Incorporating Drought and Submergence Tolerance QTL in Rice (Oryza sativa L.)—The Effects under Reproductive Stage Drought and Vegetative Stage Submergence Stresses
Abstract
:1. Introduction
2. Results
2.1. Development of Lines Using Marker-Assisted Breeding
2.2. Imposition of Drought
2.3. Performance of Lines under Reproductive Stage Drought Stress (RS)
2.4. Effects of Different Combinations of Quantitative Trait Loci (QTLs) on Measured Traits
2.5. Correlation
2.6. Selection of Superior Lines Using Multivariate Analysis
2.7. Performance of Selected Lines in Non-Stress (NS), Reproductive Stage Drought Stress (RS) and Vegetative Stage Submergence Stress (VS) Trials
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Marker-Assisted Breeding and Genotyping
4.3. Drought and Normal Screening Procedures
4.4. Description of Field Management
4.5. Phenotypic Data Collection in RS and NS Experiments
4.6. Submergence Screening Procedures
4.7. Analysis of Variance (ANOVA), Broad-Sense Heritability (H) and Correlation
4.8. QTL Class Analysis
4.9. Multivariate Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization. The Impact of Natural Hazards and Disasters on Agriculture and Food and Nutrition Security: A Call for Action to Build Resilient Livelihoods; FAO: Rome, Italy, 2015. [Google Scholar]
- Weatherby, C.; Lichtefeld, J. In the Mekong, a Confluence of Calamities. Available online: https://foreignpolicy.com/2020/04/28/in-the-mekong-a-confluence-of-calamities/ (accessed on 23 July 2020).
- Food and Agriculture Organization. Special Report—2019 FAO/WFP Crop and Food Security Assessment Mission to the Lao People’s Democratic Republic; FAO: Rome, Italy, 2020; ISBN 9789251323441. [Google Scholar]
- Jusop, S. Climate Change Threatens our Food Security. Available online: https://www.nst.com.my/opinion/colu mnists/2020/04/587294/climate-change-threatens-our-food-security (accessed on 23 July 2020).
- Bernama Faulty Pumps, Drought Cause Drying Paddy Fields in Kepala Batas. Available online: https://www.malaysiakini.com/news/506782 (accessed on 23 July 2020).
- Neeraja, C.N.; Maghirang-Rodriguez, R.; Pamplona, A.; Heuer, S.; Collard, B.C.Y.; Septiningsih, E.M.; Vergara, G.; Sanchez, D.; Xu, K.; Ismail, A.M.; et al. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor. Appl. Genet. 2007, 115. [Google Scholar] [CrossRef] [PubMed]
- Barnabas, B.; Jager, K.; Feher, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Env. 2008, 31, 11–38. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, M.K.; Dhara, M.C.; Singh, S.; Dar, M.H.; Singh, U.S. Improved Management Options for Submergence-Tolerant (Sub1) Rice Genotype in Flood-Prone Rainfed Lowlands of West Bengal. Am. J. Plant Sci. 2014, 5, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Mottaleb, K.A.; Gumma, M.K.; Mishra, A.K.; Mohanty, S. Quantifying production losses due to drought and submergence of rainfed rice at the household level using remotely sensed MODIS data. Agric. Syst. 2015, 137, 227–235. [Google Scholar] [CrossRef]
- Sulaini, N.F. Petani Rugi, Tanaman Padi Rosak Akibat Banjir. Available online: https://www.bharian.com.my/berita/nas ional/2017/12/358690/petani-rugi-tanaman-padi-rosak-akibat-banjir (accessed on 23 July 2020).
- Mamat, M.R. 569 Pesawah Rugi RM2 Juta Akibat Banjir. Available online: https://www.bharian.com.my/berita/w ilayah/2019/12/641808/569-pesawah-rugi-rm2-juta-akibat-banjir (accessed on 23 July 2020).
