Quality Evaluation, Storage Stability, and Sensory Characteristics of Wheat Noodles Incorporated with Isomaltodextrin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Noodles Sample
2.2. Storage Stability Study
2.3. Cooking Quality
2.4. Dietary Fiber Profile Analysis
2.4.1. Determining Resistant Starch (RS)
2.4.2. Determining Isomaltodextrin
2.4.3. Determining IHMWDF and SHMWDF
2.5. Color Measurement
2.6. Texture Profile Analysis
2.7. Sensory Evaluation
2.8. Microstructural Characteristics
2.9. Statistical Analysis
3. Results and Discussions
3.1. Effects of Storage on Cooking Quality
3.2. Effects of Storage on Fiber Profile
3.3. Effects of Storage on Color Parameters
3.4. Effects of Storage on Texture Profile
3.5. Effects of Storage on Sensory Properties
3.6. Effects of Storage on Microstructural Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kaur, B.; Ranawana, V.; Henry, J. The Glycemic Index of Rice and Rice Products: A Review, and Table of GI Values. Crit. Rev. Food Sci. Nutr. 2016, 56, 215–236. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.E.; Elliott, E. The use of low-glycaemic index diets in diabetes control. Br. J. Nutr. 2010, 104, 797–802. [Google Scholar] [CrossRef] [Green Version]
- Brand-Miller, J.; Hayne, S.; Petocz, P.; Colagiuri, S. Low-Glycemic Index Diets in the Management of Diabetes. Diabetes Care 2003, 26, 2261. [Google Scholar] [CrossRef] [Green Version]
- Chandalia, M.; Garg, A.; Lutjohann, D.; von Bergmann, K.; Grundy, S.M.; Brinkley, L.J. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N. Engl. J. Med. 2000, 342, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Shukla, K.; Srivastava, S. Evaluation of finger millet incorporated noodles for nutritive value and glycemic index. J. Food Sci. Technol. 2014, 51, 527–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, B.K.; Prabhasankar, P. Shelf stability of low glycemic index noodles: Its physico-chemical evaluation. J. Food Sci. Technol. 2018, 55, 4811–4822. [Google Scholar]
- Sadakiyo, T.; Inoue, S.I.; Ishida, Y.; Watanabe, H.; Mitsuzumi, H.; Ushio, S. Safety assessment of a soluble dietary fiber, isomaltodextrin, enzymatically produced from starch. Fundam. Toxicol. Sci. 2017, 4, 57–75. [Google Scholar] [CrossRef] [Green Version]
- Takagaki, R.; Ishida, Y.; Sadakiyo, T.; Taniguchi, Y.; Sakurai, T.; Mitsuzumi, H.; Watanabe, H.; Fukuda, S.; Ushio, S. Effects of isomaltodextrin in postprandial lipid kinetics: Rat study and human randomized crossover study. PLoS ONE 2018, 13, e0196802. [Google Scholar] [CrossRef] [Green Version]
