bb | 303 ± 31 Ba | 356 ± 30 Aa | 344 ± 28 Ab | ns | *** | ns | ||
Puerto Octay | 2020 | 349 ± 45 Aa | 313 ± 37 Ba | * | |||||
2021 | 269 ± 21 Bb | 324 ± 17 Aa | *** | ||||||
Season-locality significance | ** | ns | ** | * | |||||
Perquenco | 2019 | Weight (g) | 10.2 ± 0.9 Ab | 10.3 ± 0.9 Ab | 9.9 ± 1.2 Aa | 9.7 ± 1.0 Aa | ns | ns | ns |
2020 | 10.7 ± 0.6 Ab | 11.0 ± 0.8 Ab | 8.7 ± 1.8 Bb | 9.2 ± 0.3 Ba | ns | *** | ns | ||
Puerto Octay | 2020 | 10.2 ± 0.6 Ab | 10.3 ± 1.3 Ab | ns | |||||
2021 | 12.1 ± 0.8 Aa | 11.8 ± 0.9 Aa | ns | ||||||
Season-locality significance | ** | ** | ns | ns | |||||
Perquenco | 2019 | Caliber (mm) | 27.1 ± 0.5 ABb | 27.5 ± 0.9 Aab | 26.7 ± 0.9 Ba | 27.3 ± 0.5 Aba | * | ns | ns |
2020 | 27.5 ± 0.7 Aab | 27.8 ± 0.8 Aa | 25.7 ± 0.6 Bb | 26.0 ± 0.5 Bb | ns | *** | ns | ||
Puerto Octay | 2020 | 27.1 ± 0.7 Ab | 26.6 ± 1.3 Ab | ns | |||||
2021 | 28.1 ± 0.9 Aa | 28.0 ± 1.0 Aa | ns | ||||||
Season-locality significance | * | * | ** | *** | |||||
Perquenco | 2019 | TSS (Brix) | 17.0 ± 1.8 Cc | 19.2 ± 1.0 ABb | 18.0 ± 1.9 BCb | 19.5 ± 1.1 Ab | * | ns | ns |
2020 | 18.9 ± 2.0 Bb | 19.9 ± 2.2 Bab | 22.9 ± 1.9 Aa | 21.6 ± 1.2 Aa | ns | *** | ns | ||
Puerto Octay | 2020 | 21.2 ± 1.6 Aa | 20.6 ± 1.8 Aa | ns | |||||
2021 | 19.0 ± 0.9 Ab | 19.1 ± 1.2 Ab | ns | ||||||
Season-locality significance | *** | ns | *** | *** | |||||
Perquenco | 2019 | TA (% malic acid) | 0.90 ± 0.1 Ba | 1.00 ± 0.1 Aa | 1.08 ± 0.1 Aa | 1.03 ± 0.1 Aa | *** | ns | ** |
2020 | 0.84 ± 0.1 Ca | 0.91 ± 0.1 BCb | 1.02 ± 0.2 Aa | 1.00 ± 0.1 ABa | * | *** | ns | ||
Puerto Octay | 2020 | 0.69 ± 0.1 Ab | 0.69 ± 0.1 Ac | ns | |||||
2021 | 0.45 ± 0.1 Bc | 0.60 ± 0.1 Ad | *** | ||||||
Season-locality significance | *** | *** | ns | ns | |||||
Perquenco | 2019 | Maturity index | 19.0 ± 2.6 Ac | 19.2 ± 1.6 Ac | 16.7 ± 1.1Bb | 19.2 ± 2.6Ab | * | ns | ns |
2020 | 22.5 ± 1.5 Ac | 21.9 ± 1.8 Ab | 22.8 ± 3.6Aa | 21.7 ± 1.2Aa | ns | ns | ns | ||
Puerto Octay | 2020 | 30.6 ± 2.0 Ab | 29.9 ± 0.7 Aa | ns | |||||
2021 | 42.1 ± 2.1 Aa | 32.1 ± 3.7 Ba | ** | ||||||
Season-locality significance | *** | *** | *** | ** |
Perquenco | Puerto Octay | ||||||
---|---|---|---|---|---|---|---|
Parameter | Season | Covers | K Treatment | Canopy Area | Season | K Treatment | Canopy Area |
Firmness | 0.3 | 45.6 | 3.5 | 4.6 | 17.5 | 0.3 | 13.9 |
Weight | 0.1 | 30.6 | 0.1 | 0.4 | 37.8 | 0.1 | 0.7 |
Caliber | 3.8 | 28.3 | 4.2 | 0.1 | 24.7 | 1.7 | 0.1 |
TSS | 24.5 | 13.3 | 3.0 | 11.2 | 30.0 | 0.8 | 17.2 |
TA | 5.8 | 24.2 | 0.8 | 1.7 | 51.9 | 12.3 | 1.2 |
Maturity index | 43.5 | 0.9 | 0.2 | 3.8 | 27.8 | 18.2 | 2.4 |
Orchard | Season | Fruit Parameter | Treatments | |||
---|---|---|---|---|---|---|
Covered | Un-Covered | |||||
K− | K+ | K− | K+ | |||
Perquenco | 2019 | Firmness (g/mm) | 327 ± 18 Db | 369 ± 18 Cb | 418 ± 22 Bb | 471 ± 18 Aa |
2020 | 468 ± 14 Ba | 458 ± 34 Ba | 493 ± 42 Aa | 479 ± 20 Aa | ||
Puerto Octay | 2020 | 476 ± 49 Aa | 441 ± 24 Aa | |||
2021 | 281 ± 20 Bc | 325 ± 23 Ac | ||||
Perquenco | 2019 | TSS (Brix) | 16.3 ± 0.9 Bb | 18.4 ± 1.2 Aab | 16.6 ± 0.7 Bb | 18.1 ± 0.5 Ab |
2020 | 19.5 ± 0.9 Ba | 19.6 ± 1.2 ABa | 20.2 ± 2.0 ABa | 21.1 ± 1.6 Aa | ||
Puerto Octay | 2020 | 19.9 ± 1.4 Aa | 19.1 ± 1.3 Aa | |||
