Agronomic Assessment of a Controlled-Release Polymer-Coated Urea-Based Fertilizer in Maize
Abstract
:1. Introduction
2. Results
2.1. Plant Growth, Leaf Greenness, and Effective Quantum Yield of Photosystem II
2.2. Foliar Nutrient Content
2.3. Hormone Activity
2.4. Growth, Yield, and Cereal Grain Composition
3. Discussion
4. Materials and Methods
4.1. Plant Material and Experimental Design
4.1.1. Microscale Experiment
4.1.2. Field Experiment
4.2. Applied Fertilizers and Treatments
4.2.1. Microscale Experiments
4.2.2. Field Experiments
4.3. Soil Characterization
4.4. Growth and Photosynthetic Parameters
4.5. Foliar Nutrient Analysis
4.6. Hormone Activity
4.7. Yield and Cereal Grain Composition
4.8. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 31 December 2020).
- López-Bellido, L. Cultivos herbáceos. Cereales; Mundi-Prensa: Madrid, Spain, 1991; Volume I, pp. 1–539. [Google Scholar]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Yu, Y.; Feng, K.; Hubacek, K.; Sun, L. Global implications of China’s future food consumption. J. Ind. Ecol. 2016, 20, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 2002, 31, 132–140. [Google Scholar] [CrossRef]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2005; Volume 87, pp. 85–156. [Google Scholar]
- Raun, W.R.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Halvorson, A.D.; Snyder, C.S.; Blaylock, A.D.; Del Grosso, S.J. Enhanced-efficiency nitrogen fertilizers: Potential role in nitrous oxide emission mitigation. Agron. J. 2014, 106, 715–722. [Google Scholar] [CrossRef]
- Agyin-Birikorang, S.; Fugice, J.; Singh, U.; Sanabria, J.; Choudhuri, S. Nitrogen uptake kinetics of key staple cereal crops in different agro-ecological regions of the world. J. Plant Nutr. 2017, 40, 995–1023. [Google Scholar] [CrossRef]
- Congreves, K.A.; Van Eerd, L.L. Nitrogen cycling and management in intensive horticultural systems. Nutr. Cycl. Agroecosyst. 2015, 102, 299–318. [Google Scholar] [CrossRef]
- Gheysari, M.; Loescher, H.W.; Sadeghi, S.H.; Mirlatifi, S.M.; Zareian, M.J.; Hoogenboom, G. Water-yield relations and water use efficiency of maize under nitrogen fertigation for semiarid environments: Experiment and synthesis. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2015; Volume 130, pp. 175–229. [Google Scholar]
- Zhang, X.; Qin, W.; Xie, J. Improving water use efficiency in grain production of winter wheat and summer maize in the North China Plain: A review. Front. Agric. Sci. Eng. 2016, 3, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Ju, X.; Yang, H. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management. Sci. Rep. 2017, 7, 42247. [Google Scholar] [CrossRef] [Green Version]
- Azeem, B.; KuShaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release 2014, 181, 11–21. [Google Scholar] [CrossRef]
- Dong, Y.J.; He, M.R.; Wang, Z.L.; Chen, W.F.; Hou, J.; Qiu, X.K.; Zhang, J.W. Effects of new coated release fertilizer on the growth of maize. J. Soil Sci. Plant Nutr. 2016, 16, 637–649. [Google Scholar] [CrossRef] [Green Version]
- Shaviv, A.; Mikkelsen, R.L. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation—A review. Fertil. Res. 1993, 35, 1–12. [Google Scholar] [CrossRef]
