Genome-Wide Association Mapping Unravels the Genetic Control of Seed Vigor under Low-Temperature Conditions in Rapeseed (Brassica napus L.)
Abstract
:1. Introduction
2. Results
2.1. The Phenotypic Performance of Rapeseed Accessions to Low-Temperature Stress during Germination and Seedling Emergence Stages
2.2. Low-Temperature Stress Tolerance Indices during Germination and Seedling Emergence Stages
2.3. Association of SNP Markers and Low-Temperature Tolerance Indices by GWAS
2.4. Candidate Gene Prediction
3. Discussion
4. Materials and Methods
4.1. Seed Production
4.2. SNP Markers Identification
4.3. Germination Trials
4.4. Low-Temperature Tolerance Assessment
4.5. Statistical Analysis
4.6. Genome-Wide Association Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Carré, P.; Pouzet, A. Rapeseed market, worldwide and in Europe. Ocl 2014, 21, D102. [Google Scholar] [CrossRef]
- Hu, Q.; Hua, W.; Yin, Y.; Zhang, X.; Liu, L.; Shi, J.; Zhao, Y.; Qin, L.; Chen, C.; Wang, H. Rapeseed research and production in China. Crop J. 2017, 5, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Ji, Y.; Sun, L.; Xu, X.; Fan, D.; Zhong, H.; Liang, Z.; Gunther, F. Changes in production potentials of rapeseed in the Yangtze River Basin of China under climate change: A multi-model ensemble approach. J. Geogr. Sci. 2018, 28, 1700–1714. [Google Scholar] [CrossRef] [Green Version]
- Trischuk, R.G.; Schilling, B.S.; Low, N.H.; Gray, G.R.; Gusta, L.V. Cold acclimation, de-acclimation and re-acclimation of spring canola, winter canola and winter wheat: The role of carbohydrates, cold-induced stress proteins and vernalization. Environ. Exp. Bot. 2014, 106, 156–163. [Google Scholar] [CrossRef]
- Wendy, W.M.; Stavang, J.A.; Olsen, J.E.; Rognli, O.A. The relationship between vernalization saturation and the maintenance of freezing tolerance in winter rapeseed. Environ. Exp. Bot. 2014, 106, 164–173. [Google Scholar] [CrossRef]
- Zheng, G.-H.; Wilen, R.W.; Slinkard, A.E.; Gusta, L.V. Enhancement of canola seed germination and seedling emergence at low temperature by priming. Crop Sci. 1994, 34, 1589–1593. [Google Scholar] [CrossRef]
- Kondra, Z.P.; Campbell, D.C.; King, J.R. Temperature effects on germination of rapeseed (Brassica napus L. and B. campestris L.). Can. J. Plant Sci. 1983, 63, 1063–1065. [Google Scholar] [CrossRef] [Green Version]
- Ventura, L.; Dona, M.; Macovei, A.; Carbonera, D.; Buttafava, A.; Mondoni, A.; Rossi, G.; Balestrazzi, A. Understanding the molecular pathways associated with seed vigor. Plant Physiol. Biochem. 2012, 60, 196–206. [Google Scholar] [CrossRef]
- Tiryaki, I.; Andrews, D.J. Germination and seedling cold tolerance in sorghum: I. Evaluation of rapid screening methods. Agron. J. 2001, 93, 1386–1391. [Google Scholar] [CrossRef]
- Jennings, P.; Saltveit, M.E. Temperature effects on imbibition and germination of cucumber (Cucumis sativus) seeds. J. Am. Soc. Hortic. Sci. 1994, 119, 464–467. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.; Garcia, Q. Reactive oxygen species and seed germination. Biologia 2013, 68, 351–357. [Google Scholar] [CrossRef]
- Oracz, K.; Karpinski, S. Phytohormones signaling pathways and ROS involvement in seed germination. Front. Plant Sci. 2016, 7, 864. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Luo, T.; Liu, J.; Xian, M.; Yuan, J.; Hu, L.; Xu, Z. Evaluation of the low-temperature tolerance of rapeseed genotypes at the germination and seedling emergence stages. Crop Sci. 2019, 59, 1709–1717. [Google Scholar] [CrossRef]
