Two Advanced Cryogenic Procedures for Improving Stevia rebaudiana (Bertoni) Cryopreservation
Abstract
:1. Introduction
2. Results
2.1. Evaluation Plant Vitrification Solution 2 (PVS2) Tolerance
2.2. Droplet-Vitrification Procedure
2.3. V Cryo-Plate Procedure
3. Discussion
4. Materials and Methods
4.1. Plant Material and Culture Conditions
4.2. Cold Hardening of In Vitro Shoot Cultures and Explant Preculture
4.3. Evaluation of the Explant Tolerance to PVS2
4.4. Cryopreservation of S. rebaudiana Explants
4.4.1. Droplet-Vitrification (DV) Procedure
4.4.2. V Cryo-Plate Procedure
4.5. Data Collection and Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lemus-Mondaca, R.; Vega-Gálvez, A.; Zura-Bravo, L.; Ah-Hen, K. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 2012, 132, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Singh, S.; Dhyani, D.; Ahuja, P.S. A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Can. J. Plant Sci. 2011, 91, 1–27. [Google Scholar] [CrossRef]
- Khalil, S.A.; Zamir, R.; Ahmad, N. Selection of suitable propagation method for consistent plantlets production in Stevia rebau-diana (Bertoni). Saudi J. Biol. Sci. 2014, 21, 566–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, S.; Tamura, Y. Variation in the main glycosides of Stevia (Stevia rebaudiana Bertoni). Jpn. J. Trop. Agric. 1985, 29, 109–116. [Google Scholar] [CrossRef]
- Sivaram, L.; Mukundan, U. In vitro culture studies on Stevia rebaudiana. Vitr. Cell. Dev. Biol. Anim. 2003, 39, 520–523. [Google Scholar] [CrossRef]
- Zayova, E.; Nedev, T.; Dimitrova, L. In vitro storage of Stevia rebaudiana Bertoni under slow growth conditions and mass multiplication after storage. Bio Bull. 2017, 3, 30–38. [Google Scholar]
- Shatnawi, M.A.; Shibli, R.A.; Abu-Romman, S.M.; Al-Mazra, M.S.; Al Ajlouni, Z.I.; Shatanawi, A.; Odeh, W.H. Clonal prop-agation and cryogenic storage of the medicinal plant Stevia rebaudiana. Span. J. Agricul. Res. 2011, 1, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Reed, B.M. Cryopreservation—Practical Considerations. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 3–13. [Google Scholar]
- Niino, T. Developments in plant genetic resources cryopreservation technologies. In Effective Genebank Management in APEC Member Economies; Jung-Hoon, K., Ed.; NIAB: Suwon, Korea, 2006; pp. 197–217. [Google Scholar]
- Wang, M.-R.; Lambardi, M.; Engelmann, F.; Pathirana, R.; Panis, B.; Volk, G.M.; Wang, Q.-C. Advances in cryopreservation of in vitro-derived propagules: Technologies and explant sources. Plant Cell Tissue Organ Cult. (PCTOC) 2021, 144, 7–20. [Google Scholar] [CrossRef]
- Panis, B. Sixty years of plant cryopreservation: From freezing hardy mulberry twigs to establishing reference crop collections for future generations. Acta Hortic. 2019, 1234, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Benelli, C.; De Carlo, A.; Engelmann, F. Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol. Adv. 2013, 31, 175–185. [Google Scholar] [CrossRef]