- Zhao, B.; Dong, S.T.; Zhang, J.W.; Liu, P. Effects of controlled-release fertiliser on nitrogen use efficiency in summer maize. PLoS ONE 2013, 8, e70569. [Google Scholar] [CrossRef] [Green Version]
- Carson, L.C.; Ozores-Hampton, M. Factors affecting nutrient availability, placement, rate, and application timing of controlled-release fertilizers for Florida vegetable production using seepage irrigation. Horttechnology 2013, 23, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Dou, H.; Alva, A.K. Nitrogen uptake and growth of two citrus rootstock seedlings in a sandy soil receiving different controlled-release fertilizer sources. Biol. Fertil. Soils 1998, 26, 169–172. [Google Scholar] [CrossRef]
- Shoji, S.; Delgado, J.; Mosier, A.; Miura, Y. Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality. Comm. Soil Sci. Plant Anal. 2001, 32, 1051–1070. [Google Scholar] [CrossRef]
- Birrenkott, B.A.; Craig, J.L.; McVey, G.R. A leach collection system to track the release of nitrogen from controlled-release fertilizers in container ornamentals. Hortscience 2005, 40, 1887–1891. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.J.; Zheng, Y.B. Species-specific fertilization can benefit container nursery crop production. Can. J. Plant Sci. 2015, 95, 251–262. [Google Scholar] [CrossRef]
- Cox, D.A. Reducing nitrogen leaching-losses from containerized plants—The effectiveness of controlled-release fertilizers. J. Plant Nutr. 1993, 16, 533–545. [Google Scholar] [CrossRef]
- Chen, J.; Lu, S.Y.; Zhang, Z.; Zhao, X.X.; Li, X.M.; Ning, P.; Liu, M.Z. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total Environ. 2018, 613, 829–839. [Google Scholar] [CrossRef]
- Chowdhury, M.A. The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices. Int. J. Biol. Macromol. 2014, 65, 136–147. [Google Scholar] [CrossRef]
- Fernández-Pérez, M.; Garrido-Herrera, F.J.; González-Pradas, E.; Villafranca-Sanchez, M.; Flores-Céspedes, F. Lignin and ethylcellulose as polymers in controlled release formulations of urea. J. Appl. Polym. Sci. 2008, 108, 3796–3803. [Google Scholar] [CrossRef]
- Naz, M.Y.; Sulaiman, S.A. Slow release coating remedy for nitrogen loss from conventional urea: A review. J. Control. Release 2016, 225, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Suter, H.; Islam, A.; Edis, R.; Freney, J.R.; Walker, C.N. Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: A review of enhanced efficiency fertilisers. Aust. J. Soil Res. 2008, 46, 289–301. [Google Scholar] [CrossRef]
- Dell, C.J.; Han, K.; Bryant, R.B.; Schmidt, J.P. Nitrous oxide emissions with enhanced efficiency nitrogen fertilizers in a rainfed system. Agron. J. 2014, 106, 723–731. [Google Scholar] [CrossRef]
- Drury, C.F.; Yang, X.M.; Reynolds, W.D.; Calder, W.; Oloya, T.O.; Woodley, A.L. Combining urease and nitrification inhibitors with incorporation reduces ammonia and nitrous oxide emissions and increases corn yields. J. Environ. Qual. 2017, 46, 939–949. [Google Scholar] [CrossRef]
