Foliar Application of Zinc Oxide Nanoparticles Promotes Drought Stress Tolerance in Eggplant (Solanum melongena L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Treatment Applications
2.3. Irrigation Water Applied (IWA)
2.4. Measurements
2.4.1. Morphological Parameters and Yield and its Components
2.4.2. Physiological Measurements
2.5. Macro- and Micronutrients Assessments
2.6. Anatomical Features
2.7. Data Analysis
3. Results
3.1. Changes in Eggplant Growth by Foliar-Applied ZnO NP and Deficit Irrigation
3.2. Changes in Photosynthetic Efficiency and Tissue Water Status by Foliar-Applied ZnO NP and Deficit Irrigation
3.3. Changes of Eggplant Yield and Water Productivity in Response to Foliar-Applied ZnO NP and Deficit Irrigation
3.4. Changes in Nutrients Contents in Response to Foliar-Applied ZnO NP and Deficit Irrigation
3.5. Leaf and Stem Anatomical Responses to Foliar-Applied ZnO NP and Deficit Irrigation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Information System on Water and Agriculture; Food and Agriculture Organization: Rome, Italy, 2019. [Google Scholar]
- Winter, J.M.; Lopez, J.R.; Ruane, A.C.; Young, C.A.; Scanlon, B.R.; Rosenzweig, C. Representing water scarcity in future agricultural assessments. Anthropocene 2017, 18, 15–26. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Abdelkhalik, A.; Pascual, B.; Nájera, I.; Baixauli, C.; Pascual-Seva, N. Regulated Deficit Irrigation as a Water-Saving Strategy for Onion Cultivation in Mediterranean Conditions. Agronomy 2019, 9, 521. [Google Scholar] [CrossRef] [Green Version]
- Kokina, I.; Plaksenkova, I.; Jermaļonoka, M.; Petrova, A. Impact of iron oxide nanoparticles on yellow medick (Medicago falcata L.) plants. J. Plant Interact. 2020, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Rady, M.O.A.; Semida, W.M.; El-mageed, T.A.A.; Howladar, S.M.; Shaaban, A. Foliage Applied Selenium Improves Photo-synthetic Efficiency, Antioxidant Potential and Wheat Productivity under Drought Stress. Int. J. Agric. Biol. 2020, 24, 1293–1300. [Google Scholar] [CrossRef]
- El-Mageed, T.A.A.; Semida, W.M.; Rady, M.M. Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. Agric. Water Manag. 2017, 193, 46–54. [Google Scholar] [CrossRef]
- Kirda, C. Deficit Irrigation Scheduling Based on Plant Growth Stages Showing Water Stress Tolerance; Water Reports; FAO: Rome, Italy, 2002; pp. 3–10. [Google Scholar]
- Capra, A.; Consoli, S.; Scicolone, B. Deficit irrigation: Theory and practice. In Agricultural Irrigation Research Progress; Alonso, D., Iglesias, H.J., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2008; pp. 53–82. [Google Scholar]
- Levidow, L.; Zaccaria, D.; Maia, R.; Vivas, E.; Todorovic, M.; Scardigno, A. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agric. Water Manag. 2014, 146, 84–94. [Google Scholar] [CrossRef] [Green Version]
- El-Mageed, T.A.A.; El-Sherif, A.M.; El-Mageed, S.A.A.; Abdou, N.M. A novel compost alleviate drought stress for sugar beet production grown in Cd-contaminated saline soil. Agric. Water Manag. 2019, 226, 105831. [Google Scholar] [CrossRef]
- Rady, M.O.; Semida, W.M.; Howladar, S.; El-Mageed, T.A.A. Raised beds modulate physiological responses, yield and water use efficiency of wheat (Triticum aestivum L.) under deficit irrigation. Agric. Water Manag. 2021, 245, 106629. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. FAOSTAT Food and Agriculture Data; Food and Agriculture Organization: Rome, Italy, 2019. [Google Scholar]
- Çolak, Y.B.; Yazar, A.; Gönen, E.; Eroğlu, E. Çağlar Yield and quality response of surface and subsurface drip-irrigated eggplant and comparison of net returns. Agric. Water Manag. 2018, 206, 165–175. [Google Scholar] [CrossRef]