- Russo, V.M.; Bruton, B.D.; Sams, C.E. Classification of temperature response in germination of Brassicas. Ind. Crops Prod. 2010, 31, 48–51. [Google Scholar] [CrossRef]
- Luo, T.; Xian, M.; Zhang, C.; Zhang, C.; Hu, L.; Xu, Z. Associating transcriptional regulation for rapid germination of rapeseed (Brassica napus L.) under low temperature stress through weighted gene co-expression network analysis. Sci. Rep. 2019, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Nonogaki, H.; Bassel, G.W.; Bewley, J.D. Germination-Still a mystery. Plant Sci. 2010, 179, 574–581. [Google Scholar] [CrossRef]
- Dai, F.; Huang, Y.; Zhou, M.; Zhang, G. The influence of cold acclimation on antioxidative enzymes and antioxidants in sensitive and tolerant barley cultivars. Biol. Plant. 2009, 53, 257–262. [Google Scholar] [CrossRef]
- Jaleel, C.A.; Riadh, K.; Gopi, R.; Manivannan, P.; Ine, J.; Al-Juburi, H.J.; Chang-Xing, Z.; Hong-Bo, S.; Panneerselvam, R. Antioxidant defense responses: Physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant. 2009, 31, 427–436. [Google Scholar] [CrossRef]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Raman, H.; Raman, R.; Coombes, N.; Song, J.; Prangnell, R.; Bandaranayake, C.; Tahira, R.; Sundaramoorthi, V.; Killian, A.; Meng, J.; et al. Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ. 2016, 39, 1228–1239. [Google Scholar] [CrossRef]
- Wang, N.; Chen, B.; Xu, K.; Gao, G.; Li, F.; Qiao, J.; Yan, G.; Li, J.; Li, H.; Wu, X. Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front. Plant Sci. 2016, 7, 338. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.; Guan, M.; Zhang, Z.; Zhang, Q.; Cui, Y.; Chen, H.; Liu, W.; Jan, H.U.; Voss-Fels, K.P.; Werner, C.R.; et al. GWAS and co-expression network combination uncovers multigenes with close linkage effects on the oleic acid content accumulation in Brassica napus. BMC Genom. 2020, 21, 320. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Wu, D.; Wei, D.; Fu, Y.; Cui, Y.; Dong, H.; Tan, C.; Qian, W. GWAS, QTL mapping and gene expression analyses in Brassica napus reveal genetic control of branching morphogenesis. Sci. Rep. 2017, 7, 15971. [Google Scholar] [CrossRef] [Green Version]
- Gajardo, H.A.; Wittkop, B.; Soto-Cerda, B.; Higgins, E.E.; Parkin, I.A.P.; Snowdon, R.J.; Federico, M.L.; Iniguez-Luy, F.L. Association mapping of seed quality traits in Brassica napus L. using GWAS and candidate QTL approaches. Mol. Breed. 2015, 35, 1–19. [Google Scholar] [CrossRef]
- Zhang, J.; Mason, A.S.; Wu, J.; Liu, S.; Zhang, X.; Luo, T.; Redden, R.; Batley, J.; Hu, L.; Yan, G. Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Front. Plant Sci. 2015, 6, 1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, H.; Chen, L.; Guo, J.; Li, Q.; Wen, J.; Yi, B.; Ma, C.; Tu, J.; Fu, T.; Shen, J. Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed (Brassica napus L.). Front. Plant Sci. 2017, 8, 593. [Google Scholar] [CrossRef]
- Hatzig, S.V.; Frisch, M.; Breuer, F.; Nesi, N.; Ducournau, S.; Wagner, M.H.; Leckband, G.; Abbadi, A.; Snowdon, R.J. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front. Plant Sci. 2015, 6, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, F.; Wang, Z.; Baskin, C.C.; Baskin, J.M.; Ye, R.; Sun, H.; Zhang, Y.; Ye, X.; Liu, G.; Yang, X.; et al. Seed germination responses to seasonal temperature and drought stress are species-specific but not related to seed size in a desert steppe: Implications for effect of climate change on community structure. Ecol. Evol. 2019, 9, 2149–2159. [Google Scholar] [CrossRef] [Green Version]