- Shamsudin, N.A.A.; Swamy, B.P.M.; Ratnam, W.; Cruz, M.T.S.; Raman, A.; Kumar, A. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet. 2016, 17, 30. [Google Scholar] [CrossRef] [Green Version]
- Ikmal, A.M.; Amira, I.; Noraziyah, A.A.S. Morpho-Physiological Responses of Rice Towards Submergence Tolerance. Int. J. Agric. Biol. 2019, 22, 35–42. [Google Scholar] [CrossRef]
- Sandhu, N.; Dixit, S.; Swamy, B.P.M.; Raman, A.; Kumar, S.; Singh, S.P.; Yadaw, R.B.; Singh, O.N.; Reddy, J.N.; Anandan, A.; et al. Marker Assisted Breeding to Develop Multiple Stress Tolerant Varieties for Flood and Drought Prone Areas. Rice 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Septiningsih, E.M.; Hidayatun, N.; Sanchez, D.L.; Nugraha, Y.; Carandang, J.; Pamplona, A.M.; Collard, B.C.Y.; Ismail, A.M.; Mackill, D.J. Accelerating the development of new submergence tolerant rice varieties: The case of Ciherang-Sub1 and PSB Rc18-Sub1. Euphytica 2014, 202, 259–268. [Google Scholar] [CrossRef]
- Xu, K.; Mackill, D.J. A major locus for submergence tolerance mapped on rice chromosome 9. Mol. Breed. 1996, 2, 219–224. [Google Scholar] [CrossRef]
- Sandhu, N.; Kumar, A. Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs. Agronomy 2017, 7, 27. [Google Scholar] [CrossRef]
- Swamy, B.P.; Kumar, A. Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnol. Adv. 2013, 31, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Venuprasad, R.; Dalid, C.O.; Valle, M.; Zhao, D.; Espiritu, M.; Sta Cruz, M.T. Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor. Appl. Genet. 2009, 120. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Singh, A.; Sta Cruz, M.T.; Maturan, P.T.; Amante, M.; Kumar, A. Multiple major QTLs lead to stable yield performance of rice cultivars across variable drought intensities. BMC Genet. 2014, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamsudin, N.A.A.; Swamy, B.P.M.; Ratnam, W.; Cruz, M.T.S.; Sandhu, N.; Raman, A.K.; Kumar, A. Pyramiding of drought yield QTLs into a high quality Malaysian rice cultivar MRQ74 improves yield under reproductive stage drought. Rice 2016, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Muthu, V.; Abbai, R.; Nallathambi, J.; Rahman, H.; Ramasamy, S.; Kambale, R.; Thulasinathan, T.; Ayyenar, B.; Muthurajan, R. Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding. PLoS ONE 2020, 15, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixit, S.; Singh, A.; Sandhu, N.; Bhandari, A.; Vikram, P.; Kumar, A. Combining drought and submergence tolerance in rice: Marker-assisted breeding and QTL combination effects. Mol. Breed. 2017, 37. [Google Scholar] [CrossRef] [Green Version]
- Blum, A. Plant Water Relations, Plant Stress and Plant Production; Springer: New York, NY, USA, 2011. [Google Scholar]
- Kumar, R.; Venuprasad, R.; Atlin, G.N. Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India: Heritability and QTL effects. F. Crop. Res. 2007, 103, 42–52. [Google Scholar] [CrossRef]
- Achmad Chozin, M.; Lubis, I.; Junaedi, A.; Ehara, H. Some physiological character responses of rice under drought conditions in a paddy system. J. Int. Soc. Southeast Asian Agric. Sci. 2014, 20, 104–114. [Google Scholar]