- Semida, W.M.; Abd El-Mageed, T.A.; Howladar, S.M.; Mohamed, G.F.; Rady, M.M. Response of Solanum melongena L. seed-lings grown under saline calcareous soil conditions to a new organo-mineral fertilizer. J. Anim. Plant Sci. 2015, 25, 485–493. [Google Scholar]
- Díaz-Pérez, J.C.; Eaton, T.E. Eggplant (Solanum melongena L.) Plant Growth and Fruit Yield as Affected by Drip Irrigation Rate. HortScience 2015, 50, 1709–1714. [Google Scholar] [CrossRef]
- Plazas, M.; Nguyen, H.T.; González-Orenga, S.; Fita, A.; Vicente, O.; Prohens, J.; Boscaiu, M. Comparative analysis of the responses to water stress in eggplant (Solanum melongena) cultivars. Plant Physiol. Biochem. 2019, 143, 72–82. [Google Scholar] [CrossRef]
- Karam, F.; Saliba, R.; Skaf, S.; Breidy, J.; Rouphael, Y.; Balendonck, J. Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes. Agric. Water Manag. 2011, 98, 1307–1316. [Google Scholar] [CrossRef]
- Vaghar, M.S.; Sayfzadeh, S.; Zakerin, H.R.; Kobraee, S.; Valadabadi, S.A. Foliar application of iron, zinc, and manganese nano-chelates improves physiological indicators and soybean yield under water deficit stress. J. Plant Nutr. 2020, 43, 2740–2756. [Google Scholar] [CrossRef]
- Davarpanaha, S.; Tehranifara, A.; Davarynejada, G.; Abadía, J.; Khorasanic, R. Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci. Hortic. 2016, 210, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Abbasifar, A.; Shahrabadi, F.; ValizadehKaji, B. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. J. Plant Nutr. 2020, 43, 1104–1118. [Google Scholar] [CrossRef]
- Fernández, V.; Eichert, T. Uptake of Hydrophilic Solutes through Plant Leaves: Current State of Knowledge and Perspectives of Foliar Fertilization. Crit. Rev. Plant Sci. 2009, 28, 36–68. [Google Scholar] [CrossRef] [Green Version]
- Karim, R.; Rahman, M.A. Drought risk management for increased cereal production in Asian Least Developed Countries. Weather Clim. Extrem. 2015, 7, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Dimkpa, C.O.; Singh, U.; Bindraban, P.S.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci. Total Environ. 2019, 688, 926–934. [Google Scholar] [CrossRef]
- López-valdez, F.; Fernández-Luqueño, F. Agricultural Nanobiotechnology; López-valdez, F., Fernández-Luqueño, F., Eds.; Springer: Basingstoke, UK, 2018; ISBN 9783319967189. [Google Scholar]
- Seghatoleslami, M.; Forutani, R. Yield and Water Use Efficiency of Sunflower as Affected by nano ZnO and Water Stress. J. Adv. Agric. Technol. 2015, 2, 34–37. [Google Scholar] [CrossRef]
- Vishekaii, Z.R.; Soleimani, A.; Fallahi, E.; Ghasemnezhad, M.; Hasani, A. The impact of foliar application of boron nano-chelated fertilizer and boric acid on fruit yield, oil content, and quality attributes in olive (Olea europaea L.). Sci. Hortic. 2019, 257, 108689. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Andrews, J.; Fugice, J.; Singh, U.; Bindraban, P.S.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Facile Coating of Urea With Low-Dose ZnO Nanoparticles Promotes Wheat Performance and Enhances Zn Uptake Under Drought Stress. Front. Plant Sci. 2020, 11, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahedi, S.M.; Karimi, M.; Da Silva, J.A.T. The use of nanotechnology to increase quality and yield of fruit crops. J. Sci. Food Agric. 2020, 100, 25–31. [Google Scholar] [CrossRef]
- Sun, L.; Song, F.; Guo, J.; Zhu, X.; Liu, S.; Liu, F. Nano-ZnO-Induced Drought Tolerance Is Associated with Melatonin Syn-thesis and Metabolism in Maize. Int. J. Mol. Sci. 2020, 21, 782. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.W. Soil Survey Staff Keys to Soil Taxonomy, 12th ed.; USDA-NRCS: Washington, DC, USA, 2014; ISBN 0926487221.
