Tolerance Even to Lethal Strain of Potato Spindle Tuber Viroid Found in Wild Tomato Species Can Be Introduced by Crossing
Abstract
:1. Introduction
2. Results
2.1. Criteria for Assessing Sensitivity and Tolerance to PSTVd
2.2. The Relationship between Tomato Fruit Size and the Level of Tolerance to PSTVd
2.3. Wild Tomatoes Contain Sensitive or Tolerant Accessions to PSTVd Infection
2.4. Some Wild Tomato Relatives Exhibited PSTVd Tolerance Regardless of PSTVd Strain
2.5. Low Accumulation of PSTVd in Wild Tomato Relatives Exhibiting High Tolerance to PSTVd
2.6. F1 Hybrids between a PSTVd-Sensitive Wild Tomato and PSTVd-Tolerant Wild Relative Were Tolerant to PSTVd
2.7. Low Accumulation of PSTVd Early in Infection in PSTVd-Tolerant F1 Hybrids
2.8. Nicotiana Occidentalis Exhibits Severe Symptoms during Infection of Lethal PSTVd Strain
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. In Vitro Transcription of PSTVd RNA and Mechanical Inoculation
4.3. Isolation of Nucleic Acid and Confirmation of PSTVd Infection by RT-PCR
4.4. Extraction of Total RNA and Detection of PSTVd by Dot-Blot Hybridization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Serio, F.; Li, S.-F.; Pallás, V.; Owens, R.A.; Randles, J.W.; Sano, T.; Verhoeven, J.T.; Vidalakis, G.; Flores, R. Viroid Taxonomy. In Viroids and Satellites; Hadidi, A., Flores, R., Randles, J.W., Palukaitis, P., Eds.; Elsevier: London, UK, 2017; pp. 135–146. [Google Scholar]
- Di Serio, F.; Flores, R.; Verhoeven, J.T.J.; Li, S.-F.; Pallás, V.; Randles, J.W.; Sano, T.; Vidalakis, G.; Owens, R.A. Current status of viroid taxonomy. Arch. Virol. 2014, 159, 3467–3478. [Google Scholar] [CrossRef]
- Daròs, J.A.; Flores, R. Arabidopsis thaliana has the enzymatic machinery for replicating representative viroid species of the family Pospiviroidae. Proc. Natl. Acad. Sci. USA 2004, 101, 6792–6797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, R.; Hernández, C.; de Alba, A.E.M.; Daròs, J.A.; Di Serio, F. Viroids and viroid–host interactions. Annu. Rev. Phytopathol. 2005, 43, 117–139. [Google Scholar] [CrossRef] [PubMed]
- Kovalskaya, N.; Hammond, R.W. Molecular biology of viroid-host interactions and disease control strategies. Plant Sci. 2014, 228, 48–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, B.; Gisel, A.; Rodio, M.E.; Delgado, S.; Flores, R.; Di Serio, F. Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J. 2012, 70, 991–1003. [Google Scholar] [CrossRef]
- Adkar-Purushothama, C.R.; Brosseau, C.; Giguère, T.; Sano, T.; Moffett, P.; Perreault, J.P. Small RNA derived from the virulence modulating region of the Potato spindle tuber viroid silences callose synthase genes of tomato plants. Plant Cell 2015, 27, 2178–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adkar-Purushothama, C.R.; Lyer, P.S.; Perreault, J.P. Potato spindle tuber viroid infection triggers degradation of chloride channel protein CLC-b-like and Ribosomal protein S3a-like mRNAs in tomato plants. Sci. Rep. 2017, 7, 8341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, S.; Owens, R.A.; Sun, Q.; Song, H.; Liu, Y.; Eamens, A.L.; Feng, H.; Tian, H.; Wang, M.-B.; Zhang, R. Silencing of transcription factor encoding gene StTCP23 by small RNAs derived from the virulence modulating region of potato spindle tuber viroid is associated with symptom development in potato. PLoS Pathog. 2019, 15, e1008110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sänger, H.L. Biology, structure, functions and possible origin of viroids. In Nucleic Acids and Proteins in Plants II; Parthier, B., Boulter, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1982; pp. 368–454. [Google Scholar]