- Li, Q.Q.; Cui, X.Q.; Liu, X.J.; Roelcke, M.; Pasda, G.; Zerulla, W.; Wissemeier, A.H.; Chen, X.P.; Goulding, K.; Zhang, F.S. A new urease-inhibiting formulation decreases ammonia volatilization and improves maize nitrogen utilization in North China Plain. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.C.; Wu, D.; Bol, R.; Shi, Y.F.; Guo, Y.B.; Meng, F.Q.; Wu, W.L. Nitrification inhibitor’s effect on mitigating N2O emissions was weakened by urease inhibitor in calcareous soils. Atmos. Environ. 2017, 166, 142–150. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hort. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hort. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hort. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Gasparin, E.; Araujo, M.M.; Saldanha, C.W.; Tolfo, C.V. Controlled release fertilizer and container volumes in the production of Parapiptadenia rigida (Benth.) Brenan seedlings. Acta Sci.-Agron. 2015, 37, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, T.; Yamazaki, H.; Inamoto, K.; Yamazaki, H. Analysis of yield components and dry matter production in a simplified soilless tomato culture system by using controlled-release fertilizers during summer-winter greenhouse production. Sci. Hort. 2016, 202, 17–24. [Google Scholar] [CrossRef]
- Oliet, J.; Planelles, R.; Segura, M.L.; Artero, F.; Jacobs, D.F. Mineral nutrition and growth of containerized Pinus halepensis seedlings under controlled-release fertilizer. Sci. Hort. 2004, 103, 113–129. [Google Scholar] [CrossRef]
- Pack, J.E.; Hutchinson, C.M.; Simonne, E.H. Evaluation of controlled-release fertilizers for Northeast Florida chip potato production. J. Plant Nutr. 2006, 29, 1301–1313. [Google Scholar] [CrossRef]
- Dubey, S.; Jhelum, V.; Patanjali, P.K. Controlled release agrochemicals formulations: A review. J. Sci. Ind. Res. India 2011, 70, 105–112. [Google Scholar]
- Diez, J.A.; Caballero, R.; Bustos, A.; Roman, R.; Cartagena, M.C.; Vallejo, A. Control of nitrate pollution by application of controlled release fertilizer (CRF), compost and an optimized irrigation system. Fertil. Res. 1996, 43, 191–195. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, Y.S.; Qin, S.J.; Li, W.H.; Li, S.Q. Effects of 15nitrogen-labeled gel-based controlled-release fertilizer on dry-matter accumulation and the nutrient-uptake efficiency of corn. Comm. Soil Sci. Plant Anal. 2011, 42, 1594–1605. [Google Scholar] [CrossRef]
- Liu, Q.F.; Chen, Y.; Li, W.W.; Liu, Y.; Han, J.; Wen, X.X.; Liao, Y.C. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China. Sci. Rep. 2016, 6, 28150. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.-J.; Yuan, J.-J.; Ding, W.-X.; Liu, Y.; Zhang, S.-L. Effects of controlled-release urea application on N2O emission in maize-cultivated sandy loam soil. Huan Jing Ke Xue 2020, 41, 3402–3409. [Google Scholar] [CrossRef]
- Jumadi, O.; Hala, Y.; Muis, A.; Ali, A.; Palennari, M.; Yagi, K.; Inubushi, K. Influences of chemical fertilizers and a nitrification inhibitor on greenhouse gas fluxes in a corn (Zea mays L.) field in Indonesia. Microbes Environ. 2008, 23, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Venterea, R.T.; Maharjan, B.; Dolan, M.S. Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a corn cropping system. J. Environ. Qual. 2011, 40, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wang, L.G.; Li, H.; Qiu, J.J.; Liu, H.Y. Impacts of fertilization alternatives and crop straw incorporation on N2O emissions from a spring maize field in Northeastern China. J. Integr. Agric. 2014, 13, 881–892. [Google Scholar] [CrossRef]
