Identification of QTLs for Salt Tolerance at the Germination and Seedling Stages in Rice
Abstract
:1. Introduction
2. Results
2.1. Responses of ACC9 and ZS97 to Salt Stress
2.2. Phenotype Variation in BIL Population under Salt Stress
2.3. QTLs Identified for Germination Traits
2.4. QTLs Identified for Morphological Traits at the Seedling Stages
2.5. Common QTLs Identified under Salt Stress
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Germination Evaluation of the Parents and BIL Population
4.3. Evaluation of Seedling Performance of the Parents and BIL Population
4.4. Linkage Map Construction and QTL Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohanty, S.; Wassmann, R.; Nelson, A.; Moya, P.; Jagadish, S. Rice and climate change: Significance for food security and vulnerability. Int. Rice Res. Inst. 2013, 14, 1–14. [Google Scholar]
- Dahanayaka, B.; Gimhani, D.; Kottearachchi, N.; Samarasighe, W. QTL mapping for salinity tolerance using an elite rice (Oryza sativa) breeding population. SABRAO J. Breed. Genet. 2017, 49, 123–134. [Google Scholar]
- Szabolcs, I. Soils and salinization. In Handbook of Plant and Crop Stress; Pessarakali, M., Ed.; Marcel Dekker: New York, NY, USA, 1994; pp. 3–11. [Google Scholar]
- Zeigler, R.S.; Barclay, A. The relevance of rice. Rice 2008, 1, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Munns, R. Genes and salt tolerance: Bringing them together. New Phytol. 2005, 167, 645–663. [Google Scholar] [CrossRef] [PubMed]
- Heenan, D.; Lewin, L.; McCaffery, D. Salinity tolerance in rice varieties at different growth stages. Aust. J. Exp. Agric. 1988, 28, 343–349. [Google Scholar] [CrossRef]
- Roy, S.J.; Negrão, S.; Tester, M. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014, 26, 115–124. [Google Scholar] [CrossRef]
- Rahman, M.A.; Bimpong, I.K.; Bizimana, J.B.; Pascual, E.D.; Arceta, M.; Swamy, B.P.M.; Diaw, F.; Rahman, M.S.; Singh, R.K. Mapping QTLs using a novel source of salinity tolerance from Hasawi and their interaction with environments in rice. Rice 2017, 10, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.A.; Thomson, M.J.; De Ocampo, M.; Egdane, J.A.; Salam, M.A.; Shah-E-Alam, M.; Ismail, A.M. Assessing trait contribution and mapping novel QTL for salinity tolerance using the Bangladeshi rice landrace Capsule. Rice 2019, 12, 63. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Flowers, T. The Physiology and molecular biology of the effect of salinity on rice. In Handbook of Plant and Crop Stress; Taylor and Francis: Boca Raton, FL, USA, 2010; pp. 910–942. [Google Scholar]
- Hossain, H.; Rahman, M.A.; Alam, M.S.; Singh, R.K. Mapping of quantitative trait loci associated with reproductive-stage salt tolerance in rice. J. Agron. Crop Sci. 2015, 201, 17–31. [Google Scholar] [CrossRef]
- Ghomi, K.; Rabiei, B.; Sabouri, H.; Sabouri, A. Mapping QTLs for traits related to salinity tolerance at seedling stage of rice (Oryza sativa L.): An agrigenomics study of an Iranian rice population. OMICS J. Integr. Biol. 2013, 17, 242–251. [Google Scholar] [CrossRef]
- Bonilla, P.; Dvorak, J.; Mackell, D.; Deal, K.; Gregorio, G. RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp. Agric. Sci. 2002, 85, 68–72. [Google Scholar]