- Wijewardana, C.; Henry, W.B.; Hock, M.W.; Reddy, K.R.; Navabi, A. Growth and physiological trait variation among corn hybrids for cold tolerance. Can. J. Plant Sci. 2016, 96, 639–656. [Google Scholar] [CrossRef] [Green Version]
- Mwadzingeni, L.; Shimelis, H.; Tesfay, S.; Tsilo, T.J. Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses. Front. Plant Sci. 2016, 7, 1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douma, J.C.; Aerts, R.; Witte, J.P.M.; Bekker, R.M.; Kunzmann, D.; Metselaar, K.; van Bodegom, P.M. A combination of functionally different plant traits provides a means to quantitatively predict a broad range of species assemblages in NW Europe. Ecography 2012, 35, 364–373. [Google Scholar] [CrossRef]
- Tekrony, D.M.; Egli, D.B. Relationship of seed vigor to crop yield: A review. Crop Sci. 1991, 31, 816–822. [Google Scholar] [CrossRef]
- Bettey, M.; Finch-Savage, W.E.; King, G.J.; Lynn, J.R. Quantitative genetic analysis of seed vigour and pre-emergence seedling growth traits in Brassica oleracea. New Phytol. 2000, 148, 277–286. [Google Scholar] [CrossRef]
- Dutt, M.; Geneve, R. Time to radicle protrusion does not correlate with early seedling growth in individual seeds of impatiens and petunia. J. Am. Soc. Hortic. Sci. 2007, 132, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Rajjou, L.; Duval, M.; Gallardo, K.; Catusse, J.; Bally, J.; Job, C.; Job, D. Seed germination and vigor. Annu. Rev. Plant Biol. 2012, 63, 507–533. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.; Liao, F.; Hou, L.; Wang, J.; Wei, L.; Jian, H.; Xu, X.; Li, J.; Liu, L. Genome-wide association analysis of seed germination percentage and germination index in Brassica napus L. under salt and drought stresses. Euphytica 2017, 213, 40. [Google Scholar] [CrossRef]
- Yano, K.; Morinaka, Y.; Wang, F.; Huang, P.; Takehara, S.; Hirai, T.; Ito, A.; Koketsu, E.; Kawamura, M.; Kotake, K. GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proc. Natl. Acad. Sci. USA 2019, 116, 21262–21267. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Wei, Y.; Qian, J.; Gao, Y.; Wen, J.; Yi, B.; Ma, C.; Tu, J.; Fu, T.; Shen, J. Association mapping of salt tolerance traits at germination stage of rapeseed (Brassica napus L.). Euphytica 2018, 214, 190. [Google Scholar] [CrossRef]
- Kalemba, E.; Pukacka, S. Possible roles of LEA proteins and sHSPs in seed protection: A short review. Biol. Lett. 2007, 44, 3–16. [Google Scholar]
- Bojorquez-Velazquez, E.; Barrera-Pacheco, A.; Espitia-Rangel, E.; Herrera-Estrella, A.; Barba de la Rosa, A.P. Protein analysis reveals differential accumulation of late embryogenesis abundant and storage proteins in seeds of wild and cultivated amaranth species. BMC Plant Biol. 2019, 19, 59. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Liu, H.; Wang, W.; Chen, S.; Hu, X.; Li, C. Proteomic analysis of seed viability in maize. Acta Physiol. Plant. 2011, 33, 181–191. [Google Scholar] [CrossRef]
- Galland, M.; Rajjou, L. Regulation of mRNA translation controls seed germination and is critical for seedling vigor. Front. Plant Sci. 2015, 405–407. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Wang, S.; Fu, Y.B.; Wang, H. Arabidopsis seed stored mRNAs are degraded constantly over aging time, as revealed by new quantification methods. Front. Plant Sci. 2019, 10, 1764. [Google Scholar] [CrossRef]