- García, C.; Vallejo, A.; Diéz, J.A.; García, L.; Cartagena, M.C. Nitrogen use efficiency with the application of controlled release fertilizers coated with kraft pine lignin. Soil Sci. Plant Nutr. 1997, 43, 443–449. [Google Scholar] [CrossRef]
- Treinyte, J.; Grazuleviciene, V.; Ostrauskaite, J. Biodegradable polymer composites with nitrogen- and phosphorous-containing waste materials as the fillers. Ecol. Chem. Eng. S 2014, 21, 515–528. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.F.; Li, F.B.; Deng, A.X.; Feng, X.M.; Fang, F.P.; Zhang, W.J. Integrated assessment of the impact of enhanced-efficiency nitrogen fertilizer on N2O emission and crop yield. Agric. Ecosyst. 2016, 231, 218–228. [Google Scholar] [CrossRef]
- Herrera, J.M.; Rubio, G.; Haner, L.L.; Delgado, J.A.; Lucho-Constantino, C.A.; Islas-Valdez, S.; Pellet, D. Emerging and established technologies to increase nitrogen use efficiency of cereals. Agronomy 2016, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Liu, L.; Xu, Y.; Yang, Y.; Shi, R. Application of controlled release urea improved grain yield and nitrogen use efficiency: A meta-analysis. PLoS ONE 2020, 15, e0241481. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.B., Jr. Plant Nutrition and Soil Fertility Manual; CRC Press: New York, NY, USA, 2012; p. 304. [Google Scholar]
- Gerke, J. Concepts and misconceptions of humic substances as the stable part of soil organic matter: A review. Agronomy 2018, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.-X.; Liu, H.-T.; Wu, S.-B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total Environ. 2019, 662, 501–510. [Google Scholar] [CrossRef]
- Durbak, A.; Yao, H.; McSteen, P. Hormone signaling in plant development. Curr. Opin. Plant Biol. 2012, 15, 92–96. [Google Scholar] [CrossRef]
- Cacco, G.; Attina, E.; Gelsomino, A.; Sidari, M. Effect of nitrate and humic substances of different molecular size on kinetic parameters of nitrate uptake in wheat seedlings. J. Plant Nutr. Soil Sci. 2000, 163, 313–320. [Google Scholar] [CrossRef]
- Nardi, S.; Ertani, A.; Francioso, O. Soil-root cross-talking: The role of humic substances. J. Plant Nutr. Soil Sci. 2017, 180, 5–13. [Google Scholar] [CrossRef]
- Ludwig, M. Evolution of the C4 photosynthetic pathway: Events at the cellular and molecular levels. Photosynth. Res. 2013, 117, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Jagadish, K.S.V.; Kadam, N.N.; Xiao, G.; Melgar, R.J.; Bahuguna, R.N.; Quinones, C.; Tamilselvan, A.; Prasad, P.V.V. Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2014; Volume 127, pp. 111–156. [Google Scholar]
- Harrison, R.; Webb, J. A review of the effect of N fertilizer type on gaseous emissions. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2001; Volume 73, pp. 65–108. [Google Scholar]
- WRB; IUSS. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015; Volume 106, p. 203. [Google Scholar]