2021 | 15.8 ± 1.1 Bb | 17.3 ± 1.4 Ab | ||||
Perquenco | 2019 | TA (% malic acid) | 0.31 ± 0.02 Bc | 0.36 ± 0.04 ABb | 0.33 ± 0.02 Bb | 0.41 ± 0.03 Ab |
2020 | 0.58 ± 0.09 Ba | 0.53 ± 0.05 Ba | 0.61 ± 0.06 Aa | 0.59 ± 0.02 Aa | ||
Puerto Octay | 2020 | 0.37 ± 0.01 Ab | 0.38 ± 0.04 Ab | |||
2021 | 0.39 ± 0.17 Aab | 0.37 ± 0.01 Ab | ||||
Perquenco | 2019 | Cracking (%) | 0.4 ± 0.2 Bb | 0.8 ± 0.2 Bc | 10.7 ± 2.6 Aa | 9.2 ± 3.3 Aa |
2020 | 1.2 ± 0.6 Bb | 1.9 ± 1.0 Bab | 14.7 ± 5.2 Aa | 12.4 ± 3.7 Aa | ||
Puerto Octay | 2020 | 2.9 ± 0.7 Aa | 2.8 ± 1.3 Aa | |||
2021 | 2.1 ± 1.2 Aab | 1.2 ± 0.2 Ab | ||||
Perquenco | 2019 | Pedicel Browning (%) | 5.0 ± 1.0 Cb | 5.7 ± 1.5 Cc | 11.7 ± 1.5 Ba | 17.3 ± 3.8 Aa |
2020 | 4.7 ± 1.2 Bb | 5.3 ± 2.4 Bc | 8.1 ± 1.9 Ab | 9.5 ± 3.5 Ab | ||
Puerto Octay | 2020 | 9.3 ± 3.2 Ba | 14.4 ± 4.9 Ab | |||
2021 | 14.5 ± 3.8 Ba | 24.0 ± 5.9 Aa | ||||
Perquenco | 2019 | Pitting (%) | 16.3 ± 1.0 Aa | 4.9 ± 2.5 Bb | 7.4 ± 2.7 Aba | 1.6 ± 0.2 Bb |
2020 | 14.1 ± 5.2 Aab | 7.3 ± 3.8 Bab | 5.4 ± 2.8 Bca | 3.1 ± 1.1 Ca | ||
Puerto Octay | 2020 | 12.3 ± 5.4 Ab | 8.7 ± 3.6 Ba | |||
2021 | 16.3 ± 1.0 Aa | 5.0 ± 2.5 Bb |
Locality | Season | Use of Covers | Covers Management | N° of K Sprays | K Treatments |
---|---|---|---|---|---|
Perquenco | 2019 | Yes | Closed between flowering and fruit set | 4 | K− |
+2 weeks prior to harvest | 7 | K+ | |||
no | Without covers | 4 | K− | ||
7 | K+ | ||||
2020 | Yes | Closed between flowering and fruit set | 4 | K− | |
+2 weeks prior to harvest | 7 | K+ | |||
no | Without covers | 4 | K− | ||
7 | K+ | ||||
Puerto Octay | 2020 | Yes | Closed throughout the productive season | 4 | K− |
7 | K+ | ||||
2021 | Yes | 4 | K− | ||
7 | K+ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustamante, M.; Muñoz, A.; Romero, I.; Osorio, P.; Mánquez, S.; Arriola, R.; Reyes-Díaz, M.; Ribera-Fonseca, A. Impact of Potassium Pre-Harvest Applications on Fruit Quality and Condition of Sweet Cherry (Prunus avium L.) Cultivated under Plastic Covers in Southern Chile Orchards. Plants 2021, 10, 2778. https://doi.org/10.3390/plants10122778
Bustamante M, Muñoz A, Romero I, Osorio P, Mánquez S, Arriola R, Reyes-Díaz M, Ribera-Fonseca A. Impact of Potassium Pre-Harvest Applications on Fruit Quality and Condition of Sweet Cherry (Prunus avium L.) Cultivated under Plastic Covers in Southern Chile Orchards. Plants. 2021; 10(12):2778. https://doi.org/10.3390/plants10122778
Chicago/Turabian StyleBustamante, Marco, Ariel Muñoz, Iverly Romero, Pamela Osorio, Sergio Mánquez, Rocío Arriola, Marjorie Reyes-Díaz, and Alejandra Ribera-Fonseca. 2021. "Impact of Potassium Pre-Harvest Applications on Fruit Quality and Condition of Sweet Cherry (Prunus avium L.) Cultivated under Plastic Covers in Southern Chile Orchards" Plants 10, no. 12: 2778. https://doi.org/10.3390/plants10122778
APA StyleBustamante, M., Muñoz, A., Romero, I., Osorio, P., Mánquez, S., Arriola, R., Reyes-Díaz, M., & Ribera-Fonseca, A. (2021). Impact of Potassium Pre-Harvest Applications on Fruit Quality and Condition of Sweet Cherry (Prunus avium L.) Cultivated under Plastic Covers in Southern Chile Orchards. Plants, 10(12), 2778. https://doi.org/10.3390/plants10122778