- Waterworth, W.M.; Masnavi, G.; Bhardwaj, R.M.; Jiang, Q.; Bray, C.M.; West, C.E. A plant DNA ligase is an important determinant of seed longevity. Plant J. 2010, 63, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.R.; Bonneau, F.; Hentschel, J.; Conti, E. Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Proc. Natl. Acad. Sci. USA 2010, 107, 12139–12144. [Google Scholar] [CrossRef] [Green Version]
- Lange, H.; Sement, F.M.; Gagliardi, D. MTR4, a putative RNA helicase and exosome co-factor, is required for proper rRNA biogenesis and development in Arabidopsis thaliana. Plant J. 2011, 68, 51–63. [Google Scholar] [CrossRef]
- Bollenbach, T.J.; Lange, H.; Gutierrez, R.; Erhardt, M.; Stern, D.B.; Gagliardi, D. RNR1, a 3′–5′ exoribonuclease belonging to the RNR superfamily, catalyzes 3′ maturation of chloroplast ribosomal RNAs in Arabidopsis thaliana. Nucleic Acids Res. 2005, 33, 2751–2763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.Y.; Park, S.W.; Chung, Y.S.; Chung, C.H.; Kim, J.I.; Lee, J.H. Molecular cloning of low-temperature-inducible ribosomal proteins from soybean. J. Exp. Bot. 2004, 55, 1153–1155. [Google Scholar] [CrossRef]
- Park, S.G.; Ewalt, K.L.; Kim, S. Functional expansion of aminoacyl-tRNA synthetases and their interacting factors: New perspectives on housekeepers. Trends Biochem. Sci. 2005, 30, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Peviani, A.; van der Horst, S.; Gamm, M.; Snel, B.; Bentsink, L.; Hanson, J. Extensive translational regulation during seed germination revealed by polysomal profiling. New Phytol. 2017, 214, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Sajeev, N.; Bai, B.; Bentsink, L. Seeds: A unique system to study translational regulation. Trends Plant Sci. 2019, 24, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Ademark, P.; de Vries, R.P.; Hägglund, P.; Stålbrand, H.; Visser, J. Cloning and characterization of Aspergillus niger genes encoding an α-galactosidase and a β-mannosidase involved in galactomannan degradation. Eur. J. Biochem. 2001, 268, 2982–2990. [Google Scholar] [CrossRef] [PubMed]
- Mo, B.; Bewley, J.D. The relationship between β-mannosidase and endo-β-mannanase activities in tomato seeds during and following germination: A comparison of seed populations and individual seeds. J. Exp. Bot. 2003, 54, 2503–2510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karmous, I.; Chaoui, A.; Jaouani, K.; Sheehan, D.; el Ferjani, E.; Scoccianti, V.; Crinelli, R. Role of the ubiquitin-proteasome pathway and some peptidases during seed germination and copper stress in bean cotyledons. Plant Physiol. Biochem. 2014, 76, 77–85. [Google Scholar] [CrossRef]
- Sobota, J.M.; Imlay, J.A. Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc. Natl. Acad. Sci. USA 2011, 108, 5402–5407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troncoso-Ponce, M.A.; Garcés, R.; Martínez-Force, E. Glycolytic enzymatic activities in developing seeds involved in the differences between standard and low oil content sunflowers (Helianthus annuus L.). Plant Physiol. Biochem. 2010, 48, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Park, Y.; Francs-Small, C.C.D.; Han, J.H.; Small, I.; Kang, H. The mitochondrial pentatricopeptide repeat protein PPR19 is involved in the stabilization of NADH dehydrogenase 1 transcripts and is crucial for mitochondrial function and Arabidopsis thaliana development. New Phytol. 2017, 215, 202–216. [Google Scholar] [CrossRef] [Green Version]