- Barrs, H.D.; Weatherley, P.E. A re-examination of relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 1962, 15, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Garcia, F.V.; Gines, H.C.; Laza, R.C.; Samson, M.I.; Sanico, A.L.; Visperas, R.M.; Cassman, K.G. Nitrogen use efficiency of irrigated tropical rice established by broadcast wet-seeding and transplanting. Fertil. Res. 1996, 45, 123–134. [Google Scholar] [CrossRef]
CRF | CRFr1 | CRFr2 | CRFr3 | CRFr4 | DURAMON® | NSA | CONTROL | |
---|---|---|---|---|---|---|---|---|
Total fresh weight (aerial part) (g) | 647.3 ± 96.8 bc | 532.1 ± 140.6 abc | 486 ± 184 ab | 661.5 ± 60.2 c | 486.3 ± 68.2 ab | 537.8 ± 127.8 abc | 561.2 ± 128.3 abc | 400.8 ± 41.5 a |
Dry weight (aerial part) (%) | 22.8 ± 3.3 ab | 24.5 ± 3.8 ab | 21 ± 3.1 a | 24.4 ± 2.4 b | 21.6 ± 1.6 a | 23.9 ± 1.4 ab | 22.6 ± 1.6 ab | 24.7 ± 3.7 a |
Total length (cm) | 167 ± 10.4 ab | 157 ± 14.9 ab | 152.5 ± 29.4 ab | 176.8 ± 9.2 c | 159 ± 8.7 bc | 152.3 ± 17.4 ab | 154.5 ± 16.1 abc | 131.8 ± 9.8 a |
Primary stem length (cm) | 93 ± 6 bc | 75.3 ± 16 ab | 71 ± 20.8 a | 96.8 ± 6.7 c | 79.8 ± 11.8 abc | 78 ± 17.5 abc | 80.8 ± 16.6 abc | 68.1 ± 5.9 a |
Stem diameter (mm) | 33.2 ± 2.8 bc | 30 ± 2.3 ab | 31.4 ± 4.3 abc | 32.7 ± 3 abc | 29.6 ± 2.2 ab | 32.3 ± 1.9 abc | 33.8 ± 2.3 c | 29.4 ± 1.2 a |
Leaf weight (g) | 15.5 ± 1.6 ab | 15.6 ± 2.5 ab | 15 ± 2.5 ab | 18.8 ± 2.4 c | 15.8 ± 1.8 ab | 16.2 ± 1 bc | 16.6 ± 0.9 bc | 13.4 ± 1.1 a |
Leaf RWC (%) | 77.1 ± 4 ab | 76.2 ± 6.2 ab | 74.6 ± 5.2 ab | 73.1 ± 4.1 a | 77 ± 3.9 ab | 80.7 ± 8.9 b | 78.1 ± 4.1 ab | 74.8 ± 2.4 ab |
Total foliar area (cm2) | 29.2 ± 4.3 c | 21.2 ± 5.3 ab | 22.3 ± 5.2 ab | 26.9 ± 3.3 bc | 21.3 ± 4.6 ab | 25 ± 5.8 abc | 25.8 ± 5.1 abc | 19.4 ± 2.8 a |
ΦPSII | 0.67 ± 0.04 ab | 0.65 ± 0.07 ab | 0.64 ± 0.03 a | 0.66 ± 0.04 ab | 0.69 ± 0.03 b | 0.65 ± 0.08 ab | 0.65 ± 0.06 a | 0.64 ± 0.07 ab |
Leaf greenness (SPAD units) | 54.17 ± 4.99 a | 51.68 ± 5.24 a | 53.91 ± 5.24 a | 51.16 ± 5.51 a | 52.71 ± 4.83 a | 52.94 ± 4.91 a | 53.25 ± 3.3 a | 50.1 ± 4.73 a |
N (%) | 2.51 ± 0.3 b | 2.11 ± 0.18 a | 2.21 ± 0.08 ab | 2.11 ± 0.23 a | 2.23 ± 0.19 ab | 2.04 ± 0.21 a | 2.48 ± 0.37 b | 2.13 ± 0.26 a |
Microscale | |||||
---|---|---|---|---|---|
CRF | CRFr2 | DURAMON® | NSA | CONTROL | |
IAA | 3.52 ± 0.11 b | 3.08 ± 0.36 b | 3.24 ± 0.65 b | 1.85 ± 0.24 a | 2.19 ± 0.3 a |
JA | 0.76 ± 0.07 a | 0.54 ± 0.08 a | 1.67 ± 0.25 b | 0.65 ± 0.15 a | 0.48 ± 0.06 a |
SA | 39.8 ± 9.68 b | 35.87 ± 3.32 ab | 39.32 ± 6.58 b | 45.48 ± 13.37 b | 24.3 ± 5.67 a |
ABA | 10 ± 0.84 b | 8.14 ± 0.64 ab | 11.62 ± 1.21 b | 10.04 ± 0.42 ab | 6.61 ± 0.79 a |
iP | 0.26 ± 0.09 bc | 0.07 ± 0.02 a | 0.19 ± 0.1 bc | 0.18 ± 0.05 b | 0.29 ± 0.01 c |
tZ | 1.08 ± 0.28 b | 0.23 ± 0.08 a | 0.45 ± 0.17 a | 1.61 ± 0.64 c | 0.18 ± 0.06 a |
Field | |||||
CRF | CRFr2 | NSA | CONTROL | ||
IAA | 1.93 ± 0.14 a | 1.83 ± 0.06 a | 2.01 ± 0.12 a | 2.05 ± 0.24 a | |
JA | 3.29 ± 1.7 b | 0.76 ± 0.29 a | 0.80 ± 0.15 a | 2.96 ± 1.09 b | |
SA | 142.79 ± 58.74 a | 142.45 ± 60.12 a | 105.79 ± 14.65 a | 159.12 ± 17.61 a | |
ABA | 6.07 ± 0.67 b | 7.03 ± 0.37 c | 6.33 ± 0.76 bc | 3.78 ± 0.35 a | |
iP | 1.45 ± 0.35 b | 0.97 ± 0.22 a | 0.92 ± 0.17 a | 0.67 ± 0.05 a | |