- Page, A.I.; Miller, R.H.; Keeny, D.R. Methods of Soil Analysis. In Part II: Chemical and Microbiological Methods, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 225–246. [Google Scholar]
- Klute, A.; Dirksen, C. Hydraulic Conductivity and Diffusivity: Laboratory Methods. Methods Biogeochem. Wetl. 2018, 9, 687–734. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements; FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Wallace, D.H.; Munger, H.M. Studies of the Physiological Basis for Yield Differences. I. Growth Analysis of Six Dry Bean Varieties 1. Crop. Sci. 1965, 5, 343–348. [Google Scholar] [CrossRef]
- Hayat, S.; Ali, B.; Hasan, S.A.; Ahmad, A. Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ. Exp. Bot. 2007, 60, 33–41. [Google Scholar] [CrossRef]
- Premachandra, G.S.; Saneoka, H.; Ogata, S. Cell membrane stability, an indicator of drought tolerance, as affected by ap-plied nitrogen in soyabean. J. Agric. Sci. 1990, 115, 63–66. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.; Landolt, W.; Bucher, J.; Strasser, R. Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index. Environ. Pollut. 2000, 109, 501–507. [Google Scholar] [CrossRef]
- Fernández, J.; Alcon, F.; Diaz-Espejo, A.; Hernandez-Santana, V.; Cuevas, M. Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard. Agric. Water Manag. 2020, 237, 106074. [Google Scholar] [CrossRef]
- Jensen, M.E. Design and Operation of Farm Irrigation Systems; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1983; p. 827. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International; Horwitz, W., Ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995; Volume 2, pp. 1058–1059. ISBN 0935584544. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis: Advanced Course; UW-Madison Libraries Parallel Press: Madison, WI, USA, 2005. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soil, Plants and Water; Division of Agricultural Science, University of California: Berkeley, CA, USA, 1961. [Google Scholar]
- Nassar, M.A.; El-Sahhar, K.F. Botanical Preparations and Microscopy (Microtechnique); Academic Bookshop: Giza, Egypt, 1998. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons: Singapore, 1984; p. 680. [Google Scholar]
- Abdelkhalik, A.; Pascual, B.; Nájera, I.; Domene, M.A.; Baixauli, C.; Pascual-Seva, N. Effects of deficit irrigation on the yield and irrigation water use efficiency of drip-irrigated sweet pepper (Capsicum annuum L.) under Mediterranean conditions. Irrig. Sci. 2019, 38, 89–104. [Google Scholar] [CrossRef]
- El-Mageed, T.A.A.; Semida, W.M.; Taha, R.S.; Rady, M.M. Effect of summer-fall deficit irrigation on morpho-physiological, anatomical responses, fruit yield and water use efficiency of cucumber under salt affected soil. Sci. Hortic. 2018, 237, 148–155. [Google Scholar] [CrossRef]
- Rady, M.M.; Belal, H.E.; Gadallah, F.M.; Semida, W.M. Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Sci. Hortic. 2020, 266, 109290. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, J.; Davies, W.J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 2015, 66, 2253–2269. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; Pascual-Seva, N.; Nájera, I.; Domene, M.Á.; Baixauli, C.; Pascual, B. Effect of Deficit Irrigation on the Productive Response of Drip-irrigated Onion (Allium cepa L.) in Mediterranean Conditions. Hortic. J. 2019, 88, 488–498. [Google Scholar] [CrossRef] [Green Version]