- Matoušek, J.; Kozlová, P.; Orctová, L.; Schmitz, A.; Pešina, K.; Bannach, O.; Diermann, N.; Steger, G.; Riesner, D. Accumulation of viroid-specific small RNAs and increase in nucleolytic activities linked to viroid-caused pathogenesis. Biol. Chem. 2007, 388, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gruner, R.; Fels, A.; Qu, F.; Zimmat, R.; Steger, G.; Riesner, D. Interdependence of pathogenicity and replicability with potato spindle tuber viroid. Virology 1995, 209, 60–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, N.S. The witches’ broom virus disease of potatoes. Am. Potato J. 1954, 31, 159–164. [Google Scholar] [CrossRef]
- O’Brien, J.; Raymer, W.D. Transmission of potato spindle tuber virus in tomato. Am. Potato J. 1962, 39, 401–408. [Google Scholar]
- Diener, T.O. Potato spindle tuber “virus”: IV. A replicating, low molecular weight RNA. Virology 1971, 45, 411–428. [Google Scholar] [CrossRef]
- Wang, Y.; Shibuya, M.; Taneda, A.; Kurauchi, T.; Senda, M.; Owens, R.A.; Sano, T. Accumulation of Potato spindle tuner viroid-specific small RNAs is accompanied by specific changes in gene expression in two tomato cultivars. Virology 2011, 413, 72–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owens, R.A.; Tech, K.B.; Shao, J.Y.; Sano, T.; Baker, C.J. Global analysis of tomato gene expression during potato spindle tuber viroid infection reveals a complex array of changes affecting hormone signaling. Mol. Plant Microbe Int. 2012, 25, 582–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menda, N.; Strickler, S.R.; Mueller, L.A. Advances in tomato research in the post-genome era. Plant Biotech. 2013, 30, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Peralta, I.E.; Spooner, D.M.; Knapp, S. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Sys. Bot. Monogr. 2008, 84, 1–186. [Google Scholar]
- Blanca, J.; Canizare, J.; Cordero, L.; Pascual, L.; Jose, D.M.; Nuez, F. Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS ONE 2012, 7, e48198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485, 635. [Google Scholar] [CrossRef] [Green Version]
- Ranc, N.; Muños, S.; Santoni, S.; Causse, M. A clarified position for solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae). BMC Plant Biol. 2008, 8, 130. [Google Scholar] [CrossRef] [Green Version]
- Tanksley, S.D. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 2004, 16, S181–S189. [Google Scholar] [CrossRef]
- Cong, B.; Barrero, L.S.; Tanksley, S.D. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat. Genet. 2008, 40, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Pelham, J. Resistance in tomato to tobacco mosaic virus. Euphytica 1966, 15, 258–267. [Google Scholar] [CrossRef]
- Bolger, A.; Scossa, F.; E Bolger, M.; Lanz, C.; Maumus, F.; Tohge, T.; Quesneville, H.; Alseekh, S.; Sørensen, I.; Lichtenstein, G.; et al. The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat. Genet. 2014, 46, 1034–1038. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; O’Brien, M.J. Additional indicator plants for potato spindle tuber virus. Am. Potato J. 1970, 47, 367–371. [Google Scholar] [CrossRef]