- Lurin, C.; Andres, C.; Aubourg, S.; Bellaoui, M.; Bitton, F.; Bruyere, C.; Caboche, M.; Debast, C.; Gualberto, J.; Hoffmann, B.; et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 2004, 16, 2089–2103. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.S.; Elozeiri, A.A. Metabolic processes during seed germination. Adv. Seed Biol. 2017, 141–166. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.P.J.; Prasad, S.R.; Banerjee, R.; Thammineni, C. Seed birth to death: Dual functions of reactive oxygen species in seed physiology. Ann. Bot. 2015, 116, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Zhao, D.-X.; Miao, Q.; Xue, T.-T.; Li, X.-Z.; Zheng, C.-C. Arabidopsis thaliana metallothionein, AtMT2a, mediates ROS balance during oxidative stress. J. Plant Biol. 2009, 52, 585–592. [Google Scholar] [CrossRef]
- Vijayakumar, H.; Thamilarasan, S.K.; Shanmugam, A.; Natarajan, S.; Jung, H.J.; Park, J.I.; Kim, H.; Chung, M.Y.; Nou, I.S. Glutathione transferases superfamily: Cold-inducible expression of distinct GST genes in Brassica oleracea. Int. J. Mol. Sci. 2016, 17, 1211. [Google Scholar] [CrossRef] [Green Version]
- Holmgren, A. Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid. Redox Signal. 2000, 2, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Erpen, L.; Devi, H.S.; Grosser, J.W.; Dutt, M. Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tissue Organ Cult. 2017, 132, 1–25. [Google Scholar] [CrossRef]
- Rehman, S.; Mahmood, T. Functional role of DREB and ERF transcription factors: Regulating stress-responsive network in plants. Acta Physiol. Plant. 2015, 37. [Google Scholar] [CrossRef]
- Linkies, A.; Leubner-Metzger, G. Beyond gibberellins and abscisic acid: How ethylene and jasmonates control seed germination. Plant Cell Rep. 2012, 31, 253–270. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Gacio, M.D.C.; Matilla, A.J. The last step of the ethylene biosynthesis pathway in turnip tops (Brassica rapa) seeds: Alterations related to development and germination and its inhibition during desiccation. Physiol. Plant. 2001, 112, 273–279. [Google Scholar] [CrossRef]
- Nascimento, F.X.; Rossi, M.J.; Glick, B.R. Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant-bacterial interactions. Front. Plant Sci. 2018, 9, 114. [Google Scholar] [CrossRef]
- Silva, N.C.Q.; de Souza, G.A.; Pimenta, T.M.; Brito, F.A.L.; Picoli, E.A.T.; Zsogon, A.; Ribeiro, D.M. Salt stress inhibits germination of Stylosanthes humilis seeds through abscisic acid accumulation and associated changes in ethylene production. Plant Physiol. Biochem. 2018, 130, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Chalhoub, B.; Denoeud, F.; Liu, S.; Parkin, I.A.; Tang, H.; Wang, X.; Chiquet, J.; Belcram, H.; Tong, C.; Samans, B. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 2014, 345, 950–953. [Google Scholar] [CrossRef] [Green Version]
- Nagaharu, U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot 1935, 7, 389–452. [Google Scholar]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nykiforuk, C.L.; Johnson-Flanagan, A.M. Germination and early seedling development under low temperature in canola. Crop Sci. 1994, 34, 1047–1054. [Google Scholar] [CrossRef]