- Batayeva, D.; Labaco, B.; Ye, C.; Li, X.; Usenbekov, B.; Rysbekova, A.; Dyuskalieva, G.; Vergara, G.; Reinke, R.; Leung, H. Genome-wide association study of seedling stage salinity tolerance in temperate japonica rice germplasm. BMC Genet. 2018, 19, 2. [Google Scholar] [CrossRef] [Green Version]
- Lekklar, C.; Pongpanich, M.; Suriya-arunroj, D.; Chinpongpanich, A.; Tsai, H.; Comai, L.; Chadchawan, S.; Buaboocha, T. Genome-wide association study for salinity tolerance at the flowering stage in a panel of rice accessions from Thailand. BMC Genom. 2019, 20, 76. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Chen, K.; Zhao, X.; Wang, X.; Shen, C.; Zhu, Y.; Dai, M.; Qiu, X.; Yang, R.; Xing, D.; et al. Identification of genes for salt tolerance and yield-related traits in rice plants grown hydroponically and under saline field conditions by genome-wide association study. Rice 2019, 12, 88. [Google Scholar] [CrossRef]
- Rohila, J.S.; Edwards, J.D.; Tran, G.D.; Jackson, A.K.; McClung, A.M. Identification of superior alleles for seedling stage salt tolerance in the USDA rice mini-core collection. Plants 2019, 8, 472. [Google Scholar] [CrossRef] [Green Version]
- Naveed, S.A.; Zhang, F.; Zhang, J.; Zheng, T.-Q.; Meng, L.-J.; Pang, Y.-L.; Xu, J.-L.; Li, Z.-K. Identification of QTN and candidate genes for salinity tolerance at the germination and seedling stages in rice by genome-wide association analyses. Sci. Rep. 2018, 8, 6505. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Zhao, W.; Tong, W.; He, Q.; Yoon, M.Y.; Li, F.P.; Choi, B.; Heo, E.B.; Kim, K.W.; Park, Y.J. A genome-wide association study reveals candidate genes related to salt rolerance in rice (Oryza sativa) at the germination stage. Int. J. Mol. Sci. 2018, 19, 3145. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.H.; Gao, J.P.; Li, L.G.; Cai, X.L.; Huang, W.; Chao, D.Y.; Zhu, M.Z.; Wang, Z.Y.; Luan, S.; Lin, H.X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 2005, 37, 1141–1146. [Google Scholar] [CrossRef]
- Kong, X.Q.; Gao, X.H.; Sun, W.; An, J.; Zhao, Y.X.; Zhang, H. Cloning and functional characterization of a cation–chloride cotransporter gene OsCCC1. Plant Mol. Biol. 2011, 75, 567–578. [Google Scholar] [CrossRef]
- Brar, D.S.; Khush, G.S. Alien introgression in rice. In Oryza: From Molecule to Plant; Sasaki, T., Moore, G., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 35–47. [Google Scholar]
- Meyer, R.S.; Choi, J.Y.; Sanches, M.; Plessis, A.; Flowers, J.M.; Amas, J.; Dorph, K.; Barretto, A.; Gross, B.; Fuller, D.Q.; et al. Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat. Genet. 2016, 48, 1083–1088. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Pre-sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv. Agron. 2005, 88, 223–271. [Google Scholar]
- Zeng, L.; Shannon, M.C.; Grieve, C.M. Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica 2002, 127, 235–245. [Google Scholar] [CrossRef]