- Singh, R.P. Experimental host range of the potato spindle tuber ‘virus’. Am. Potato J. 1973, 50, 111–123. [Google Scholar] [CrossRef]
- Nabeshima, T.; Matsushita, Y.; Hosokawa, M. Chrysanthemum stunt viroid resistance in Chrysanthemum. Viruses 2018, 10, 719. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, Y.; Aoki, K.; Sumitomo, K. Selection and inheritance of resistance to Chrysanthemum stunt viroid. Crop Protect. 2012, 35, 1–4. [Google Scholar] [CrossRef]
- Singh, R.P. Clones of Solanum berthaultii resistant to potato spindle tuber viroid. Phytopathology 1985, 75, 1432–1434. [Google Scholar] [CrossRef]
- Sofy, A.R.; Mahfouze, S.A.; El-Enany, M.A.M. Isozyme markers for response of wild potato species to Potato spindle tuber viroid egyptian isolate. World Appl. Sci. J. 2013, 27, 1010–1022. [Google Scholar]
- Palukaitis, P. Resistance to viruses of potato and their vectors. Plant Pathol. J. 2012, 28, 248–258. [Google Scholar] [CrossRef] [Green Version]
- Palukaitis, P. What has been happening with viroids? Virus Genes 2014, 49, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, A.; de Alba, Á.E.M.; Flores, R.; Gago, S. Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families. Virology 2008, 371, 44–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sano, T.; Nagayama, A.; Ogawa, T.; Ishida, I.; Okada, Y. Transgenic potato expressing a double-stranded RNA-specific ribonuclease is resistant to potato spindle tuber viroid. Nat. Biotechnol. 1997, 15, 1290–1294. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yie, Y.; Zhu, F.; Liu, Y.; Kang, L.; Wang, X.; Tien, P. Ribozyme-mediated high resistance against potato spindle tuber viroid in transgenic potatoes. Proc. Natl. Acad. Sci. USA 1997, 94, 4861–4865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwind, N.; Zwiebel, M.; Itaya, A.; Ding, B.; Wang, M.B.; Krczal, G.; Wassenegger, M. RNAi-mediated resistance to Potato spindle tuber viroid in transgenic tomato expressing a viroid hairpin RNA construct. Mol. Plant Pathol. 2009, 10, 459–469. [Google Scholar] [CrossRef]
- O’Brien, J. Hosts of potato spindle tuber virus in suborder Solanineae. Am. Potato J. 1972, 49, 70–72. [Google Scholar] [CrossRef]
- O’Brien, J.; Raymer, W.D. Symptomless hosts of the potato spindle tuber virus. Phytopathology 1964, 54, 1045–1047. [Google Scholar]
- Di Serio, F.; Martínez de Alba, A.E.; Navarro, B.; Gisel, A.; Flores, R. RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. J. Virol. 2010, 84, 2477–2489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aviña-Padilla, K.; Rivera-Bustamante, R.; Kovalskaya, N.Y.; Hammond, R.W. Pospiviroid infection of tomato regulates the expression of genes involved in flower and fruit development. Viruses 2018, 10, 516. [Google Scholar] [CrossRef] [Green Version]
- Serrani, J.C.; Sanjuán, R.; Ruiz-Rivero, O.; Fos, M.; García-Martínez, J.L. Gibberellin regulation of fruit set and growth in tomato. Plant Physiol. 2007, 145, 246–257. [Google Scholar] [CrossRef] [Green Version]