- El-Mageed, T.A.A.; Shaaban, A.; El-Mageed, S.A.A.; Semida, W.M.; Rady, M.O.A. Silicon defensive role in maize (Zea mays L.) against drought stress and metals-contaminated irrigation water. Silicon 2020, 1–12. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.-K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef] [Green Version]
- Desoky, E.-S.M.; Merwad, A.-R.M.; Rady, M.M. Natural Biostimulants Improve Saline Soil Characteristics and Salt Stressed-Sorghum Performance. Commun. Soil Sci. Plant Anal. 2018, 49, 967–983. [Google Scholar] [CrossRef]
- Semida, W.M.; Hemida, K.A.; Rady, M.M. Sequenced ascorbate-proline-glutathione seed treatment elevates cadmium tolerance in cucumber transplants. Ecotoxicol. Environ. Saf. 2018, 154, 171–179. [Google Scholar] [CrossRef]
- Rady, M.O.A.; Semida, W.M.; El-Mageed, T.A.A.; Hemida, K.A.; Rady, M.M. Up-regulation of antioxidative defense systems by glycine betaine foliar application in onion plants confer tolerance to salinity stress. Sci. Hortic. 2018, 240, 614–622. [Google Scholar] [CrossRef]
- Yang, K.-Y.; Doxey, S.; McLean, J.E.; Britt, D.; Watson, A.; Al Qassy, D.; Jacobson, A.; Anderson, A.J. Remodeling of root morphology by CuO and ZnO nanoparticles: Effects on drought tolerance for plants colonized by a beneficial pseudomonad. Bot. 2018, 96, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J.; Bashir, H.; Bagheri, R.; Baig, A.; Al-Huqail, A.; Ibrahim, M.M.; Qureshi, M.I. Drought and salinity induced changes in ecophysiology and proteomic profile of Parthenium hysterophorus. PLoS ONE 2017, 12, e0185118. [Google Scholar] [CrossRef] [Green Version]
- Upadhyaya, H.; Sahoo, L.; Panda, S.K. Molecular Physiology of Osmotic Stress in Plants. In Molecular Stress Physiology of Plants; Rout, G., Das, A., Eds.; Springer: New Delhi, India, 2013; pp. 179–192. ISBN 978-81-322-0807-5. [Google Scholar]
- El-Mageed, T.A.A.; Semida, W.M.; Mohamed, G.F.; Rady, M.M. Combined effect of foliar-applied salicylic acid and deficit irrigation on physiological–anatomical responses, and yield of squash plants under saline soil. S. Afr. J. Bot. 2016, 106, 8–16. [Google Scholar] [CrossRef]
- Rady, M.M.; Taha, R.S.; Semida, W.M.; Alharby, H.F. Modulation of salt stress effects on Vicia faba L. plants grown on a re-claimed-saline soil by salicylic acid application. Rom. Agric. Res. 2017, 34, 175–185. [Google Scholar]
- Abdelkhalik, A.; Pascual-Seva, N.; Nájera, I.; Giner, A.; Baixauli, C.; Pascual, B. Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions. Agric. Water Manag. 2019, 212, 99–110. [Google Scholar] [CrossRef]
- El-Mageed, T.A.A.; Semida, W.M. Effect of deficit irrigation and growing seasons on plant water status, fruit yield and water use efficiency of squash under saline soil. Sci. Hortic. 2015, 186, 89–100. [Google Scholar] [CrossRef]
- El-Mageed, T.A.A.; Semida, W.M.; El-Wahed, M.H.A. Effect of mulching on plant water status, soil salinity and yield of squash under summer-fall deficit irrigation in salt affected soil. Agric. Water Manag. 2016, 173, 1–12. [Google Scholar] [CrossRef]
- Janmohammadi, M.; Navid, A.; Segherloo, A.E.; Sabaghnia, N. Impact of nano-chelated micronutrients and biological ferti-lizers on growth performance and grain yield of maize under deficit irrigation condition. Biologia 2016, 62, 134–147. [Google Scholar]