- Ikmal, A.M.; Nurasyikin, Z.; Riana, T.A.T.N.A.; Ellina, Z.P.D.; Wickneswari, R.; Noraziyah, A.A.S. Drought yield QTL (qDTY) with consistent effects on morphological and agronomical traits of two populations of new rice (Oryza sativa) lines. Plants 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Dixit, S.; Grondin, A.; Lee, C.R.; Henry, A.; Olds, T.M.; Kumar, A. Understanding rice adaptation to varying agro-ecosystems: Trait interactions and quantitative trait loci. BMC Genet. 2015, 16, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mishra, K.K.; Vikram, P.; Yadaw, R.B.; Swamy, B.P.M.; Dixit, S.; Cruz, M.T.S.; Maturan, P.; Marker, S.; Kumar, A. QDTY12.1: A locus with a consistent effect on grain yield under drought in rice. BMC Genet. 2013, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Xiong, L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci. 2015, 72, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.; Shukla, A. Acclimation and Tolerance Strategies of Rice under Drought Stress. Rice Sci. 2015, 22, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Fukao, T.; Yeung, E.; Bailey-serres, J. The Submergence Tolerance Regulator SUB1A Mediates Crosstalk between Submergence and Drought Tolerance in Rice. The Plant Cell 2011, 23, 412–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acharya, B.R.; Assmann, S.M. Hormone interactions in stomatal function. Plant Mol. Biol. 2009, 69, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Palanog, A.D.; Swamy, B.P.M.; Shamsudin, N.A.A.; Dixit, S.; Hernandez, J.E.; Boromeo, T.H.; Cruz, P.C.S.; Kumar, A. Grain yield QTLs with consistent-effect under reproductive-stage drought stress in rice. F. Crop. Res. 2014, 161, 46–54. [Google Scholar] [CrossRef]
- Mohd Ikmal, A.; Nurasyikin, Z.; Kumar, A.; Noraziyah, A.A. Evaluation of morpho-physiological traits of MRQ74 pyramided lines with drought yield QTLs. Euphytica 2018, 214. [Google Scholar] [CrossRef]
- Shamsudin, N.A.A.; Ali, T.N.A.R.T.; Asmuni, M.I.; Anuar, N.R.T.; Zulkafli, P.D.E.; Ismail, A. Physio-chemical properties evaluation and hedonic analysis of selected drought tolerant pyramided rice lines. Sains Malays. 2018, 47, 1757–1773. [Google Scholar] [CrossRef]
- Septiningsih, E.M.; Pamplona, A.M.; Sanchez, D.L.; Neeraja, C.N.; Vergara, G.V.; Heuer, S.; Ismail, A.M.; Mackill, D.J. Development of submergence-tolerant rice cultivars: The Sub1 locus and beyond. Ann. Bot. 2009, 103, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Bailey-serres, J.; Fukao, T.; Ronald, P.; Ismail, A.; Heuer, S.; Mackill, D. Submergence Tolerant Rice: SUB1’s Journey from Landrace to Modern Cultivar. Rice 2010, 3, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, K.K.; Sarkar, R.K.; Ismail, A.M. Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant. Sci. 2005, 168, 131–136. [Google Scholar] [CrossRef]
- De Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research, R package version 1.4.0; R Foundation for Statistical Computing: Vienna, Austria, 2020.
- International Rice Research Institute. STAR, version 2.0.1; International Rice Research Institute: Los Baños, Philippines, 2014.
- International Rice Research Institute. PBTools, version 1.4; International Rice Research Institute: Los Baños, Philippines, 2014.