- Ariizumi, T.; Shinozaki, Y.; Ezura, H. Genes that influence yield in tomato. Breed. Sci. 2013, 63, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, M.; Zhao, Y.; Ma, Q.; Hu, Y.; Hedden, P.; Zhang, Q.; Zhou, D.-X. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol. 2007, 144, 121–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T.; Ikeda, S.; Kasai, A.; Taneda, A.; Fujibayashi, M.; Sugawara, K.; Okuta, M.; Maeda, H.; Sano, T. RNAi-mediated down-regulation of Dicer-like 2 and 4 changes the response of ‘Moneymaker’ tomato to potato spindle tuber viroid infection from tolerance to lethal systemic necrosis, accompanied by up-regulation of miR398, 398a-3p and production of excessive amount of reactive oxygen species. Viruses 2019, 11, 344. [Google Scholar]
- Kwon, J.; Kasai, A.; Maoka, T.; Masuta, C.; Sano, T.; Nakahara, K. RNA silencing-related genes contribute to tolerance of infection with potato virus X and Y in a susceptible tomato plant. Virol. J. 2020, 17, 149. [Google Scholar] [CrossRef] [PubMed]
- Katsarou, K.; Mavrothalassiti, E.; Dermauw, W.; Leeuwen, T.V.; Kalantidis, K. Combined activity of DCL2 and DCL3 is crucial in the defense against potato spindle tuber viroid. PLoS Pathog. 2016, 12, e1005936. [Google Scholar] [CrossRef] [PubMed]
- Boller, T.; Felix, G. A renaissance of elicitor: Perception of microbe-associated molecular patterns and danger signals by pattern-gecognition receptors. Annu. Rev. Plant Biol. 2009, 60, 379–406. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, Y.; Ding, B.; Fei, Z. Comprehensive transcriptome analyses reveal that potato spindle tuber viroid triggers genome-wide changes in alternative splicing, inducible trans-acting activity of phased secondary small interfering RNAs, and immune responses. J. Virol. 2017, 91, e00247-17. [Google Scholar] [CrossRef] [Green Version]
- Naoi, T.; Kitabayashi, S.; Kasai, A.; Sugawara, K.; Adkar-Purushothama, C.R.; Senda, M.; Hataya, T.; Sano, T. Suppression of RNA-dependent RNA polymerase 6 in tomatoes allows potato spindle tuber viroid to invade basal part but not apical part including pluripotent stem cells of shoot apical meristem. PLoS ONE 2020, 15, e0236481. [Google Scholar] [CrossRef] [PubMed]
- Tsushima, D.; Adkar-Purushothama, C.R.; Taneda, A.; Sano, T. Changes in relative expression levels of viroid-specific small RNAs and microRNAs in tomato plants infected with severe and mild symptom including isolates of Potato spindle tuber viroid. J. Gen. Plant Pathol. 2015, 81, 49–62. [Google Scholar] [CrossRef]
- Więsyk, A.; Iwanicka-Nowicka, R.; Fogtman, A.; Zagórski-Ostoja, W.; Góra-Sochacka, A. Time-course microarray analysis reveals differences between transcriptional changes in tomato leaves triggered by mild and severe variants of Potato spindle tuber viroid. Viruses 2018, 10, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakahara, K.; Hataya, T.; Uyeda, I. A simple, rapid method of nucleic acid extraction without tissue homogenization for detecting viroids by hybridization and RT-PCR. J. Virol. Methods 1999, 77, 47–58. [Google Scholar] [CrossRef]
- Hataya, T. Duplex reverse transcription-polymerase chain reaction system to detect Potato spindle tuber viroid using an internal control mRNA and a non-infectious positive control RNA. J. Gen. Plant Pathol. 2009, 75, 167–172. [Google Scholar] [CrossRef]
Cultivar | Fruit Size | Severity and Type of Disease Symptoms | |
---|---|---|---|
PSTVd-Int (Intermediate) | PSTVd-AS1 (Lethal) | ||
Berner Rose | Large | ++ (S, Lc, Lm) | +++++ (S, Lc, Lm, Ru) |
Momotaro (F1) | Large | +++ (S, Lc) | +++++ (S, Lc, Lm, Y, Ru) |
Pondelosa | Large | ++ (S, Lc) | +++++ (S, Lc, Lm, Y, Ru) |
Sekai-ichi | Large | +++ (S, Lc, Lm) | +++++ (S, Lc, Lm, Y, Ru) |