- Withers, L.A.; Engelmann, F. In vitro Conservatipon of Plant Genetic Resources. In Biotechnology in Agriculture; Altman, A., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1998; pp. 57–88. [Google Scholar]
- Reed, B.M.; Uchendu, E. Controlled Rate Cooling. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 77–92. [Google Scholar]
- Engelmann, F. Importance of Cryopreservation for the Conservation of Plant Genetic Resources. In Cryopreservation of Tropical Plant Germplasm: Current Research Progress and Application; Engelmann, F., Takagi, H., Eds.; Japan International Research Center for Agricultura: Tsukuba, Japan; International Plant Genetic Resources Institute: Rome, Italy, 2000; pp. 8–20. [Google Scholar]
- Ono, M.; Baak, S.J. Revisiting the J-Curve for Japan. Mod. Econ. 2014, 5, 32–47. [Google Scholar] [CrossRef] [Green Version]
- Sakai, A.; Kobayashi, S.; Oiyama, I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 1990, 9, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Kartha, K.K.; Engelmann, F. Cryopreservation and Germplasm Storage. In Plant Cell and Tissue Culture; Vasil, I.K., Thorpe, T.A., Eds.; Kluwer Press: Dordrecht, Germany, 1994; pp. 195–230. [Google Scholar]
- Sakai, A.; Engelmann, F. Vitrification, encapsulation-vitrification and droplet-vitrification: A review. CryoLetters 2007, 28, 151–172. [Google Scholar] [PubMed]
- Yamamoto, S.; Rafique, T.; Priyantha, W.S.; Fukui, K.; Matsumoto, T.; Niino, T. Development of a cryopreservation procedure using aluminium cryo-plates. CryoLetters 2011, 3, 256–265. [Google Scholar]
- Niino, T.; Yamamoto, S.; Fukui, K.; Castillo Martínez, C.R.; Arizaga, M.V.; Matsumoto, T.; Engelmann, F. Dehydration im-proves cryopreservation of mat rush (Juncus decipiens Nakai) basal stem buds on cryo-plates. CryoLetters 2013, 34, 549–560. [Google Scholar] [PubMed]
- Matsumoto, T. Cryopreservation of axillary shoot tips of in vitro-grown grape (Vitis) by a two-step vitrification protocol. Euphytica 2003, 131, 299–304. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Kretzschmar, A.A.; Bonnart, R.; Shepherd, A.; Volk, G.M. Cryopreservation of 12 Vitis Species Using Apical Shoot Tips Derived from Plants Grown In vitro. HortScience 2019, 54, 976–981. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Arnao, M.T.; Panta, A.; Roca, W.M.; Escobar, R.H.; Engelmann, F. Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell Tissue Organ Cult. (PCTOC) 2007, 92, 1–13. [Google Scholar] [CrossRef]
- Niino, T.; Arizaga, M.V. Cryopreservation for preservation of potato genetic resources. Breed. Sci. 2015, 65, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Panis, B.; Lambardi, M. Status of cryopreservation technologies in plants (crops and forest trees). In The Role of Biotechnology in Exploring and Protecting Agricultural Genetic Resources; Ruane, J., Sonnino, A., Eds.; FAO: Rome, Italy, 2006; pp. 61–78. [Google Scholar]
- Mathew, L.; McLachlan, A.; Jibran, R.; Burritt, D.J.; Pathirana, R.N. Cold, antioxidant and osmotic pre-treatments maintain the structural integrity of meristematic cells and improve plant regeneration in cryopreserved kiwifruit shoot tips. Protoplasma 2018, 255, 1065–1077. [Google Scholar] [CrossRef]