- Shi, Y.; Gao, L.; Wu, Z.; Zhang, X.; Wang, M.; Zhang, C.; Zhang, F.; Zhou, Y.; Li, Z. Genome-wide association study of salt tolerance at the seed germination stage in rice. BMC Plant Biol. 2017, 17, 92. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Xia, W.; Li, H.; Zeng, H.; Wei, B.; Han, S.; Yin, C. Salinity inhibits rice seed germination by reducing α-amylase activity via decreased bioactive gibberellin content. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.L.; Sanchez, P.L.; Yu, S.-B.; Lorieux, M.; Eizenga, G.C. Chromosome segment substitution lines: A powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa). Rice 2010, 3, 218–234. [Google Scholar] [CrossRef] [Green Version]
- Ndjiondjop, M.N.; Manneh, B.; Cissoko, M.; Drame, N.K.; Kakai, R.G.; Bocco, R.; Baimey, H.; Wopereis, M. Drought resistance in an interspecific backcross population of rice (Oryza spp.) derived from the cross WAB56-104 (O. sativa) × CG14 (O. glaberrima). Plant Sci. 2010, 179, 364–373. [Google Scholar] [CrossRef]
- Spielmeyer, W.; Ellis, M.H.; Chandler, P.M. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl. Acad. Sci. USA 2002, 99, 9043–9048. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, K.; Tran, L.P.; Nguyen, D.V.; Fujita, M.; Maruyama, K.; Todaka, D.; Ito, Y.; Hayashi, N.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 2007, 51, 617–630. [Google Scholar] [CrossRef]
- Joshi, R.; Karan, R.; Singla-Pareek, S.L.; Pareek, A. Ectopic expression of Pokkali phosphoglycerate kinase-2 (OsPGK2-P) improves yield in tobacco plants under salinity stress. Plant Cell Rep. 2016, 35, 27–41. [Google Scholar] [CrossRef]
- Hasthanasombut, S.; Supaibulwatana, K.; Mii, M.; Nakamura, I. Genetic manipulation of Japonica rice using the OsBADH1 gene from Indica rice to improve salinity tolerance. Plant Cell Tissue Organ Cult. 2011, 104, 79–89. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, J.; Chen, Z.; Huang, J.; Bao, Y.; Wang, J.; Zhang, H. Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. Theor. Appl. Genet. 2012, 125, 807–815. [Google Scholar] [CrossRef]
- Guo, C.; Luo, C.; Guo, L.; Li, M.; Guo, X.; Zhang, Y.; Wang, L.; Chen, L. OsSIDP366, a DUF1644 gene, positively regulates responses to drought and salt stresses in rice. J. Integr. Plant Biol. 2016, 58, 492–502. [Google Scholar] [CrossRef]
- Kurotani, K.I.; Hayashi, K.; Hatanaka, S.; Toda, Y.; Ogawa, D.; Ichikawa, H.; Ishimaru, Y.; Tashita, R.; Suzuki, T.; Ueda, M.; et al. Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice. Plant Cell Physiol. 2015, 56, 779–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.F.; Wang, J.F.; Bao, Y.M.; Wu, Y.Y.; Su, X.; Zhang, H.S. Inheritance of rice seed germination ability under salt stress. Rice Sci. 2010, 17, 105–110. [Google Scholar] [CrossRef]
- Yoshida, S.; Forno, D.A.; Cock, J.H. Laboratory Manual for Physiological Studies of Rice, 3rd ed.; IRRI: Los Baños, Laguna, Philippines, 1971; p. 61. [Google Scholar]
- Fischer, R.; Maurer, R. Drought resistance in spring wheat cultivars. I. grain yield responses. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- Ferdose, J.; Kawasaki, M.; Taniguchi, M.; Miyake, H. Differential sensitivity of rice cultivars to salinity and its relation to ion accumulation and root tip structure. Plant Prod. Sci. 2009, 12, 453–461. [Google Scholar] [CrossRef]