- Yan, W.; Zhong, Y.; Shangguan, Z. A meta-analysis of leaf gas exchange and water status responses to drought. Sci. Rep. 2016, 6, 20917. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.-S.; Li, K.; Wang, Q.-M.; Song, X.-Y.; Su, H.-N.; Xie, B.-B.; Zhang, X.-Y.; Huang, F.; Bai-Cheng, Z.; Zhou, B.-C.; et al. Nitrogen Starvation Impacts the Photosynthetic Performance of Porphyridium cruentum as Revealed by Chlorophyll a Fluorescence. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Semida, W.M.; El-Mageed, T.A.A.; Hemida, K.; Rady, M.M. Natural bee-honey based biostimulants confer salt tolerance in onion via modulation of the antioxidant defence system. J. Hortic. Sci. Biotechnol. 2019, 94, 632–642. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Semida, W.M.; Rady, M.M.; Mohamed, G.F.; Hemida, K.A.B.A.A.; Hassan, M.M.; Shami, A. Sequential Ap-plication of Antioxidants Rectifies Ion Imbalance and Strengthens Antioxidant Systems in Salt-Stressed Cucumber. Plants 2020, 9, 1783. [Google Scholar] [CrossRef]
- De Melo, H.F.; De Souza, E.R.; Cunha, J.C. Fluorescence of chlorophyll and photosynthetic pigments in Atriplex nummularia under abiotic stresses. Rev. Bras. Eng. Agríc. Ambient. 2017, 21, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Urban, L.; Aarrouf, J.; Bidel, L.P.R. Assessing the Effects of Water Deficit on Photosynthesis Using Parameters Derived from Measurements of Leaf Gas Exchange and of Chlorophyll a Fluorescence. Front. Plant Sci. 2017, 8, 2068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Mageed, T.A.A.; Rady, M.M.; Taha, R.S.; El Azeam, S.A.; Simpson, C.R.; Semida, W.M. Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of Capsicum annuum under salt stress. Sci. Hortic. 2020, 261, 108930. [Google Scholar] [CrossRef]
- Reddy, M.P. Changes in pigment composition. Hill reaction activity and saccharides metabolism in bajra (Penisetum ty-phoides) leaves under NaCl salinity. Photosynthetica 1986, 20, 50–55. [Google Scholar]
- Dos Santos, E.F.; Zanchim, B.J.; De Campos, A.G.; Garrone, R.F.; Junior, J.L. Photosynthesis rate, chlorophyll content and initial development of physic nut without micronutrient fertilization. Rev. Bras. Ciênc. Solo 2013, 37, 1334–1342. [Google Scholar] [CrossRef] [Green Version]
- El-Mageed, T.A.A.; Semida, W.M. Organo mineral fertilizer can mitigate water stress for cucumber production (Cucumis sativus L.). Agric. Water Manag. 2015, 159, 1–10. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Singh, U.; Bindraban, P.S.; Adisa, I.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Addition-omission of zinc, copper, and boron nano and bulk oxide particles demonstrate element and size -specific response of soybean to micronutrients exposure. Sci. Total Environ. 2019, 665, 606–616. [Google Scholar] [CrossRef]
- Etienne, P.; Diquelou, S.; Prudent, M.; Salon, C.; Maillard, A.; Ourry, A. Macro and Micronutrient Storage in Plants and Their Remobilization When Facing Scarcity: The Case of Drought. Agriculture 2018, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Dimkpa, C.O.; White, J.C.; Elmer, W.H.; Gardea-Torresdey, J. Nanoparticle and Ionic Zn Promote Nutrient Loading of Sorghum Grain under Low NPK Fertilization. J. Agric. Food Chem. 2017, 65, 8552–8559. [Google Scholar] [CrossRef]
- Grangah, M.F.; Rashidi, V.; Mirshekari, B.; Behrouzyar, E.K.; Farahvash, F. Effects of nano-fertilizers on physiological and yield characteristics of pinto bean cultivars under water deficit stress. J. Plant Nutr. 2020, 43, 2898–2910. [Google Scholar] [CrossRef]