- Marković, Z.; Chatelet, P.; Preiner, D.; Sylvestre, I.; Kontić, J.K.; Engelmann, F. Effect of shooting medium and source of material on grapevine (Vitis vinifera L.) shoot tip recovery after cryopreservation. CryoLetters 2014, 35, 40–47. [Google Scholar] [PubMed]
- Bettoni, J.C.; Bonnart, R.; Volk, G.M. Challenges in implementing plant shoot tip cryopreservation technologies. Plant Cell Tissue Organ Cult. (PCTOC) 2021, 144, 21–34. [Google Scholar] [CrossRef]
- Volk, G.M.; Harris, J.L.; Rotindo, K.E. Survival of mint shoot tips after exposure to cryoprotectant solution components. Cryobiology 2006, 52, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Fuller, B.J. Cryoprotectants: The essential antifreezes to protect life in the frozen state. CryoLetters 2004, 25, 375–388. [Google Scholar] [PubMed]
- Towill, L.E.; Bonnart, R. Cracking in a vitrification solution during cooling or warming does not effect growth of cryo-preserved mint shoot tips. CryoLetters 2003, 24, 341–346. [Google Scholar] [PubMed]
- Volk, G.M.; Walters, C. Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology 2006, 52, 48–61. [Google Scholar] [CrossRef]
- Ozudogru, E.A.; Kaya, E. Cryopreservation of Thymus cariensis and T. vulgaris shoot tips: Comparison of three vitrification-based methods. CryoLetters 2012, 33, 363–375. [Google Scholar] [PubMed]
- Engelmann-Sylvestre, I.; Engelmann, F. Cryopreservation of in vitro-grown shoot tips of Clinopodium odorum using aluminium cryo-plates. Vitr. Cell. Dev. Biol. Anim. 2015, 51, 185–191. [Google Scholar] [CrossRef]
- Vujović, T.; Sylvestre, I.; Ružić, D.; Engelmann, F. Droplet-vitrification of apical shoot tips of Rubus fruticosus L. and Prunus cerasifera Ehrh. Sci. Hortic. 2011, 130, 222–228. [Google Scholar] [CrossRef]
- Barraco, G.; Sylvestre, I.; Iapichino, G.; Engelmann, F. Cryopreservation of Limonium serotinum apical meristems from in vitro plantlets using droplet-vitrification. Sci. Hortic. 2011, 130, 309–313. [Google Scholar] [CrossRef]
- Panta, A.; Panis, B.; Ynouye, C.; Swennew, R.; Roca, W. Development of a PVS2 droplet vitrification method for potato cryopreservation. CryoLetters 2014, 35, 255–266. [Google Scholar] [PubMed]
- Kartha, K.K.; Leung, N.L.; Mroginski, L.A. In vitro growth responses and plant regeneration from cryopreserved meristems of cassava (Manihot esculenta Crantz). Z. Pflanzenphysiol. 1982, 107, 133–140. [Google Scholar] [CrossRef]
- Yamamoto, S.; Fukui, K.; Rafique, T.; Khan, N.I.; Castillo Martinez, C.R.; Sekizawa, K.; Matsumoto, T.; Niino, T. Cryopreservation of in vitro-grown shoot tips of strawberry by the vitrification method using aluminium cryo-plates. Plant Genet. Resour. 2012, 10, 14–19. [Google Scholar] [CrossRef]
- Engelmann, F. Cryopreservation of Clonal Crops: A Review of Key Parameters. Acta Hortic. 2014, 1039, 31–39. [Google Scholar] [CrossRef]
- Yamamoto, S.; Rafique, T.; Fukui, K.; Sekizawa, K.; Niino, T. V-cryo-plate procedure as an effective protocol for cryobanks: Case study of mint cryopreservation. CryoLetters 2012, 33, 12–23. [Google Scholar] [PubMed]