- Hann, M.; Zeng, Y.; Zong, L.; Sakurai, T.; Taniguchi, Y.; Takagaki, R.; Watanabe, H.; Mitsuzumi, H.; Mine, Y. Anti-inflammatory activity of isomaltodextrin in a C57BL/6NCrl mouse model with lipopolysaccharide-induced low-grade chronic inflammation. Nutrients 2019, 11, 2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadakiyo, T.; Ishida, Y.; Inoue, S.I.; Taniguchi, Y.; Sakurai, T.; Takagaki, R.; Kurose, M.; Mori, T.; Yasuda-Yamashita, A.; Mitsuzumi, H.; et al. Attenuation of postprandial blood glucose in humans consuming isomaltodextrin: Carbohydrate loading studies. Food Nutr. Res. 2017, 61, 1325306. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, N.; Tanabe, H.; Yamamoto, T. Isomaltodextrin, a highly branched α-glucan, increases rat colonic H₂ production as well as indigestible dextrin. Biosci. Biotechnol. Biochem. 2016, 80, 554–563. [Google Scholar] [CrossRef] [Green Version]
- Mine, Y.; Jin, Y.; Zhang, H.; Rupa, P.; Majumder, K.; Sakurai, T.; Taniguchi, Y.; Takagaki, R.; Watanabe, H.; Mitsuzumi, H. Prophylactic effects of isomaltodextrin in a Balb/c mouse model of egg allergy. NPJ Sci. Food 2019, 3, 23. [Google Scholar] [CrossRef]
- Wakabayashi, S. The effects of indigestible dextrin on sugar tolerance: I. Studies on digestion-absorption and sugar tolerance. Nihon Naibunpi Gakkai Zasshi 1992, 68, 623–635. [Google Scholar]
- Wakabayashi, S.; Kishimoto, Y.; Matsuoka, A. Effects of indigestible dextrin on glucose tolerance in rats. J. Endocrinol. 1995, 144, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Phimolsiripol, Y.; Suppakul, P. Techniques in Shelf Life Evaluation of Food Products. Ref. Modul. Food Sci. 2016, 1, 1–8. [Google Scholar] [CrossRef]
- Corradini, M. Shelf life of food products: From open labeling to real-time measurements. Annu. Rev. Food Sci. Technol. 2018, 9, 251–269. [Google Scholar] [CrossRef]
- Beccaria, M.; Oteri, M.; Micalizzi, G.; Bonaccorsi, I.; Purcaro, G.; Dugo, P.; Mondello, L. Reuse of dairy product: Evaluation of the lipid profile evolution during and after their shelf-life. Food Anal. Methods 2016, 9, 3143–3154. [Google Scholar] [CrossRef]
- Li, P.H.; Huang, C.C.; Yang, M.Y.; Wang, C.C.R. Textural and sensory properties of salted noodles containing purple yam flour. Food Res. Int. 2012, 47, 223–228. [Google Scholar] [CrossRef]
- Reshmi, S.K.; Sudha, M.L.; Shashirekha, M.N. Noodles fortified with Citrus maxima (pomelo) fruit segments suiting the diabetic population. Bioact. Carbohydr. Diet. Fibre 2020, 22, 100213. [Google Scholar] [CrossRef]