- Mangena, P. Water Stress: Morphological and Anatomical Changes in Soybean (Glycine max L.) Plants. In Plant, Abiotic Stress and Responses to Climate Change; Andjelkovic, V., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Petrov, P.; Petrova, A.; Dimitrov, I.; Tashev, T.; Olsovska, K.; Brestic, M.; Misheva, S. Relationships between leaf morpho-anatomy, water status and cell membrane stability in leaves of wheat seedlings subjected to severe soil drought. J. Agron. Crop. Sci. 2018, 204, 219–227. [Google Scholar] [CrossRef]
- Hafez, Y.; Attia, K.; Alamery, S.; Ghazy, A.; Al-Doss, A.; Ibrahim, E.; Rashwan, E.; El-Maghraby, L.; Awad, A.; Abdelaal, K. Beneficial Effects of Biochar and Chitosan on Antioxidative Capacity, Osmolytes Accumulation, and Anatomical Characters of Water-Stressed Barley Plants. Agronomy 2020, 10, 630. [Google Scholar] [CrossRef]
Month | Main Temperatures (°C) | RHavg % | U2 ms−1 | Ep mmd−1 | |
---|---|---|---|---|---|
Day | Night | ||||
April | 33.36 | 15.92 | 30.00 | 1.93 | 5.60 |
May | 36.50 | 19.52 | 31.00 | 1.90 | 6.90 |
June | 39.40 | 20.30 | 36.00 | 1.50 | 7.60 |
July | 40.36 | 25.90 | 36.00 | 2.10 | 6.90 |
August | 40.40 | 26.30 | 37.00 | 1.80 | 6.80 |
Layer (cm) | Particle Size Distribution | Bulk Density (g cm−3) | Ksat cm h−1 | FC (%) | WP (%) | AW (%) | |||
---|---|---|---|---|---|---|---|---|---|
Sand % | Silt % | Clay % | Texture Class | ||||||
0–25 | 73.2 | 14. 0 | 12.8 | LS | 1.52 | 1.89 | 27.33 | 11.73 | 15.60 |
25–50 | 71.2 | 13.1 | 15.7 | LS | 1.47 | 1.55 | 26.19 | 11.13 | 15.06 |
Properties | Value |
pH (at a soil: water (w/v) ratio of 1:2.5) | 7.72 |
ECe (dS·m−1; soil—paste extract) | 7.33 |
CEC (cmole kg−1) | 11.15 |
CaCO3 (%) Organic matter (%) ESP (exchangeable sodium percentage) | 4.85 |
1.12 | |
10.62 | |
Available Nutrients: | |
N (%) | 0.03 |
P (mg kg−1 soil) | 511.8 |
K (mg kg−1 soil) | 65.9 |
Fe (mg kg−1 soil) | 3.54 |
Mn (mg kg−1 soil) | 9.6 |
Zn (mg kg−1 soil) | 0.60 |
Cu (mg kg−1 soil) | 0.51 |
Ionic Concentration (Meq L−1) | EC a (dS m−1) | pH | SAR b | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CO32− | HCO3− | Cl− | SO42− | Ca2+ | Mg2+ | Na+ | K+ | |||
0.00 | 2.8 | 10.8 | 5.4 | 5.0 | 4.3 | 8.4 | 1.3 | 1.88 | 7.37 | 3.99 |
Treatments | Shoot Length (cm) | Number of Leaves | Stem Diameter (cm) | Shoot FW Plant−1 (g) | Shoot DW Plant−1 (g) | Leaf Area Plant−1 (dm2) |
---|---|---|---|---|---|---|
Irrigation (I) | * | * | ns | * | * | * |
FI | 88.1 ± 1.9 a | 61.6 ± 2.5 a | 1.3 ± 0.03 a | 283.9 ± 15.6 a | 55.4 ± 3.3 a | 55.5 ± 2.8 a |
DI | 73.7 ± 2.7 b | 47.0 ± 3.3 b | 1.2 ± 0.06 b | 210.7 ± 10.9 b | 42.0 ± 3.4 b | 40.3 ± 2.6 b |
ZnO NP(ppm) | * | * | * | * | * | * |
ZnO NP(0) | 70.8 ± 3.3 c | 45.2 ± 3.4 b | 1.1 ± 0.07 c | 185.2 ± 7.4 c | 37.0 ± 3.6 c | 34.1 ± 1.8 c |
ZnO NP(50) | 81.0 ± 2.3 b | 55.0 ± 4.3 a | 1.2 ± 0.04 b | 244.6 ± 13.6 b | 47.6 ± 3.2 b | 50.8 ± 3.4 b |
ZnO NP(100) | 90.8 ± 2.4 a | 62.7 ± 3.3 a | 1.4 ± 0.04 a | 312.0 ± 15.3 a | 61.4 ± 3.7 a | 58.9 ± 2.5 a |
I × ZnO NP | ** | ** | ** | ** | ** | ** |
FI × ZnO NP(0) | 80.8 ± 2.2 bc | 52.5 ± 1.3 bc | 1.3 ± 0.11 ab | 206.0 ± 5.1 d | 46.1 ± 3.9 bc | 39.8 ± 0.9 c |
FI × ZnO NP(50) | 85.8 ± 1.2 b | 67.0 ± 4.4 a | 1.3 ± 0.10 ab | 286.5 ± 10.7 b | 55.2 ± 4.7 ab | 61.4 ± 2.4 a |
FI × ZnO NP(100) | 97.5 ± 1.5 a | 65.2 ± 4.2 a | 1.4 ± 0.04 a | 359.2 ± 11.3 a | 64.9 ± 5.9 a | 65.3 ± 0.4 a |