- Schäfer-Menuhr, A.; Schumacher, H.M.; Mix-Wagner, G. Cryopreservation of Potato Cultivars—Design of a Method for Routine Application in Genebanks. Acta Hortic. 1997, 447, 477–482. [Google Scholar] [CrossRef]
- Panis, B.; Piette, B.M.A.G.; Swennen, R. Droplet vitrification of apical meristems: A cryopreservation protocol applicable to all Musaceae. Plant Sci. 2005, 168, 45–55. [Google Scholar] [CrossRef]
- Halmagyi, A.; Pinker, I. Plant regeneration from Rosa shoot tips cryopreserved by a combined droplet vitrification method. Plant Cell Tissue Organ Cult. (PCTOC) 2006, 84, 145–153. [Google Scholar] [CrossRef]
- Pawłowska, B.; Szewczyk-Taranek, B. Droplet vitrification cryopreservation of Rosa canina and Rosa rubiginosa using shoot tips from in situ plants. Sci. Hortic. 2014, 168, 151–156. [Google Scholar] [CrossRef]
- Le Bras, C.; Le Besnerais, P.-H.; Hamama, L.; Grapin, A. Cryopreservation of ex-vitro-grown Rosa chinensis ‘Old Blush’ buds using droplet-vitrification and encapsulation-dehydration. Plant Cell Tissue Organ Cult. (PCTOC) 2013, 116, 235–242. [Google Scholar] [CrossRef]
- Kim, H.H.; Yoon, J.W.; Park, Y.E.; Cho, E.G.; Sohn, J.K.; Kim, T.S.; Engelmann, F. Cryopreservation of potato cultivated va-rieties and wild species: Critical factors in droplet vitrification. CryoLetters 2006, 27, 223–234. [Google Scholar] [PubMed]
- Sant, R.; Panis, B.; Taylor, M.; Tyagi, A. Cryopreservation of shoot-tips by droplet vitrification applicable to all taro (Colocasia esculenta var. esculenta) accessions. Plant Cell Tissue Organ Cult. (PCTOC) 2007, 92, 107–111. [Google Scholar] [CrossRef]
- Chen, X.-L.; Li, J.-H.; Xin, X.; Zhang, Z.-E.; Xin, P.-P.; Lu, X.-X. Cryopreservation of in vitro-grown apical meristems of Lilium by droplet-vitrification. S. Afr. J. Bot. 2011, 77, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Kaya, E.; Souza, F.V.D. Comparison of two PVS2-based procedures for cryopreservation of commercial sugarcane (Saccharum spp.) germplasm and confirmation of genetic stability after cryopreservation using ISSR markers. Vitr. Cell. Dev. Biol.-Anim. 2017, 53, 410–417. [Google Scholar] [CrossRef]
- Senula, A.; Keller, E.R.J.; Sanduijav, T.; Yohannes, T. Cryopreservation of cold-acclimated mint (Mentha spp.) shoot tips using a simple vitrification protocol. CryoLetters 2007, 28, 1–12. [Google Scholar]
- Bi, W.-L.; Hao, X.-Y.; Cui, Z.-H.; Volk, G.M.; Wang, Q. Droplet-vitrification cryopreservation of in vitro-grown shoot tips of grapevine (Vitis spp.). Vitr. Cell. Dev. Biol.-Anim. 2018, 54, 590–599. [Google Scholar] [CrossRef]
- Volk, G.M.; Shepherd, A.N.; Bonnart, R. Successful Cryopreservation of Vitis Shoot Tips: Novel Pre-treatment Combinations Applied to Nine Species. CryoLetters 2019, 39, 322–330. [Google Scholar]
- Wang, B.; Li, J.-W.; Zhang, Z.; Wang, R.-R.; Ma, Y.-L.; Blystad, D.-R.; Keller, E.J.; Wang, Q.-C. Three vitrification-based cryopreservation procedures cause different cryo-injuries to potato shoot tips while all maintain genetic integrity in regenerants. J. Biotechnol. 2014, 184, 47–55. [Google Scholar] [CrossRef]