- Liang, Y.; Qu, Z.; Liu, M.; Wang, J.; Zhu, M.; Liu, Z.; Li, J.; Zhan, X.; Jia, F. Effect of curdlan on the quality of frozen-cooked noodles during frozen storage. J. Cereal Sci. 2020, 95, 103019. [Google Scholar] [CrossRef]
- Nie, X.N.; She, D.; Liang, Z.S.; Geng, Z.C.; Wang, H.T.; Wang, K. Physicochemical Characterization of Hemicelluloses Obtained by Graded Ethanol Precipitation from Sweet Sorghum Stem. J. Biobased Mater. 2011, 5, 265–274. [Google Scholar] [CrossRef]
- Xue, Z.; Chen, Y.; Jia, Y.; Wang, Y.; Lu, Y.; Chen, H.; Zhang, M. Structure, thermal and rheological properties of different soluble dietary fiber fractions from mushroom Lentinula edodes (Berk.) Pegler residues. Food Hydrocoll. 2019, 95, 10–18. [Google Scholar] [CrossRef]
- Han, W.; Ma, S.; Li, L.; Wang, X.X.; Zheng, X.L. Application, and development prospects of dietary fibers in flour products. J. Chem. 2017, 1–8. [Google Scholar] [CrossRef]
- Hu, X.Z.; Sheng, X.L.; Li, X.P.; Liu, L.; Zheng, J.M.; Chen, X.Y. Effect of dietary oat β-glucan on high-fat diet induced obesity in HFA mice. Bioact. Carbohydr. Diet. Fibre 2015, 5, 79–85. [Google Scholar]
- Bai, J.; Ren, Y.; Li, Y.; Fan, M.; Qian, H.; Wang, L.; Wu, G.; Zhang, H.; Qi, X.; Xu, M.; et al. Physiological functionalities and mechanisms of β-glucans. Trends Food Sci. Technol. 2019, 88, 57–66. [Google Scholar] [CrossRef]
- Fabek, H.; Messerschmidt, S.; Brulport, V.; Goff, H.D. The effect of in vitro digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion. Food Hydrocoll. 2014, 35, 718–726. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, C.; Li, J.; Hussain, S.; Yan, S.; Wang, Q. Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root. LWT 2018, 93, 204–211. [Google Scholar] [CrossRef]
- Sowbhagya, H.B.; Suma, P.F.; Mahadevamma, S.; Tharanathan, R.N. Spent residue from cumin—A potential source of dietary fiber. Food Chem. 2007, 104, 1220–1225. [Google Scholar] [CrossRef]
- Wan, J.; Ding, Y.; Zhou, G.; Luo, S.; Liu, C.; Liu, F. Sorption isotherm and state diagram for indica rice starch with and without soluble dietary fiber. J. Cereal Sci. 2018, 80, 44–49. [Google Scholar] [CrossRef]
- Mohamed, A.; Xu, J.; Singh, M. Yeast leavened banana-bread: Formulation, processing, colour and texture analysis. Food Chem. 2010, 118, 620–626. [Google Scholar] [CrossRef]