- Acharya, S.N.; Dueck, J.; Downey, R.K. Selection and heritability studies on canola/rapeseed for low temperature germination. Can. J. Plant Sci. 1983, 63, 377–384. [Google Scholar] [CrossRef]
- Luo, T.; Xian, M.; Khan, M.N.; Hu, L.; Xu, Z. Estimation of base temperature for germination of rapeseed (Brassica napus L.) using different models. Int. J. Agric. Biol. 2018, 20, 524–530. [Google Scholar] [CrossRef]
- Bahrami, F.; Arzani, A.; Karimi, V. Evaluation of yield-based drought tolerance indices for screening safflower genotypes. Agron. J. 2014, 106, 1219. [Google Scholar] [CrossRef] [Green Version]
- Pirnajmedin, F.; Majidi, M.M.; Gheysari, M. Root and physiological characteristics associated with drought tolerance in Iranian tall fescue. Euphytica 2014, 202, 141–155. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Ftatistical Fomputing: Vienna, Austria, 2018. [Google Scholar]
- Ene, C.O.; Ogbonna, P.E.; Agbo, C.U.; Chukwudi, U.P. Studies of phenotypic and genotypic variation in sixteen cucumber genotypes. Chil. J. Agric. Res. 2016, 76, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widmer, C.; Lippert, C.; Weissbrod, O.; Fusi, N.; Kadie, C.; Davidson, R.; Listgarten, J.; Heckerman, D. Further improvements to linear mixed models for genome-wide association studies. Sci. Rep. 2014, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-X.; Yeung, J.M.; Cherny, S.S.; Sham, P.C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 2012, 131, 747–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swarbreck, D.; Wilks, C.; Lamesch, P.; Berardini, T.Z.; Garcia-Hernandez, M.; Foerster, H.; Li, D.; Meyer, T.; Muller, R.; Ploetz, L. The Arabidopsis Information Resource (TAIR): Gene structure and function annotation. Nucleic Acids Res. 2007, 36, D1009–D1014. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Zhao, H.; Lu, S.; Yu, L.; Zhang, G.; Zhang, Y.; Yang, Q.-Y.; Zhou, Y.; Wang, X.; Ma, W. Genome-and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Mol. Plant 2020. [Google Scholar] [CrossRef] [PubMed]
STI | Mean | Genotypic Variance | Environmental Variance | GCV | h2 |
---|---|---|---|---|---|
MGT | 1.11 | 0.12 | 0.005 | 0.32 | 0.96 |
GI | 1.02 | 0.12 | 0.005 | 0.34 | 0.96 |
PG | 1.00 | 0.02 | 0.002 | 0.14 | 0.92 |
MET | 1.04 | 0.06 | 0.002 | 0.23 | 0.97 |
PE | 1.01 | 0.25 | 0.011 | 0.50 | 0.96 |
DWS | 1.04 | 0.24 | 0.008 | 0.47 | 0.97 |
DWR | 1.01 | 0.11 | 0.021 | 0.33 | 0.84 |
TDW | 1.03 | 0.18 | 0.006 | 0.42 | 0.97 |
RL | 1.01 | 0.08 | 0.010 | 0.28 | 0.88 |
SL | 1.06 | 0.37 | 0.013 | 0.58 | 0.97 |
TL | 1.01 | 0.06 | 0.008 | 0.23 | 0.88 |
SVI | 1.01 | 0.08 | 0.009 | 0.28 | 0.90 |
RGR | 1.01 | 0.01 | 0.011 | 0.10 | 0.89 |
Stress Tolerance Index | Standardized Factor Loadings of Principal Components | ||||
---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | |
MGT | −0.01 | 0.89 | −0.13 | 0.12 | −0.06 |
GI | 0.02 | 0.95 | −0.11 | 0.13 | −0.06 |
PG | 0.07 | 0.80 | 0.00 | 0.11 | −0.03 |
MET | −0.03 | 0.05 | −0.08 | 0.91 | 0.03 |
PE | −0.01 | 0.31 | 0.08 | 0.82 | −0.02 |
DWS | −0.04 | −0.16 | 0.92 | 0.04 | 0.21 |
DWR | −0.02 | 0.05 | 0.89 | −0.07 | −0.09 |
TDW | −0.04 | −0.13 | 0.96 | 0.02 | 0.16 |
RL | 0.98 | 0.06 | −0.07 | −0.01 | −0.16 |
SL | −0.01 | −0.12 | 0.19 | 0.01 | 0.97 |
TL | 0.98 | 0.02 | −0.01 | −0.01 | 0.17 |
SVI | 0.89 | 0.38 | 0 | 0.03 | 0.13 |
RGR | 0.94 | −0.26 | −0.04 | −0.05 | −0.15 |
SS loadings | 3.59 | 2.72 | 2.64 | 1.56 | 1.12 |