- Souza, F.V.D.; Kaya, E.; Vieira, L.D.J.; De Souza, E.H.; Amorim, V.B.D.O.; Skogerboe, D.; Matsumoto, T.; Alves, A.A.C.; Ledo, C.A.D.S.; Jenderek, M.M. Droplet-vitrification and morphohistological studies of cryopreserved shoot tips of cultivated and wild pineapple genotypes. Plant Cell Tissue Organ Cult. (PCTOC) 2015, 124, 351–360. [Google Scholar] [CrossRef]
- Yamamoto, S.; Rafique, T.; Sekizawa, K.; Koyama, A.; Ichihashi, T.; Niino, T. Development of an effective cryopreservation protocol using aluminum cryo-plates for in vitro-grown shoot tips of mulberries (Morus spp.) originated from the tropics and subtropics. Sanshi Konchu Biotec (J. Insect Biotech. Sericology) 2012, 81, 57–62. [Google Scholar]
- Sekizawa, K.; Yamamoto, S.-I.; Rafique, T.; Fukui, K.; Niino, T. Cryopreservation of in vitro-grown shoot tips of carnation (Dianthus caryophyllus L.) by vitrification method using aluminium cryo-plates. Plant Biotechnol. 2011, 28, 401–405. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Yamamoto, S.; Fukui, K.; Niino, T. Cryopreservation of blueberry dormant shoot tips using V cryo-plate method. HortScience 2014, 49, S337–S338. [Google Scholar]
- Niino, T.; Watanabe, K.; Nohara, N.; Rafique, T.; Yamamoto, S.-I.; Fukui, K.; Arizaga, M.V.; Martinez, C.R.C.; Matsumoto, T.; Engelmann, F.; et al. Cryopreservation of mat rush lateral buds by air dehydration using aluminum cryo-plate. Plant Biotechnol. 2014, 31, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Rafique, T.; Yamamoto, S.I.; Fukui, K.; Mahmood, Z.; Niino, T. Cryopreservation of sugarcane using the V cryo-plate technique. CryoLetters 2015, 36, 51–59. [Google Scholar] [PubMed]
- Yamamoto, S.-I.; Wunna; Rafique, T.; Arizaga, M.V.; Fukui, K.; Gutierrez, E.J.C.; Martinez, C.R.C.; Watanabe, K.; Niino, T. The Aluminum Cryo-plate Increases Efficiency of Cryopreservation Protocols for Potato Shoot Tips. Am. J. Potato Res. 2015, 92, 250–257. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Bonnart, R.; Shepherd, A.N.; Kretzschmar, A.A.; Volk, G.M. Modifications to a Vitis Shoot Tip Cryopreservation Procedure: Effect of Shoot Tip Size and Use of Cryoplates. CryoLetters 2019, 40, 103–112. [Google Scholar]
- Salma, M.; Fki, L.; Engelmann-Sylvestre, I.; Niino, T.; Engelmann, F. Comparison of droplet-vitrification and D-cryoplate for cryopreservation of date palm (Phoenix dactylifera L.) polyembryonic masses. Sci. Hortic. 2014, 179, 91–97. [Google Scholar] [CrossRef]
- Matsumoto, T.; Yamamoto, S.-I.; Fukui, K.; Rafique, T.; Engelmann, F.; Niino, T. Cryopreservation of Persimmon Shoot Tips from Dormant Buds Using the D Cryo-plate Technique. Hortic. J. 2015, 84, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Matsumoto, T.; Sakai, A.; Yamada, K. Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep. 1994, 13, 442–446. [Google Scholar] [CrossRef]
Treatment | 1 Survival Percentage (7 days) | Regrowth Percentage (28 days) | ||
---|---|---|---|---|
Apical Shoot Tips | Axillary Shoot Tips | Apical Shoot Tips | Axillary Shoot Tips | |
Control | 100.0 a | 93.0 a | 93.0 a | 93.0 a |
PVS2 20 min + LN | 6.0 c | 0.0 c | 0.0 d | 0.0 c |