- Karathanos, V.T.; Bakalis, S.; Kyritsi, A.; Rodis, P.S. Color Degradation of Beans During Storage. Int. J. Food Prop. 2006, 9, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Guo, X.N.; Zhu, K.X. Effects of frozen storage on the quality characteristics of frozen cooked noodles. Food Chem. 2019, 283, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, B.K.; Prabhasankar, P. A study on noodle dough rheology and product quality characteristics of fresh and dried noodles as influenced by low glycemic index ingredient. J. Food Sci. Technol. 2015, 52, 1404–1413. [Google Scholar]
- Tudorica, C.M.; Kuri, V.; Brennan, C.S. Nutritional and physicochemical characteristics of dietary fiber enriched pasta. J. Agric. Food Chem. 2002, 50, 347–356. [Google Scholar] [CrossRef] [PubMed]
Months | Temperature (°C) | Cooking Time (min) | Cooked Weight Gained (g) | Cooking Loss (%) |
---|---|---|---|---|
0 | 25 | 7.38 ± 0.05 c | 63.97 ± 0.60 ab | 3.71 ± 0.02 bc |
4 | 7.34 ± 0.07 c | 64.12 ± 0.37 a | 3.79 ± 0.03 bc | |
−20 | 7.38 ± 0.06 c | 63.99 ± 0.36 ab | 3.87 ± 0.05 ab | |
3 | 25 | 7.43 ± 0.07 bc | 63.58 ± 0.50 bc | 3.78 ± 0.04 bc |
4 | 7.43 ± 0.06 bc | 64.16 ± 0.56 a | 3.75 ± 0.06 bc | |
−20 | 7.41 ± 0.09 bc | 63.93 ± 0.21 ab | 3.81 ± 0.05 bc | |
6 | 25 | 7.50 ± 0.18 a | 63.93 ± 1.08 ab | 3.74 ± 0.09 bc |
4 | 7.39 ± 0.07 c | 63.96 ± 0.26 ab | 3.81 ± 0.08 bc | |
−20 | 7.35 ± 0.04 c | 63.62 ± 0.62 bc | 3.77 ± 0.06 bc | |
9 | 25 | 7.43 ± 0.04 bc | 64.19 ± 0.93 a | 3.79 ± 0.08 bc |
4 | 7.47 ± 0.06 ab | 63.39 ± 0.01 bc | 3.85 ± 0.06 bc | |
−20 | 7.43 ± 0.02 bc | 64.11 ± 0.49 a | 3.86 ± 0.02 ab | |
12 | 25 | 7.47 ± 0.09 a | 63.49 ± 0.08 bc | 3.89 ± 0.07 ab |
4 | 7.45 ± 0.06 bc | 63.21 ± 0.06 c | 3.74 ± 0.04 bc | |
−20 | 7.46 ± 0.08 ab | 64.53 ± 0.70 a | 3.78 ± 0.04 bc | |
15 | 25 | 7.44 ± 0.02 bc | 63.36 ± 0.26 bc | 3.93 ± 0.04 a |
4 | 7.47 ± 0.15 a | 63.58 ± 0.42 bc | 3.88 ± 0.04 ab | |
−20 | 7.38 ± 0.05 c | 64.25 ± 0.84 a | 3.86 ± 0.04 ab | |
18 | 25 | 7.55 ± 0.04 a | 62.62 ± 0.15 c | 3.98 ± 0.05 a |
4 | 7.45 ± 0.05 bc | 63.72 ± 0.52 ab | 3.87 ± 0.11 ab | |
−20 | 7.45 ± 0.04 bc | 64.29 ± 0.84 a | 3.85 ± 0.02 bc | |
21 | 25 | 7.39 ± 0.03 c | 62.56 ± 0.16 c | 4.08 ± 0.07 a |
4 | 7.44 ± 0.03 bc | 63.55 ± 0.46 bc | 3.88 ± 0.07 ab | |
−20 | 7.42 ± 0.05 bc | 64.19 ± 0.87 a | 3.87 ± 0.05 ab | |
24 | 25 | 7.36 ± 0.03 c | 62.37 ± 0.16 c | 4.13 ± 0.07 a |
4 | 7.43 ± 0.01 bc | 63.85 ± 0.62 ab | 3.97 ± 0.05 a | |
−20 | 7.45 ± 0.08 bc | 63.54 ± 0.55 bc | 3.92 ± 0.03 a |
Months | Temperature (°C) | L* | a* | b* |
---|---|---|---|---|
0 | 25 | 53.90 ± 1.59 a | −2.95 ± 0.08 b | 4.19 ± 0.07 c |
4 | 53.22 ± 1.96 a | −2.95 ± 0.09 b | 4.25 ± 0.08 bc | |
−20 | 53.18 ± 1.95 a | −2.88 ± 0.13 ab | 4.36 ± 0.07 bc | |