- Murray, M.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [Green Version]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Ribaut, J.M.; Li, Z.; Wang, J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor. Appl. Genet. 2008, 116, 243–260. [Google Scholar] [CrossRef]
Treat | Traits a | QTL | Chr | Bin b | Left Marker (Mb) | Right Marker (Mb) | Bin Size (Mb) | Add c | LOD d | PVE (%) e |
---|---|---|---|---|---|---|---|---|---|---|
Control | GR-3d | qGR-3d2 | 2 | B02C46 | 4.26 | 5.43 | 1.17 | −0.13 | 5.6 | 6.4 |
qGR-3d7 | 7 | B07C21 | 16.27 | 22.84 | 6.56 | −0.05 | 2.7 | 1.9 | ||
qGR-3d12 | 12 | B12C7 | 2.98 | 6.62 | 3.65 | −0.14 | 12.9 | 9.5 | ||
GR-7d | qGR-7d4.1 | 4 | B04C67 | 10.72 | 11.07 | 0.34 | −0.09 | 3.6 | 5.8 | |
qGR-7d4.2 | 4 | B04C134 | 16.33 | 16.41 | 0.08 | −0.10 | 4.1 | 5.6 | ||
qGR-7d4.3 | 4 | B04C254 | 17.14 | 17.17 | 0.03 | −0.09 | 4.3 | 5.7 | ||
qGR-7d4.4 | 4 | B04C348 | 18.73 | 18.83 | 0.10 | −0.07 | 9.1 | 5.1 | ||
qGR-7d10 | 10 | B10C43 | 0.61 | 13.89 | 13.28 | −0.10 | 7.3 | 5.8 | ||
qGR-7d11 | 11 | B11C9 | 2.29 | 7.39 | 5.10 | −0.09 | 2.8 | 5.2 | ||
qGR-7d12 | 12 | B12C45 | 19.54 | 20.38 | 0.83 | 0.05 | 5.2 | 2.6 | ||
GT | qGT1.1 | 1 | B01C105 | 11.93 | 11.96 | 0.03 | 0.21 | 5.4 | 18.8 | |
qGT1.2 | 1 | B01C236 | 33.47 | 33.59 | 0.12 | 0.21 | 3.0 | 13.1 | ||
Stress | GR-3d | qGR-3d4 | 4 | B04C372 | 24.68 | 27.20 | 2.51 | 0.09 | 2.7 | 6.0 |
qGR-3d12 | 12 | B12C6 | 2.98 | 6.62 | 3.65 | 0.20 | 7.3 | 24.5 | ||
GR-7d | qGR-7d4.5 | 4 | B04C302 | 18.27 | 18.67 | 0.40 | −0.22 | 3.3 | 5.1 | |
qGR-7d6 | 6 | B06C46 | 4.62 | 5.20 | 0.58 | −0.25 | 7.5 | 5.1 | ||
qGR-7d10 | 10 | B10C43 | 0.61 | 13.89 | 13.28 | −0.22 | 3.3 | 5.1 | ||
GI | qGI11 | 11 | B11C55 | 19.02 | 19.10 | 0.08 | −1.95 | 2.6 | 11.5 | |
GT | qGT4 | 4 | B04C353 | 19.46 | 19.97 | 0.51 | −0.34 | 6.1 | 15.5 | |
qGT9 | 9 | B09C180 | 8.11 | 8.13 | 0.02 | −0.24 | 4.1 | 10.8 | ||
Index | GRI-3d | qGRI-3d12 | 12 | B12C6 | 2.98 | 6.62 | 3.65 | −12.28 | 3.3 | 11.5 |
GRI-7d | qGRI-7d10 | 10 | B10C43 | 0.61 | 13.89 | 13.28 | 7.09 | 3.8 | 4.9 | |
GTI | qGTI4 | 4 | B04C183 | 16.41 | 16.72 | 0.31 | −19.00 | 3.3 | 9.0 |
Treats | Traits a | QTL | Chr | Bin b | Left Marker | Right Marker | Bin Size | Add c | LOD d | PVE (%) e |
---|---|---|---|---|---|---|---|---|---|---|
Control | SH | qSH1 | 1 | B01C254 | 36.09 | 36.28 | 0.19 | 7.78 | 21.4 | 61.9 |
SFW | qSFW1.1 | 1 | B01C254 | 36.09 | 36.28 | 0.19 | 0.17 | 11.7 | 34.8 | |
qSFW4 | 4 | B04C322 | 18.73 | 8.83 | 0.10 | 0.09 | 3.0 | 7.2 | ||
DLW | qDLW1 | 1 | B01C254 | 36.09 | 36.28 | 0.19 | 0.01 | 6.5 | 11.5 | |
qDLW8.1 | 8 | B08C30 | 1.94 | 2.20 | 0.26 | −0.01 | 8.8 | 16.4 | ||
qDLW8.2 | 8 | B08C40 | 6.17 | 6.54 | 0.37 | 0.01 | 4.2 | 7.0 | ||
Na+ | qNa 1 | 1 | B01C273 | 38.50 | 38.71 | 0.21 | 0.40 | 3.1 | 3.6 | |
K+ | qK1 | 1 | B01C73 | 7.73 | 8.26 | 0.53 | 1.34 | 3.1 | 10.3 | |
qK10 | 10 | B10C43 | 0.61 | 13.89 | 13.28 | 1.61 | 3.8 | 13.1 | ||
Na+/K+ | qNaKR1 | 1 | B01C269 | 37.81 | 37.95 | 0.13 | −0.02 | 3.1 | 9.8 | |
qNaKR11 | 11 | B11C92 | 25.75 | 25.86 | 0.11 | −0.02 | 5.8 | 19.1 | ||
Stress | SH | qSH1 | 1 | B0C254 | 36.09 | 36.28 | 0.19 | 5.08 | 18.4 | 57.1 |
SFW | qSFW1.2 | 1 | B01C236 | 34.49 | 35.50 | 1.01 | 0.06 | 3.2 | 15.2 | |
SDW | qSDW1 | 1 | B01C254 | 36.09 | 36.28 | 0.19 | 0.02 | 7.3 | 28.6 | |