Proportion Explained | 0.31 | 0.23 | 0.23 | 0.13 | 0.10 |
Trait | SNP | Distance | Candidate Gene | Arabidopsis | Annotation |
---|---|---|---|---|---|
PC1 | BnvaC0224560718 | 12.46 | BnaC02g26760D | AT4G03000 | E3 ubiquitin-protein ligase |
PC1 | 16.84 | BnaC02g26770D | AT4G05230 | Ubiquitin-like superfamily protein | |
PC1 | BnvaC0423272220 | −91.32 | BnaC04g22040D | AT3G60690 | SAUR-like auxin-responsive protein family |
PC1 | 11.58 | BnaC04g22140D | AT3G60330 | ATPase plasma membrane-type | |
PC1 | BnvaC0510384764 | −10.32 | BnaC05g16590D | AT1G21350 | Thioredoxin superfamily protein |
PC1 | −9.44 | BnaC05g16600D | AT1G21350 | Thioredoxin superfamily protein | |
PC1 | BnvaA0808169044 | −25.69 | BnaA08g08250D | AT4G17380 | DNA mismatch repair protein MSH4 |
PC1 | −14.58 | BnaA08g08260D | AT4G17380 | DNA mismatch repair protein MSH4 | |
PC1 | BnvaA0205208795 | 77.15 | BnaA02g10340D | AT5G53290 | Ethylene-responsive transcription factor CRF3 |
PC1 | −128.01 | BnaA02g10070D | AT5G53820 | Late embryogenesis abundant protein | |
PC1 | BnvaA0301673228 | −1.43 | BnaA03g03460D | AT2G37410 | Mitochondrial import inner membrane translocase subunit |
PC1 | 15.69 | BnaA03g03500D | AT1G05890 | E3 ubiquitin-protein ligase ARI5 | |
PC1 | 29.04 | BnaA03g03560D | AT5G11770 | NADH dehydrogenase [ubiquinone] iron-sulfur protein | |
PC1 | 90.01 | BnaA03g03740D | AT5G12020 | 17.6 kDa class II heat shock protein | |
PC1 | BnvaA0604099845 | −45.85 | BnaA06g07530D | AT1G13195 | RING/U-box superfamily protein |
PC1 | −44.29 | BnaA06g07540D | AT1G13190 | RNA-binding (RRM/RBD/RNP motifs) family protein | |
PC1 | −43.08 | BnaA06g07550D | AT1G13190 | RNA-binding (RRM/RBD/RNP motifs) family protein | |
PC1 | 6.61 | BnaA06g07680D | AT1G13040 | Pentatricopeptide repeat-containing protein | |
PC2 | BnvaA0505105521 | 114.27 | BnaA05g09450D | AT2G34390 | Aquaporin NIP2-1 |
PC2 | 119.64 | BnaA05g09470D | AT2G34390 | Aquaporin NIP2-1 | |
PC2 | BnvaA0210908350 | 102.81 | BnaA02g18190D | ATCG01250 | NADH-Ubiquinone/plastoquinone (complex I) protein |
PC2 | BnvaA0906149025 | −35.34 | BnaA09g11790D | AT1G63970 | 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase |
PC2 | BnvaC0540057152 | −46.13 | BnaC05g42830D | AT5G04130 | DNA gyrase subunit |
PC2 | −20.54 | BnaC05g42910D | AT3G10185 | Gibberellin-regulated protein | |
PC2 | BnvaC0632914309 | −24.57 | BnaC06g32860D | AT1G71850 | Ubiquitin carboxyl-terminal hydrolase family protein |
PC2 | BnvaC0206243256 | −108.19 | BnaC02g10620D | AT5G58670 | Phosphoinositide-specific Phospholipase C |
PC2 | −34.26 | BnaC02g10680D | AT5G58420 | 40S ribosomal protein S4 | |
PC2 | −1.97 | BnaC02g10720D | AT5G58390 | Peroxidase | |
PC2 | 7.7 | BnaC02g10730D | AT5G07070 | CBL-interacting serine/threonine-protein kinase | |
PC2 | 16.96 | BnaC02g10780D | AT5G58330 | Malate dehydrogenese | |
PC2 | 28.27 | BnaC02g10830D | AT5G58290 | 26S protease regulatory subunit | |
PC3 | BnvaA0320140457 | −81.91 | BnaA03g40170D | AT5G61410 | D-ribulose-5-phosphate-3-epimerase |
PC3 | −42.95 | BnaA03g40210D | AT5G61450 | 3-Phosphoglycerate kinase | |
PC3 | 4.76 | BnaA03g40290D | AT5G61520 | Sugar transporter | |
PC3 | 45.08 | BnaA03g40380D | AT5G61600 | Ethylene-responsive transcription factor ERF104 | |
PC3 | 136.63 | BnaA03g40560D | AT3G49700 | 1-aminocyclopropane-1-carboxylate synthase | |
PC3 | BnvaA0903085508 | −4.61 | BnaA09g06240D | AT5G62810 | Peroxisomal membrane protein PEX14 |