DI × ZnO NP(0) | 60.7 ± 1.7 d | 37.8 ± 5.2 d | 1.0 ± 0.08 c | 164.3 ± 6.4 e | 28.0 ± 2.9 d | 28.3 ± 0.4 d |
DI × ZnO NP(50) | 76.2 ± 3.4 bc | 43.0 ± 1.9 cd | 1.1 ± 0.06 bc | 202.8 ± 1.3 d | 40.1 ± 0.3 c | 40.3 ± 0.5 c |
DI × ZnO NP(100) | 84.2 ± 2.3 b | 60.2 ± 5.4 ab | 1.4 ± 0.07 a | 264.8 ± 11.6 c | 57.9 ± 4.6 ab | 52.4 ± 3.2 b |
Treatments | Fv/Fm | PI | SPAD Value | RWC% | MSI% |
---|---|---|---|---|---|
Irrigation (I) | ns | * | * | * | * |
FI | 0.84 ± 0.00 a | 10.8 ± 0.29 a | 60.9 ± 0.38 a | 78.8 ± 0.99 a | 77.5 ± 0.29 a |
DI | 0.84 ± 0.00 a | 8.4 ± 0.38 b | 57.3 ± 0.99 b | 73.5 ± 1.37 b | 74.7 ± 0.83 b |
ZnO NP(ppm) | * | * | * | * | * |
ZnO NP(0) | 0.83 ± 0.00 b | 8.2 ± 0.51 c | 56.4 ± 1.3 c | 70.8 ± 1.50 c | 73.7 ± 0.90 b |
ZnO NP(50) | 0.84 ± 0.00 a | 9.7 ± 0.37 b | 61.6 ± 0.61 a | 81.1 ± 1.30 a | 76.6 ± 0.66 a |
ZnO NP(100) | 0.85 ± 0.00 a | 10.9 ± 0.43 a | 59.3 ± 0.40 b | 76.5 ± 0.29 b | 77.9 ± 0.48 a |
I × ZnO NP | ** | ** | * | * | * |
FI × ZnO NP(0) | 0.84 ± 0.00 ab | 9.8 ± 0.02 bc | 60.8 ± 0.12 ab | 75.7 ± 0.09 c | 76.6 ± 0.31 ab |
FI × ZnO NP(50) | 0.84 ± 0.00 a | 10.6 ± 0.62 b | 62.4 ± 0.40 a | 83.8 ± 0.72 a | 78.6 ± 0.51 a |
FI × ZnO NP(100) | 0.85 ± 0.00 a | 12.0 ± 0.28 a | 59.5 ± 0.63 b | 77.0 ± 1.70 bc | 77.3 ± 0.31 ab |
DI × ZnO NP(0) | 0.83 ± 0.00 b | 6.5 ± 0.24 d | 52.1 ± 0.57 c | 66.0 ± 1.09 d | 70.9 ± 0.44 c |
DI × ZnO NP(50) | 0.83 ± 0.01 a | 8.8 ± 0.02 c | 60.7 ± 0.57 ab | 78.5 ± 1.75 b | 77.3 ± 1.25 ab |
DI × ZnO NP(100) | 0.83 ± 0.00 a | 9.8 ± 0.45 bc | 59.2 ± 1.23 b | 76.0 ± 0.64 bc | 75.9 ± 0.85 b |
Treatments | Fruit Length (cm) | No. of Fruits Plant−1 | Fruit Weight (g) | Fruit Yield (t ha−1) | WP (kg m−3) |
---|---|---|---|---|---|
Irrigation (I) | * | * | * | * | * |
FI | 14.2 ± 0.37 a | 17.4 ± 0.93 a | 67.7 ± 2.87 a | 51.3 ± 2.11 a | 7.1 ± 0.29 b |
DI | 12.9 ± 0.39 b | 16.0 ± 0.63 b | 55.3 ± 1.27 b | 42.6 ± 3.03 b | 7.8 ± 0.58 b |
ZnO NP(ppm) | * | * | * | * | * |
ZnO NP(0) | 12.8 ± 0.59 b | 13.5 ± 0.66 c | 54.7 ± 2.16 c | 34.7 ± 2.67 c | 5.3 ± 0.25 c |
ZnO NP(50) | 14.1 ± 0.47 a | 17.4 ± 0.63 b | 69.0 ± 4.29 a | 49.4 ± 1.84 b | 7.9 ± 0.43 b |
ZnO NP(100) | 13.7 ± 0.38 ab | 19.3 ± 0.81 a | 60.8 ± 0.95 b | 56.7 ± 1.85 a | 9.0 ± 0.30 a |
I × ZnO NP | ** | ** | * | * | * |
FI × ZnO NP(0) | 14.5 ± 0.56 ab | 13.3 ± 0.95 c | 58.7 ± 3.23 b | 43.3 ± 0.99 c | 5.9 ± 0.14 c |
FI × ZnO NP(50) | 15.2 ± 0.54 a | 18.2 ± 0.75 b | 82.1 ± 3.15 a | 50.1 ± 2.31 b | 6.9 ± 0.32 c |
FI × ZnO NP(100) | 12.8 ± 0.48 d | 20.8 ± 1.25 a | 62.5 ± 0.93 b | 60.3 ± 3.09 a | 8.3 ± 0.43 b |
DI × ZnO NP(0) | 11.2 ± 0.31 e | 13.7 ± 0.99 c | 50.7 ± 1.91 c | 26.1 ± 0.88 d | 4.6 ± 0.28 d |
DI × ZnO NP(50) | 13.0 ± 0.45 bd | 16.7 ± 0.99 b | 56.0 ± 1.83 bc | 48.6 ± 3.04 bc | 8.9 ± 0.56 ab |
DI × ZnO NP(100) | 14.5 ± 0.34 abc | 17.7 ± 0.56 b | 59.2 ± 1.43 b | 53.1 ± 0.53 b | 9.8 ± 0.10 a |
Treatments | N (mg g−1 DW) | P (mg g−1 DW) | K (mg g−1 DW) | Zn (mg g−1 DW) | Mn (mg g−1 DW) | Fe (mg g−1 DW) |
---|---|---|---|---|---|---|
Irrigation (I) | * | ns | * | * | * | * |
FI | 26.30 ± 1.6 a | 1.31 ± 0.10 a | 28.3 ± 0.81 a | 0.32 ± 0.03 a | 0.30 ± 0.01 a | 0.69 ± 0.03 a |
DI | 22.30 ± 1.6 b | 1.36 ± 0.14 a | 23.7 ± 1.16 b | 0.27 ± 0.03 b | 0.25 ± 0.01 b | 0.57 ± 0.02 b |
ZnO NP(ppm) | * | * | * | * | * | * |
ZnO NP(0) | 18.90 ± 1.3 b | 0.90 ± 0.01 c | 22.6 ± 1.30 c | 0.18 ± 0.01 c | 0.25 ± 0.01 c | 0.56 ± 0.02 c |