3 | 25 | 53.60 ± 3.09 a | −2.94 ± 0.09 b | 4.20 ± 0.08 c |
4 | 48.51 ± 3.78 bc | −2.86 ± 0.06 ab | 4.27 ± 0.07 bc | |
−20 | 50.59 ± 1.84 a | −2.78 ± 0.08 a | 4.44 ± 0.09 bc | |
6 | 25 | 49.38 ± 0.89 bc | −2.96 ± 0.11 b | 4.01 ± 0.58 c |
4 | 50.40 ± 1.16 a | −2.92 ± 0.11 b | 4.27 ± 0.07 bc | |
−20 | 49.87 ± 0.96 bc | −2.74 ± 0.04 a | 4.52 ± 0.11 ab | |
9 | 25 | 49.13 ± 0.92 bc | −3.17 ± 0.09 c | 4.59 ± 0.08 ab |
4 | 48.37 ± 0.44 bc | −2.83 ± 0.07 a | 4.13 ± 0.11 c | |
−20 | 48.65 ± 0.67 bc | −2.78 ± 0.07 a | 4.28 ± 0.09 bc | |
12 | 25 | 47.60 ± 1.23 bc | −3.25 ± 0.09 c | 4.78 ± 0.07 a |
4 | 49.01 ± 0.29 bc | −2.87 ± 0.07 ab | 4.30 ± 0.05 bc | |
−20 | 48.87 ± 0.57 bc | −2.77 ± 0.03 a | 4.51 ± 0.11 ab | |
15 | 25 | 46.46 ± 1.06 c | −3.33 ± 0.07 c | 4.68 ± 0.05 a |
4 | 48.65 ± 0.95 bc | −2.89 ± 0.06 ab | 4.30 ± 0.03 bc | |
−20 | 48.23 ± 0.31 bc | −2.81 ± 0.11 a | 4.51 ± 0.06 ab | |
18 | 25 | 46.39 ± 1.11 c | −3.38 ± 0.04 c | 4.82 ± 0.04 a |
4 | 47.63 ± 0.95 bc | −3.08 ± 0.08 b | 4.35 ± 0.06 bc | |
−20 | 47.96 ± 0.66 bc | −2.83 ± 0.09 a | 4.34 ± 0.13 bc | |
21 | 25 | 44.88 ± 1.25 c | −3.46 ± 0.04 c | 4.93 ± 0.03 a |
4 | 47.23 ± 0.22 bc | −3.09 ± 0.08 b | 4.34 ± 0.05 bc | |
−20 | 47.29 ± 0.16 bc | −2.83 ± 0.09 a | 4.26 ± 0.04 bc | |
24 | 25 | 42.83 ± 0.71 c | −3.52 ± 0.22 c | 5.12 ± 0.04 a |
4 | 47.21 ± 0.21 bc | −3.19 ± 0.08 c | 4.36 ± 0.15 bc | |
−20 | 47.12 ± 0.05 bc | −2.74 ± 0.02 a | 4.34 ± 0.04 bc |
Months | Temperature (°C) | Hardness (g) | Adhesiveness (g/s) | Maximum Tensile Strength (g) | Tensile Fracture Distance (mm) |
---|---|---|---|---|---|
0 | 25 | 4164.02 ± 49.37 c | 77.36 ± 0.83 c | 41.99 ± 0.65 ab | 107.07 ± 2.66 a |
4 | 4172.81 ± 47.29 bc | 76.78 ± 1.96 c | 42.03 ± 0.27 ab | 107.65 ± 1.18 a | |
−20 | 4189.19 ± 81.31 bc | 77.81 ± 0.31 bc | 42.81 ± 0.31 ab | 107.52 ± 1.22 a | |
3 | 25 | 4145.84 ± 50.49 c | 77.79 ± 1.26 c | 37.62 ± 0.51 b | 101.17 ± 1.24 ab |
4 | 4217.83 ± 9.86 a | 77.01 ± 1.55 c | 40.94 ± 0.22 ab | 101.29 ± 1.09 ab | |
−20 | 4210.43 ± 54.29 a | 79.20 ± 0.94 ab | 42.36 ± 0.75 ab | 105.52 ± 1.52 a | |
6 | 25 | 4154.76 ± 15.41 c | 78.28 ± 1.08 bc | 35.70 ± 0.42 c | 94.82 ± 1.49 ab |
4 | 4180.45 ± 44.59 bc | 77.59 ± 0.93 c | 39.66 ± 0.25 ab | 103.09 ± 1.49 ab | |
−20 | 4198.39 ± 5.35 bc | 76.98 ± 0.82 c | 41.76 ± 0.59 ab | 101.07 ± 0.76 ab | |
9 | 25 | 4187.61 ± 15.02 bc | 77.91 ± 0.59 bc | 34.06 ± 0.16 c | 85.47 ± 1.25 c |
4 | 4204.14 ± 6.53 bc | 76.09 ± 1.33 c | 39.11 ± 0.15 ab | 99.87 ± 0.24 ab | |
−20 | 4196.64 ± 18.46 bc | 77.97 ± 1.84 bc | 41.71 ± 0.44 ab | 99.61 ± 0.80 ab | |