- RStudio Team. Integrated Development Environment for R; R Studio: Boston, MA, USA, 2020. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation: Vienna, Austria, 2020. [Google Scholar]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix; GitHub: San Francisco, CA, USA, 2017. [Google Scholar]
- Vu, V.Q. ggbiplot: A ggplot2 Based Biplot; GitHub: San Francisco, CA, USA, 2011. [Google Scholar]
- Kassambara, A.; Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses; R Foundation: Vienna, Austria, 2020. [Google Scholar]
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. cluster: Cluster Analysis Basics and Extensions; R Foundation: Vienna, Austria, 2019. [Google Scholar]
Traits | Range | Mean ± SE | CV (%) | Trial H | ||||
---|---|---|---|---|---|---|---|---|
NS | RS | NS | RS | NS | RS | NS | RS | |
DTF | 68.00–81.00 | 85.00–101.50 | 74.67 ± 0.34 | 91.09 ± 0.56 | 4.15 | 5.65 | 0.97 | 0.98 |
PH | 68.00–114.50 | 73.00–103.00 | 104.07 ± 0.74 | 86.68 ± 0.79 | 6.52 | 8.38 | 0.75 | 1.00 |
NP | 10.00–25.00 | 4.50–22.00 | 17.82 ± 0.39 | 10.26 ± 0.30 | 20.37 | 27.24 | 0.30 | 0.62 |
CC | 31.50–50.00 | 18.90–47.10 | 42.08 ± 0.37 | 30.13 ± 0.60 | 8.14 | 18.28 | 1.00 | 0.98 |
PL | 20.85–29.50 | 18.70–31.15 | 24.91 ± 0.18 | 23.96 ± 0.25 | 6.66 | 9.53 | 0.73 | 0.82 |
SPP | 73.00–190.50 | 59.50–196.50 | 120.48 ± 2.38 | 119.51 ± 2.96 | 18.20 | 22.85 | 0.67 | 0.71 |
FS | 47.50–158.50 | 36.00–160.00 | 94.80 ± 2.20 | 90.78 ± 2.79 | 21.36 | 28.39 | 0.61 | 0.73 |
SFP | 48.61–98.07 | 39.06–91.96 | 78.99 ± 1.29 | 75.64 ± 1.28 | 15.00 | 15.63 | 0.75 | 0.56 |
TGW | 22.80–27.70 | 17.40–26.85 | 25.98 ± 0.13 | 22.51 ± 0.24 | 4.51 | 9.83 | 0.75 | 0.86 |
GY | 3617.00–13,893.00 | 378.50–4796.40 | 8046.00 ± 252.00 | 1457.50 ± 98.30 | 28.83 | 62.21 | 0.93 | 0.97 |
QTL Classes | QTL Combination | No. of Genotype | DTF (Days) | PH (cm) | NP | CC (SPAD) | PL (cm) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NS | RS | NS | RS | NS | RS | NS | RS | NS | RS | |||
A | Sub1 + qDTY3.1 +qDTY12.1 | 2 | 75.00 cd | 96.00 b | 111.75 ab | 83.50 ef | 15.75 a | 11.00 ab | 42.10 bc | 36.15 a | 23.95 abc | 24.68 ab |
B | Sub1 + qDTY3.1 | 3 | 75.33 c | 91.83 cd | 106.17 bc | 88.33 c | 14.50 a | 9.00 bcd | 42.10 b | 29.33 c | 24.37 abc | 26.50 a |
C | Sub1 + qDTY12.1 | 12 | 75.13 c | 90.08 d | 104.96 c | 87.54 c | 18.58 a | 9.38 bc | 41.65 c | 32.52 b | 25.68 a | 23.37 bc |
E | Sub1 | 59 | 74.38 d | 91.28 c | 103.46 bc | 86.31 d | 18.11 a | 10.47 ab | 42.22 b | 29.49 c | 25.02 ac | 24.13 b |
F | qDTY3.1 | 6 | 76.33 b | 87.00 e | 105.00 bc | 88.17 c | 18.25 a | 10.67 ab | 40.57 d | 31.92 b | 23.41 b | 21.91 c |
G | qDTY12.1 | 3 | 76.50 b | 95.67 b | 105.83 abc | 88.00 c | 12.67 a | 9.50 abcd | 40.88 d | 26.53 d | 23.37 bc | 24.12 abc |
IR64-Sub1 | Sub1 | 1 | 77.00 b | 85.50 ef | 107.00 bc | 82.00 f | 15.50 a | 12.00 ab | 37.55 e | 20.30 e | 23.80 abc | 24.00 abc |
MR219 | - | 1 | 75.50 bcd | 107.50 a | 101.00 abc | 88.00 c | 17.50 a | 6.00 cd | 34.90 f | 31.20 bc | 23.30 abc | 25.75 ab |
NMR152 | - | 1 | 83.00 a | 84.00 f | 112.00 abc | 94.00 b | 21.50 a | 13.50 a | 37.40 e | 18.30 e | 22.75 abc | 24.90 abc |
IR84984 | qDTY12.1 | 1 | 77.00 b | 84.00 f | 108.00 abc | 85.00 de | 17.00 a | 5.50 d | 40.35 d | 25.60 d | 26.35 abc | 24.10 abc |