PVS2 30 min + LN | 46.6 bc | 50.0 b | 43.0 c | 46.6 b |
PVS2 60 min + LN | 87.0 ab | 50.0 b | 80.0 ab | 50.0 b |
Treatment | 1 Shoot Length (cm) | Shoots/Explants (n°) | Explants with Shoot (%) | |||
---|---|---|---|---|---|---|
Apical Shoot Tips | Axillary Shoot Tips | Apical Shoot Tips | Axillary Shoot Tips | Apical Shoot Tips | Axillary Shoot Tips | |
Control | 4.30 ± 0.48 ab | 4.21 ± 0.64 a | 0.96 ± 0.63 a | 0.89 ± 0.73 a | 78.0 a | 68.0 a |
PVS2 30 min + LN | 4.00 ± 0.39 b | 3.64 ± 0.44 b | 0.84 ± 0.55 a | 0.21 ± 0.42 b | 77.0 a | 21.0 b |
PVS2 60 min + LN | 4.90 ± 0.44 a | 4.03 ± 0.39 ab | 0.91 ± 0.58 a | 0.80 ± 0.56 a | 79.0 a | 73.0 a |
Treatment | 1 Survival Percentage (7 days) | Regrowth Percentage (28 days) | ||
---|---|---|---|---|
Apical Shoot Tips | Axillary Shoot Tips | Apical Shoot Tips | Axillary Shoot Tips | |
Control | 97.0 a | 95.0 a | 93.0 a | 93.0 a |
PVS2 20 min + LN | 10.0 b | 0.0 c | 3.0 c | 0.0 c |
PVS2 30 min + LN | 87.0 a | 64.0 b | 70.0 b | 46.0 b |
PVS2 60 min + LN | 93.0 a | 69.0 b | 93.0 a | 67.0 ab |
Treatment | 1 Shoot Length (cm) | Shoots/Explants (n°) | Explants with Shoot (%) | |||
---|---|---|---|---|---|---|
Apical Shoot Tips | Axillary Shoot Tips | Apical Shoot Tips | Axillary Shoot Tips | Apical Shoot Tips | Axillary Shoot Tips | |
Control | 4.52 ± 0.70 a | 4.16 ± 0.37 a | 1.00 ± 0.74 a | 0.97 ± 0.75 a | 78.0 a | 71.4 a |
PVS2 30 min + LN | 4.00 ± 0.51 b | 3.95 ± 0.42 a | 0.90 ± 0.57 a | 0.81 ± 0.70 a | 77.0 a | 66.6 a |
PVS2 60 min + LN | 4.37 ± 0.78 a | 4.20 ± 0.48 a | 0.93 ± 0.60 a | 0.73 ± 0.52 a | 78.6 a | 70.0 a |
Treatment | 1 Shoot Length (cm) | Shoots/Explants (n°) | Explants with Shoot (%) | |||
---|---|---|---|---|---|---|
Apical Shoot Tips | Axillary Shoot Tips | Apical Shoot Tips | Axillary Shoot Tips | Apical Shoot Tips | Axillary Shoot Tips | |
Control | 6.69 ± 0.98 a | 6.52 ± 0.88 a | 1.50 ± 0.68 a | 1.43 ± 0.81 a | 100.0 a | 93.3 a |
PVS2 30 min + LN | 7.19 ± 1.00 a | 6.43 ± 1.10 a | 1.53 ± 0.81 a | 1.40 ± 0.81 a | 96.6 a | 83.0 a |
PVS2 60 min + LN | 7.21 ± 1.40 a | 6.44 ± 1.50 a | 1.56 ± 0.96 a | 1.40 ± 0.96 a | 93.3 a | 83.0 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benelli, C.; Carvalho, L.S.O.; EL merzougui, S.; Petruccelli, R. Two Advanced Cryogenic Procedures for Improving Stevia rebaudiana (Bertoni) Cryopreservation. Plants 2021, 10, 277. https://doi.org/10.3390/plants10020277
Benelli C, Carvalho LSO, EL merzougui S, Petruccelli R. Two Advanced Cryogenic Procedures for Improving Stevia rebaudiana (Bertoni) Cryopreservation. Plants. 2021; 10(2):277. https://doi.org/10.3390/plants10020277
Chicago/Turabian StyleBenelli, Carla, Lara S. O. Carvalho, Soumaya EL merzougui, and Raffaella Petruccelli. 2021. "Two Advanced Cryogenic Procedures for Improving Stevia rebaudiana (Bertoni) Cryopreservation" Plants 10, no. 2: 277. https://doi.org/10.3390/plants10020277
APA StyleBenelli, C., Carvalho, L. S. O., EL merzougui, S., & Petruccelli, R. (2021). Two Advanced Cryogenic Procedures for Improving Stevia rebaudiana (Bertoni) Cryopreservation. Plants, 10(2), 277. https://doi.org/10.3390/plants10020277