12 | 25 | 4173.11 ± 31.86 bc | 79.05 ± 1.23 ab | 31.57 ± 0.27 c | 80.28 ± 1.81 c |
4 | 4221.64 ± 91.03 a | 76.61 ± 1.74 c | 38.53 ± 0.39 b | 98.44 ± 0.77 ab | |
−20 | 4190.13 ± 48.19 bc | 78.19 ± 0.97 bc | 41.54 ± 0.99 ab | 97.49 ± 1.02 ab | |
15 | 25 | 4186.11 ± 62.61 bc | 79.31 ± 1.14 ab | 29.01 ± 0.67 c | 76.01 ± 1.54 c |
4 | 4157.65 ± 36.65 c | 78.75 ± 0.45 ab | 38.43 ± 0.26 b | 97.46 ± 0.96 ab | |
−20 | 4176.12 ± 63.16 bc | 79.64 ± 0.56 ab | 41.49 ± 1.61 ab | 98.21 ± 0.93 ab | |
18 | 25 | 4210.48 ± 11.73 a | 80.05 ± 1.52 a | 26.94 ± 0.21 c | 74.23 ± 0.94 c |
4 | 4128.51 ± 5.76 c | 76.64 ± 1.28 c | 36.61 ± 0.27 b | 95.79 ± 0.44 ab | |
−20 | 4243.74 ± 35.85 a | 79.39 ± 0.82 ab | 40.32 ± 0.56 ab | 95.75 ± 2.04 ab | |
21 | 25 | 4190.08 ± 61.47 bc | 80.86 ± 2.02 a | 23.64 ± 0.48 c | 70.19 ± 0.93 c |
4 | 4197.26 ± 41.38 bc | 78.41 ± 0.72 bc | 35.62 ± 0.31 c | 94.59 ± 0.45 ab | |
−20 | 4188.53 ± 10.96 bc | 79.39 ± 0.82 ab | 39.80 ± 0.52 ab | 97.26 ± 0.88 ab | |
24 | 25 | 4271.44 ± 29.71 a | 82.71 ± 3.46 a | 21.84 ± 0.27 c | 67.47 ± 0.94 c |
4 | 4211.14 ± 53.34 a | 80.24 ± 1.06 a | 35.65 ± 0.21 c | 94.65 ± 0.48 ab | |
−20 | 4235.07 ± 47.84 a | 79.89 ± 0.51 a | 39.05 ± 0.66 ab | 95.58 ± 0.61 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.-W.; Chan, Y.-J.; Huang, Y.-C.; Chang, Y.-J.; Tsai, J.-C.; Mulio, A.T.; Wu, Z.-R.; Hou, Y.-W.; Lu, W.-C.; Li, P.-H. Quality Evaluation, Storage Stability, and Sensory Characteristics of Wheat Noodles Incorporated with Isomaltodextrin. Plants 2021, 10, 578. https://doi.org/10.3390/plants10030578
Huang D-W, Chan Y-J, Huang Y-C, Chang Y-J, Tsai J-C, Mulio AT, Wu Z-R, Hou Y-W, Lu W-C, Li P-H. Quality Evaluation, Storage Stability, and Sensory Characteristics of Wheat Noodles Incorporated with Isomaltodextrin. Plants. 2021; 10(3):578. https://doi.org/10.3390/plants10030578
Chicago/Turabian StyleHuang, Da-Wei, Yung-Jia Chan, Yuan-Chao Huang, Ya-Ju Chang, Jen-Chieh Tsai, Amanda Tresiliana Mulio, Zong-Ru Wu, Ya-Wen Hou, Wen-Chien Lu, and Po-Hsien Li. 2021. "Quality Evaluation, Storage Stability, and Sensory Characteristics of Wheat Noodles Incorporated with Isomaltodextrin" Plants 10, no. 3: 578. https://doi.org/10.3390/plants10030578
APA StyleHuang, D. -W., Chan, Y. -J., Huang, Y. -C., Chang, Y. -J., Tsai, J. -C., Mulio, A. T., Wu, Z. -R., Hou, Y. -W., Lu, W. -C., & Li, P. -H. (2021). Quality Evaluation, Storage Stability, and Sensory Characteristics of Wheat Noodles Incorporated with Isomaltodextrin. Plants, 10(3), 578. https://doi.org/10.3390/plants10030578