ZnO NP(50) | 26.20 ± 1.6 a | 1.42 ± 0.04 b | 26.6 ± 1.50 b | 0.35 ± 0.01 b | 0.29 ± 0.01 b | 0.68 ± 0.05 a |
ZnO NP(100) | 27.80 ± 1.2 a | 1.68 ± 0.07 a | 28.8 ± 0.46 a | 0.36 ± 0.01 a | 0.30 ± 0.01 a | 0.66 ± 0.00 b |
I × ZnO NP | ** | ** | * | ** | * | * |
FI × ZnO NP(0) | 21.30 ± 1.6 bc | 0.93 ± 0.02 c | 25.4 ± 0.67 c | 0.20 ± 0.00 d | 0.26 ± 0.00 c | 0.61 ± 0.01 c |
FI × ZnO NP(50) | 28.10 ± 2.6 a | 1.43 ± 0.02 b | 29.7 ± 1.04a | 0.38 ± 0.00 b | 0.32 ± 0.00 b | 0.80 ± 0.00 a |
FI × ZnO NP(100) | 29.60 ± 1.0 a | 1.57 ± 0.02 b | 29.8 ± 1.20 a | 0.39 ± 0.00 a | 0.33 ± 0.00 a | 0.67 ± 0.00 b |
DI × ZnO NP(0) | 16.60 ± 0.9 c | 0.89 ± 0.01 c | 19.8 ± 0.31 e | 0.15 ± 0.00 e | 0.23 ± 0.01 e | 0.51 ± 0.02 e |
DI × ZnO NP(50) | 24.40 ± 1.6 ab | 1.42 ± 0.08 b | 23.6 ± 0.21 d | 0.33 ± 0.01 c | 0.26 ± 0.01 d | 0.56 ± 0.00 d |
DI × ZnO NP(100) | 25.90 ± 1.6 ab | 1.78 ± 0.12 a | 27.8 ± 0.31 b | 0.33 ± 0.00 c | 0.27 ± 0.00 c | 0.65 ± 0.00 b |
Treatments | Leaf Blade Thickness (μm) | Midvein Length (μm) | Midvein Thickness (μm) | Vascular Bundle Length (μm) | Vascular Bundle Width (μm) |
---|---|---|---|---|---|
I × ZnO NP | * | * | * | * | * |
FI × ZnO NP(0) | 200 | 3625 | 3000 | 2050 | 750 |
FI × ZnO NP(50) | 175 | 3375 | 3000 | 1875 | 625 |
FI × ZnO NP(100) | 200 | 4000 | 3750 | 2400 | 875 |
DI × ZnO NP(0) | 175 | 2875 | 2500 | 1500 | 625 |
DI × ZnO NP(50) | 225 | 3250 | 3175 | 1750 | 750 |
DI × ZnO NP(100) | 250 | 3500 | 3375 | 1875 | 750 |
Treatments | Dimensions of Stem (μm) | Dimensions of Vascular Cylinder (µm) | Dimensions of Pith (µm) | Cortex Thickness (µm) | Vascular Cylinder Thickness (µm) | |||
---|---|---|---|---|---|---|---|---|
Length | Width | Length | Width | Length | Width | |||
I × ZnO NP | * | * | * | * | * | * | * | * |
FI × ZnO NP(0) | 5000 | 4875 | 3625 | 3375 | 2375 | 1750 | 625 | 625 |
FI × ZnO NP(50) | 5450 | 4750 | 4050 | 3325 | 3125 | 2350 | 700 | 500 |
FI × ZnO NP(100) | 6250 | 6125 | 4500 | 4250 | 3500 | 2750 | 925 | 550 |
DI × ZnO NP(0) | 3825 | 3750 | 2875 | 2450 | 2400 | 1750 | 575 | 375 |
DI × ZnO NP(50) | 4625 | 4375 | 3250 | 2875 | 2375 | 2250 | 750 | 400 |
DI × ZnO NP(100) | 6050 | 5200 | 4325 | 4000 | 3375 | 3125 | 900 | 500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semida, W.M.; Abdelkhalik, A.; Mohamed, G.F.; Abd El-Mageed, T.A.; Abd El-Mageed, S.A.; Rady, M.M.; Ali, E.F. Foliar Application of Zinc Oxide Nanoparticles Promotes Drought Stress Tolerance in Eggplant (Solanum melongena L.). Plants 2021, 10, 421. https://doi.org/10.3390/plants10020421
Semida WM, Abdelkhalik A, Mohamed GF, Abd El-Mageed TA, Abd El-Mageed SA, Rady MM, Ali EF. Foliar Application of Zinc Oxide Nanoparticles Promotes Drought Stress Tolerance in Eggplant (Solanum melongena L.). Plants. 2021; 10(2):421. https://doi.org/10.3390/plants10020421
Chicago/Turabian StyleSemida, Wael M., Abdelsattar Abdelkhalik, Gamal. F. Mohamed, Taia A. Abd El-Mageed, Shimaa A. Abd El-Mageed, Mostafa M. Rady, and Esmat F. Ali. 2021. "Foliar Application of Zinc Oxide Nanoparticles Promotes Drought Stress Tolerance in Eggplant (Solanum melongena L.)" Plants 10, no. 2: 421. https://doi.org/10.3390/plants10020421
APA StyleSemida, W. M., Abdelkhalik, A., Mohamed, G. F., Abd El-Mageed, T. A., Abd El-Mageed, S. A., Rady, M. M., & Ali, E. F. (2021). Foliar Application of Zinc Oxide Nanoparticles Promotes Drought Stress Tolerance in Eggplant (Solanum melongena L.). Plants, 10(2), 421. https://doi.org/10.3390/plants10020421