PC3 | 0 | BnaA09g06250D | AT5G62850 | Bidirectional sugar transporter SWEET5 | |
PC3 | BnvaA0928011138 | −119.96 | BnaA09g39340D | AT3G61620 | 3′-5′-exoribonuclease family protein |
PC3 | −111.25 | BnaA09g39350D | AT3G61630 | Ethylene-responsive transcription factor CRF6 | |
PC3 | −78.77 | BnaA09g39420D | AT3G61690 | Nucleotidyltransferases | |
PC3 | −70.32 | BnaA09g39430D | AT3G61720 | Ca2+ dependent phosphoribosyltransferase family protein | |
PC3 | 13.06 | BnaA09g39530D | AT3G61960 | Protein kinase superfamily protein | |
PC3 | 102.48 | BnaA09g39740D | AT3G62190 | Chaperone DnaJ-domain superfamily protein | |
PC3 | 104.85 | BnaA09g39750D | AT3G62200 | Putative endonuclease or glycosyl hydrolase | |
PC3 | 117.73 | BnaA09g39790D | AT3G62310 | RNA helicase family protein | |
PC3 | 148.6 | BnaA09g39910D | AT3G62470 | Pentatricopeptide repeat-containing protein | |
PC3 | BnvaC0132342151 | −5.7 | BnaC01g33060D | AT3G19830 | Calcium-dependent lipid-binding family protein |
PC3 | BnvaC0320454520 | 0 | BnaC03g33580D | AT3G03960 | T-complex protein |
PC3 | 2.46 | BnaC03g33590D | AT3G04050 | Pyruvate kinase family protein | |
PC4 | BnvaA0121360636 | −81.3 | BnaA01g31290D | AT3G11020 | Dehydration-responsive element-binding protein 2B |
PC4 | 0 | BnaA01g31380D | AT3G10890 | Mannan endo-1,4-beta-mannosidase | |
PC4 | 56.35 | BnaA01g31510D | AT3G10680 | HSP20-like chaperones superfamily protein | |
PC5 | BnvaA0902144599 | −107.17 | BnaA09g04070D | AT5G26830 | Threonine--tRNA ligase |
PC5 | −61.54 | BnaA09g04190D | AT5G26742 | DEAD-box ATP-dependent RNA helicase | |
PC5 | −7.47 | BnaA09g04350D | AT5G26200 | Mitochondrial substrate carrier family protein | |
PC5 | 73.64 | BnaA09g04510D | AT5G25620 | Indole-3-pyruvate monooxygenase | |
PC5 | 84.62 | BnaA09g04520D | AT5G25610 | Dehydration-responsive protein RD22 | |
PC5 | BnvaA0500524170 | −16.56 | BnaA05g00880D | AT3G60980 | Pentatricopeptide repeat-containing protein |
PC5 | −13.64 | BnaA05g00890D | AT3G60960 | Pentatricopeptide repeat-containing protein | |
PC5 | BnvaC0634748907 | −21.86 | BnaC06g36100D | AT1G75310 | auxin-like 1 protein |
PC5 | 142.14 | BnaC06g36290D | AT1G75580 | SAUR-like auxin-responsive protein family |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, T.; Zhang, Y.; Zhang, C.; Nelson, M.N.; Yuan, J.; Guo, L.; Xu, Z. Genome-Wide Association Mapping Unravels the Genetic Control of Seed Vigor under Low-Temperature Conditions in Rapeseed (Brassica napus L.). Plants 2021, 10, 426. https://doi.org/10.3390/plants10030426
Luo T, Zhang Y, Zhang C, Nelson MN, Yuan J, Guo L, Xu Z. Genome-Wide Association Mapping Unravels the Genetic Control of Seed Vigor under Low-Temperature Conditions in Rapeseed (Brassica napus L.). Plants. 2021; 10(3):426. https://doi.org/10.3390/plants10030426
Chicago/Turabian StyleLuo, Tao, Yuting Zhang, Chunni Zhang, Matthew N. Nelson, Jinzhan Yuan, Liang Guo, and Zhenghua Xu. 2021. "Genome-Wide Association Mapping Unravels the Genetic Control of Seed Vigor under Low-Temperature Conditions in Rapeseed (Brassica napus L.)" Plants 10, no. 3: 426. https://doi.org/10.3390/plants10030426
APA StyleLuo, T., Zhang, Y., Zhang, C., Nelson, M. N., Yuan, J., Guo, L., & Xu, Z. (2021). Genome-Wide Association Mapping Unravels the Genetic Control of Seed Vigor under Low-Temperature Conditions in Rapeseed (Brassica napus L.). Plants, 10(3), 426. https://doi.org/10.3390/plants10030426