IR81896 | qDTY3.1 | 1 | 75.50 bcd | 85.50 ef | 120.50 a | 101.00 a | 15.50 a | 9.50 abcd | 45.10 a | 33.90 ab | 25.00 abc | 25.70 ab |
UKM5 | qDTY12.1+ qDTY3.1 | 1 | 77.00 b | 84.00 f | 107.50 abc | 84.00 e | 21.50 a | 13.50 a | 40.60 d | 26.10 d | 24.90 abc | 24.45 abc |
F-value | 73.23 | 103.75 | 4.32 | 262.29 | 1.70 | 2.61 | 367.18 | 72.78 | 5.19 | 5.56 | ||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | ns | <0.01 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Trial mean | 74.86 | 90.78 | 104.42 | 87.58 | 17.84 | 10.42 | 41.40 | 31.61 | 24.87 | 24.10 |
QTL Classes | QTL Combination | No. of Genotype | SPP | FS | SFP (%) | TGW (g) | GY (kg ha−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NS | RS | NS | RS | NS | RS | NS | RS | NS | RS | |||
A | Sub1 + qDTY3.1 +qDTY12.1 | 2 | 116.25 ab | 111.25 bcd | 75.50 ab | 88.25 bcd | 65.48 bc | 78.70 a | 26.95 a | 21.45 cd | 7418.64 ab | 769.22 de |
B | Sub1 + qDTY3.1 | 3 | 116.67 ab | 151.67 ab | 74.33 b | 117.17 ab | 64.44 c | 76.35 a | 25.40 b | 24.02 abc | 6551.29 bc | 2427.45 a |
C | Sub1 + qDTY12.1 | 12 | 130.96 a | 106.13 d | 101.79 ab | 78.63 d | 78.90 ab | 75.77 a | 25.63 b | 22.50 bcd | 8678.17 a | 1839.25 b |
E | Sub1 | 59 | 118.92 ab | 122.91 c | 94.07 ab | 93.33 bc | 79.32 ab | 75.26 a | 25.98 b | 22.41 bcd | 8136.75 a | 1380.91 c |
F | qDTY3.1 | 6 | 124.33 ab | 104.92 cd | 106.17 a | 83.17 cd | 84.71 a | 79.45 a | 26.53 ac | 23.61 abc | 7680.65 ab | 1448.10 c |
G | qDTY12.1 | 3 | 103.33 b | 108.83 cd | 82.33 ab | 79.67 cd | 79.73 abc | 72.19 a | 26.13 abc | 21.45 d | 4514.37 d | 943.09 de |
IR64-Sub1 | Sub1 | 1 | 93.00 ab | 86.50 cd | 85.50 ab | 71.00 bcd | 92.01 a | 82.17 a | 25.80 abc | 21.60 bcd | 6938.88 abc | 342.66 e |
MR219 | - | 1 | 89.00 ab | 134.00 abcd | 81.50 ab | 118.50 abcd | 91.55 a | 89.71 a | 26.25 abc | 25.95 a | 5959.82 bcd | 951.32 cde |
NMR152 | - | 1 | 93.00 ab | 116.00 bcd | 76.50 ab | 90.00 abcd | 82.12 abc | 78.62 a | 25.35 bc | 26.15 a | 9756.00 a | 2290.12 ab |
IR84984 | qDTY12.1 | 1 | 124.00 ab | 119.50 bcd | 98.00 ab | 95.00 abcd | 80.18 abc | 78.82 a | 26.60 abc | 25.25 ab | 4519.04 cd | 1122.43 cd |
IR81896 | qDTY3.1 | 1 | 100.00 ab | 191.50 a | 90.00 ab | 148.00 a | 89.96 a | 77.25 a | 26.65 abc | 20.50 d | 4346.40 cd | 2690.46 a |
UKM5 | qDTY12.1+ qDTY3.1 | 1 | 147.00 ab | 139.50 abcd | 111.50 ab | 103.00 abcd | 75.89 abc | 74.26 a | 26.20 abc | 26.05 a | 9625.60 a | 2605.91 a |
F-value | 3.42 | 6.47 | 2.68 | 4.78 | 4.32 | 0.61 | 2.23 | 8.84 | 21.30 | 45.73 | ||
p-value | <0.01 | <0.001 | <0.01 | <0.001 | <0.001 | ns | <0.05 | <0.001 | <0.001 | <0.001 | ||
Trial mean | 119.63 | 116.64 | 94.52 | 87.20 | 79.40 | 73.99 | 25.99 | 23.12 | 7967.26 | 1560.33 |
Genotype | QTL | DTF (Days) | PH (cm) | NP | GY (kg ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018MS | 2019MS | 2018MS | 2019MS | 2018MS | 2019MS | 2018MS | 2019MS | ||||||
NS | NS | RS | NS | NS | RS | NS | NS | RS | NS | NS | RS | ||
GEN112 | Sub1 + qDTY3.1 | 79 | 80 | 89 | 105 | 103.00 | 97 | 23 | 18 | 9 | 11,485 | 8488.00 | 2590.58 |
GEN133 | qDTY3.1 | 82 | 81 | 85 | 107 | 104.00 | 83 | 26 | 22 | 12 | 9518 | 8645.00 | 2557.95 |
GEN140 | Sub1 | 70 | 68 | 87 | 101 | 97.00 | 84 | 24 | 21 | 13 | 10,875 | 7582.00 | 2949.48 |