Lemon-tomato *1 | Medium | + (S) | ++ (S, Lm) |
Moneymaker | Medium | ++ (S, Lc) | ++++ (S, Lc, Lm, Sn) |
Newskij | Medium | + (Lc, Fm) | ++++ (S, Lc, Lm, Y, Vn, Fm, Pcf, Lf, Ste) |
Rutgers | Medium | ++++ (S, Lc, Lm, Sn, Ru) | ++++++ (S, Lc, Lm, Y, Ru, Vn, Sn) |
San Marzano | Medium | ++ (S, Lc) | +++++ (S, Lc, Lm, Ru, Sn) |
Chika (F1) | Small | + (S) | ++ (S) |
Micro-Tom | Small | + (Fm, Pcf, Lf) | ++ (Lm, Fm, Pcf, Lf, Ste) |
Sugar *1 | Small | − | + (S, Lm) |
Tiny-Tim | Small | + (Fm, Pcf, Lf) *2,3 | ++ (Lm, Fm, Pcf, Lf, Ste) *2,3 |
Species | Cultivar /Accession | Severity and Type of Disease Symptoms | |
---|---|---|---|
PSTVd-Int (Intermediate) | PSTVd-AS1 (Lethal) | ||
Solanum lycopersicum var. cerasiforme | LA1286 | +++ (S, Lc, Lm, Ru, Vn) | +++++ (S, Lc, Lm, Ru, Vn, Sn) |
Solanum lycopersicum var. cerasiforme | LA1310 | − | + (Lm) *1 |
Solanum lycopersicum var. cerasiforme | LA1324 | ++ (S, Lc, Lm) | +++++ (S, Lc, Lm, Ru, Vn, Sn, W) *2 |
Solanum lycopersicum var. cerasiforme | LA1328 | + (S, Lm) | +++ (S, Lc, Lm, Vn) |
Solanum lycopersicum var. cerasiforme | Tomallilo | + (S, Lm) *3 | ++ (S, Lc, Lm) *3 |
Solanum pimpinellifolium | LA0373 | − | − *4 |
Solanum pimpinellifolium | LA0411 | − | − *4 |
Solanum cheesmaniae | LA0421 | +++ (S, Lm, Ln) | ++++ (S, Lr, Lm, Ln, Ro) |
Solanum galapagense | LA0317 | − *5 | − *5 |
Solanum chmielewskii | LA1028 | − | − |
Solanum chmielewskii | LA2695 | ++ (S, Lr, Lm, Ln) | ++++ (S, Lr, Lm, Ln, Sn, Y) |
Solanum arcanum | LA1031 | + (S) *6 | ++ (S) *6 |
Solanum neorickii | LA0247 | ++ (S, Lm) | +++ (S, Lm) |
Solanum hyaylasense *7 | LA1358 | + (S) | + (S) |
Solanum pervianum | LA0111 | ++ (S, Lm, Ro) | +++ (S, Lm, Ro) |
Solanum corneliomulleri | LA0103 | + (S) *8 | ++ (S, Ro) *8 |
Solanum chilense | LA1938 | − *9 | + (S, Ro) *9 |
Solanum habrochaites | LA0361 | + (S) *10 | ++ (S, Ro) *10 |
Solanum pennellii | LA0716 | ++ (S, Lc, Ru) | +++ (S, Lc, Lm, Ru) |
Species | Cultivar | Severity and Type of Disease Symptoms | |
---|---|---|---|
PSTVd-Int (Intermediate) | PSTVd-AS1 (Lethal) | ||
Capsicum annuum | Botan-kosho | − | − |
Capsicum annuum | Takano-tsume | − | − |
Nicotiana occidentalis | − *1 | +++++ (S, Lc, Lm, Ru, Vn, Sn) | |
Nicotiana rustica | ++ (S, Lm) *2 | +++ (S, Lm) *2 | |
Solanum melongena | Kurobe (F1) | − | − |
Solanum melongena | Kurowashi (F1) | − | − |
Solanum tuberosum | Danshaku-imo | ++++ (S, Lm, Ro) | ++++++ (S, Lm, Ru, Y, Ro, W) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naoi, T.; Hataya, T. Tolerance Even to Lethal Strain of Potato Spindle Tuber Viroid Found in Wild Tomato Species Can Be Introduced by Crossing. Plants 2021, 10, 575. https://doi.org/10.3390/plants10030575
Naoi T, Hataya T. Tolerance Even to Lethal Strain of Potato Spindle Tuber Viroid Found in Wild Tomato Species Can Be Introduced by Crossing. Plants. 2021; 10(3):575. https://doi.org/10.3390/plants10030575
Chicago/Turabian StyleNaoi, Takashi, and Tatsuji Hataya. 2021. "Tolerance Even to Lethal Strain of Potato Spindle Tuber Viroid Found in Wild Tomato Species Can Be Introduced by Crossing" Plants 10, no. 3: 575. https://doi.org/10.3390/plants10030575
APA StyleNaoi, T., & Hataya, T. (2021). Tolerance Even to Lethal Strain of Potato Spindle Tuber Viroid Found in Wild Tomato Species Can Be Introduced by Crossing. Plants, 10(3), 575. https://doi.org/10.3390/plants10030575