DLW | qDLW2 | 2 | B02C61 | 4.26 | 5.43 | 1.17 | 0.02 | 3.5 | 10.0 | |
qDLW6 | 6 | B06C161 | 25.32 | 27.64 | 2.32 | 0.02 | 4.4 | 10.2 | ||
qDLW9 | 9 | B09C28 | 0.66 | 0.68 | 0.01 | 0.01 | 2.6 | 2.0 | ||
DLSFR | qDLSFR2 | 2 | B02C61 | 4.26 | 5.43 | 1.17 | 0.08 | 6.3 | 4.3 | |
qDLSFR4.1 | 4 | B04C175 | 16.41 | 16.72 | 0.31 | 0.09 | 3.3 | 4.1 | ||
qDLSFR4.2 | 4 | B04C302 | 18.27 | 18.67 | 0.40 | 0.09 | 4.0 | 4.0 | ||
qDLSFR6.1 | 6 | B06C49 | 4.62 | 5.20 | 0.58 | 0.09 | 3.5 | 3.3 | ||
qDLSFR6.2 | 6 | B06C138 | 25.32 | 27.64 | 2.32 | 0.09 | 5.7 | 4.2 | ||
qDLSFR9 | 9 | B09C90 | 2.40 | 2.53 | 0.13 | 0.03 | 2.7 | 0.8 | ||
qDLSFR10 | 10 | B10C43 | 0.61 | 13.89 | 13.28 | 0.09 | 5.0 | 4.2 | ||
Na+ | qNa2.1 | 2 | B02C22 | 4.15 | 4.26 | 0.11 | −4.37 | 3.2 | 5.3 | |
qNa2.2 | 2 | B02C61 | 4.26 | 5.43 | 1.17 | −6.80 | 3.2 | 17.8 | ||
K+ | qK2 | 2 | B02C180 | 19.80 | 20.15 | 0.35 | 1.95 | 8.0 | 26.1 | |
qK6 | 6 | B06C0 | 0.11 | 0.15 | 0.04 | 1.15 | 3.4 | 9.3 | ||
qK11 | 11 | B11C92 | 25.75 | 2.59 | 0.11 | 1.23 | 3.4 | 9.6 | ||
Na+/K+ | qNaKR2.1 | 2 | B02C20 | 2.82 | 3.27 | 0.44 | −0.23 | 4.2 | 10.4 | |
qNaKR2.2 | 2 | B02C110 | 5.43 | 5.56 | 0.13 | −0.23 | 6.4 | 17.4 | ||
Index | SHI | qSHI1 | 1 | B01C254 | 36.09 | 36.28 | 0.19 | −3.42 | 6.1 | 16.4 |
qSHI7 | 7 | B07C3 | 2.48 | 8.21 | 5.73 | −3.10 | 3.0 | 8.0 | ||
DLWI | qDLWI2 | 2 | B02C61 | 4.26 | 5.43 | 1.17 | −0.94 | 5.4 | 2.8 | |
qDLWI4.1 | 4 | B04C175 | 16.41 | 16.72 | 0.31 | −0.94 | 4.9 | 2.7 | ||
qDLWI4.2 | 4 | B04C302 | 18.27 | 18.67 | 0.40 | −0.96 | 6.7 | 4.0 | ||
qDLWI6.1 | 6 | B06C48 | 4.62 | 5.20 | 0.58 | −0.99 | 2.8 | 2.6 | ||
qDLWI6.2 | 6 | B06C143 | 25.32 | 27.64 | 2.32 | −0.95 | 5.1 | 2.7 | ||
qDLWI9 | 9 | B09C105 | 3.25 | 3.30 | 0.05 | −0.37 | 3.2 | 0.6 | ||
qDLWI10 | 10 | B10C43 | 0.61 | 13.89 | 13.28 | −0.95 | 5.4 | 2.8 | ||
DLSFRI | qDLSFRI2 | 2 | B02C61 | 4.26 | 5.43 | 1.17 | −2.44 | 6.0 | 5.3 | |
qDLSFRI4.1 | 4 | B04C175 | 16.41 | 16.72 | 0.31 | −2.44 | 3.9 | 5.2 | ||
qDLSFRI4.2 | 4 | B04C302 | 18.27 | 18.67 | 0.40 | −2.48 | 7.3 | 5.1 | ||
qDLSFRI6 | 6 | B06C140 | 25.32 | 27.64 | 2.32 | −2.48 | 5.1 | 5.3 | ||
qDLSFRI9 | 9 | B09C100 | 2.71 | 2.97 | 0.26 | −1.03 | 3.2 | 1.2 | ||
qDLSFRI10 | 10 | B10C43 | 0.61 | 13.89 | 13.28 | −2.47 | 4.3 | 5.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakhla, W.R.; Sun, W.; Fan, K.; Yang, K.; Zhang, C.; Yu, S. Identification of QTLs for Salt Tolerance at the Germination and Seedling Stages in Rice. Plants 2021, 10, 428. https://doi.org/10.3390/plants10030428
Nakhla WR, Sun W, Fan K, Yang K, Zhang C, Yu S. Identification of QTLs for Salt Tolerance at the Germination and Seedling Stages in Rice. Plants. 2021; 10(3):428. https://doi.org/10.3390/plants10030428
Chicago/Turabian StyleNakhla, Walid Raafat, Wenqiang Sun, Kai Fan, Kang Yang, Chaopu Zhang, and Sibin Yu. 2021. "Identification of QTLs for Salt Tolerance at the Germination and Seedling Stages in Rice" Plants 10, no. 3: 428. https://doi.org/10.3390/plants10030428
APA StyleNakhla, W. R., Sun, W., Fan, K., Yang, K., Zhang, C., & Yu, S. (2021). Identification of QTLs for Salt Tolerance at the Germination and Seedling Stages in Rice. Plants, 10(3), 428. https://doi.org/10.3390/plants10030428