GEN147 | Sub1 | 70 | 71 | 89 | 105 | 103.00 | 83 | 25 | 19 | 11 | 10,753 | 7565.00 | 2753.72 |
GEN155 | Sub1 | 76 | 75 | 87 | 99 | 103.50 | 93 | 17 | 16 | 12 | 7448 | 7062.00 | 3373.63 |
GEN206 | Sub1 + qDTY12.1 | 75 | 77 | 92 | 102 | 108.00 | 84 | 18 | 23 | 14 | 8470 | 13,893.00 | 3830.40 |
GEN219 | Sub1 + qDTY12.1 | 75 | 77 | 90 | 104 | 107.50 | 73 | 14 | 15 | 8 | 6700 | 8996.30 | 2607.22 |
GEN230 | Sub1 + qDTY12.1 | 73 | 75 | 86 | 110 | 109.00 | 95 | 17 | 25 | 12 | 6538 | 13,015.00 | 2475.13 |
GEN239 | Sub1 | 72 | 76 | 99 | 104 | 105.00 | 86 | 21 | 23 | 14 | 10,480 | 11,084.00 | 4796.35 |
GEN263 | Sub1 + qDTY12.1 | 75 | 72 | 87 | 104 | 100.50 | 88 | 21 | 19 | 11 | 8485 | 8541.00 | 2758.81 |
IR64-Sub1 | Sub1 | 80 | 77 | 86 | 103 | 107.00 | 82 | 18 | 16 | 12 | 7158 | 6938.88 | 342.66 |
IR81896 | qDTY3.1 | - | 76 | 86 | - | 120.50 | 101 | - | 16 | 10 | - | 4346.40 | 2690.46 |
IR84984 | qDTY12.1 | - | 77 | 84 | - | 108.00 | 85 | - | 17 | 6 | - | 4519.04 | 1122.43 |
MR219 | - | 74 | 76 | 108 | 98 | 101.00 | 88 | 16 | 17 | 6 | 6374 | 5959.82 | 951.32 |
NMR152 | - | - | 83 | 84 | - | 112.00 | 94 | - | 22 | 14 | - | 9756.00 | 2290.12 |
UKM5 | qDTY3.1 + qDTY12.1 | 78 | 77 | 84 | 110 | 107.50 | 84 | 21 | 22 | 14 | 8372 | 9625.60 | 2605.91 |
Genotype | QTL | EP (%) | CCC (%) | SR (%) |
---|---|---|---|---|
GEN112 | Sub1 + qDTY3.1 | 6.79 | 9.42 | 100.00 |
GEN140 | Sub1 | 55.80 | 16.01 | 100.00 |
GEN147 | Sub1 | 49.44 | 12.06 | 100.00 |
GEN155 | Sub1 | 25.07 | 20.37 | 100.00 |
GEN206 | Sub1 + qDTY12.1 | 36.94 | 15.33 | 100.00 |
GEN219 | Sub1 + qDTY12.1 | 19.62 | 15.84 | 100.00 |
GEN230 | Sub1 + qDTY12.1 | 27.05 | 7.33 | 100.00 |
GEN239 | Sub1 | 34.47 | 11.03 | 100.00 |
GEN263 | Sub1 + qDTY12.1 | 31.94 | 15.16 | 80.00 |
UKM5 | qDTY12.1 + qDTY3.1 | 54.33 | 27.90 | 66.67 |
QTL Class Designation | QTL Combination |
---|---|
A | Sub1 + qDTY3.1 + qDTY12.1 |
B | Sub1 + qDTY3.1 |
C | Sub1 + qDTY12.1 |
D | qDTY3.1 + qDTY12.1 |
E | Sub1 |
F | qDTY3.1 |
G | qDTY12.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Ikmal, A.; Noraziyah, A.A.S.; Wickneswari, R. Incorporating Drought and Submergence Tolerance QTL in Rice (Oryza sativa L.)—The Effects under Reproductive Stage Drought and Vegetative Stage Submergence Stresses. Plants 2021, 10, 225. https://doi.org/10.3390/plants10020225
Mohd Ikmal A, Noraziyah AAS, Wickneswari R. Incorporating Drought and Submergence Tolerance QTL in Rice (Oryza sativa L.)—The Effects under Reproductive Stage Drought and Vegetative Stage Submergence Stresses. Plants. 2021; 10(2):225. https://doi.org/10.3390/plants10020225
Chicago/Turabian StyleMohd Ikmal, Asmuni, Abd Aziz Shamsudin Noraziyah, and Ratnam Wickneswari. 2021. "Incorporating Drought and Submergence Tolerance QTL in Rice (Oryza sativa L.)—The Effects under Reproductive Stage Drought and Vegetative Stage Submergence Stresses" Plants 10, no. 2: 225. https://doi.org/10.3390/plants10020225
APA StyleMohd Ikmal, A., Noraziyah, A. A. S., & Wickneswari, R. (2021). Incorporating Drought and Submergence Tolerance QTL in Rice (Oryza sativa L.)—The Effects under Reproductive Stage Drought and Vegetative Stage Submergence Stresses. Plants, 10(2), 225. https://doi.org/10.3390/plants10020225