tZ | 3.3 ± 0.4 bc | 2.72 ± 0.65 b | 3.91 ± 0.81 c | 1.19 ± 0.65 a | |
DHZ | 0.13 ± 0.02 c | 0.08 ± 0.02 b | 0.07 ± 0.01 b | 0.04 ± 0.01 a | |
GA1 | 3.76 ± 1.54 ab | 2.64 ± 1.15 ab | 8.51 ± 9.7 b | 0.75 ± 0.46 a | |
GA3 | 0.006 ± 0.004 a | 0.005 ± 0.001 a | 0.019 ± 0.006 b | 0.006 ± 0.002 a |
CRF | CRFr1 | CRFr2 | CRFr3 | CRFr4 | DURAMON® | NSA | CONTROL | |
---|---|---|---|---|---|---|---|---|
Total fresh weight (aerial part 1) (g) | 425 ± 44.7 abc | 437.8 ± 105 abc | 430.7 ± 71 abc | 351.2 ± 40 ab | 467 ± 22.9 c | 384.8 ± 49.4 abc | 420.5 ± 71.8 abc | 333 ± 65.8 a |
Dry weight (aerial part 1) (%) | 42.4 ± 2.4 abc | 43.2 ± 3.4 abc | 41.4 ± 0.6 a | 44.6 ± 2.7 ab | 42.7 ± 1.8 abc | 44.7 ± 3 c | 41.6 ± 1.2 ab | 43.4 ± 1.1 abc |
Primary stem length 2 (cm) | 170.1 ± 5.9 a | 178.9 ± 6.1 a | 165.1 ± 23.9 a | 168.3 ± 11.1 a | 182.4 ± 5.2 a | 170.8 ± 8 a | 166.1 ± 12.6 a | 166.3 ± 12.4 a |
Stem diameter (mm) | 27.2 ± 1.4 bc | 26.1 ± 1.7 bc | 27.2 ± 1.1 bc | 24.7 ± 1 ab | 28.1 ± 1 c | 26.2 ± 2.6 bc | 26.2 ± 2.9 bc | 23 ± 1 a |
Ear weight 3 (g) | 213.6 ± 38.3 cde | 190 ± 31.2 bcd | 225.2 ± 30.3 e | 158.3 ± 20 ab | 180.9 ± 37.3 bcde | 175.9 ± 26 bc | 217.4 ± 20.5 de | 130.9 ± 14.7 a |
Ear length (cm) | 20.4 ± 2.3 abc | 20 ± 0.9 abc | 21.5 ± 1 c | 18.7 ± 1 ab | 20.1 ± 0.7 abc | 18.9 ± 1.5 ab | 20.5 ± 1.3 bc | 18.6 ± 1.1 a |
Total dry grain weight per plant (g) | 132.3 ± 27.5 c | 120.2 ± 16.7 bc | 142.1 ± 24.6 c | 90.7 ± 24.1 ab | 133.1 ± 27.6 c | 114 ± 16.7 bc | 144.8 ± 14.2 c | 79.2 ± 17.8 a |
Weight of 100 grains (g) | 27.4 ± 1.9 a | 25.7 ± 2.1 a | 28.5 ± 1.1 a | 27.3 ± 1.6 a | 28.5 ± 1.8 a | 26.5 ± 2.4 a | 27.2 ± 1.4 a | 27.3 ± 2.3 a |
Grain number per plant × 0.01 | 4.8 ± 1 c | 4.1 ± 0.6 c | 4.9 ± 0.8 c | 3.1 ± 0.8 ab | 4.3 ± 0.7 c | 4.3 ± 0.6 bc | 5.3 ± 0.5 c | 2.9 ± 0.6 a |
CRF | CRFr2 | NSA | CONTROL | |
---|---|---|---|---|
Ear length (cm) | 19.21 ± 2.5 c | 17.9 ± 1.87 ab | 18.6 ± 1.91 bc | 17.25 ± 2.34 a |
Ear fresh weight (t ha−1) | 25.48 ± 8.19 b | 22.21 ± 6.11 a | 22.16 ± 4.93 a | 18.88 ± 6.01 a |
Ear dry weight (t ha−1) | 18.4 ± 6.59 c | 15.57 ± 4.5 b | 14.39 ± 3.57 ab | 13.68 ± 5.07 a |
Grain dry weight (t ha−1) | 13.83 ± 5.71 c | 11.63 ± 4.12 b | 11.41 ± 2.99 b | 9.72 ± 4.50 a |
Nitrogen Use Efficiency (kg kg−1 N) | 46.12 ± 19.05 a | 49.82 ± 19.66 a | 39.53 ± 10.99 b | - |
Parameters | Mean ± SD (%) | |
---|---|---|
Microscale | Field | |
Total nitrogen (g kg−1) | 0.80 ± 0.20 | 0.50 ± 0.10 |
Total carbon (g kg−1) | 18.50 ± 1.20 | 13.30 ± 0.90 |
Organic carbon (g kg−1) | 4.80 ± 0.20 | 5.60 ± 0.10 |
pH | 8.88 ± 0.04 | 8.76 ± 0.15 |
EC (dS m−1) | 0.14± 0.02 | 0.15 ± 0.02 |
P (g kg−1) | 0.70 ± 0.10 | 0.50 ± 0.01 |
K (g kg−1) | 6.60 ± 0.20 | 6.00 ± 0.10 |
Mg (g kg−1) | 2.47 ± 0.10 | 1.80 ± 0.03 |
Ca (g kg−1) | 35.60 ± 5.40 | 20.70 ± 4.70 |
Fe (g kg−1) | 9.90 ± 0.20 | 9.90 ± 0.50 |
Cu (mg kg−1) | 13.49 ± 0.56 | 8.65 ± 0.40 |
Mn (mg kg−1) | 180.86 ± 4.33 | 126.52 ± 4.59 |
Zn (mg kg−1) | 24.02 ± 0.74 | 21.82 ± 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil-Ortiz, R.; Naranjo, M.Á.; Ruiz-Navarro, A.; Caballero-Molada, M.; Atares, S.; García, C.; Vicente, O. Agronomic Assessment of a Controlled-Release Polymer-Coated Urea-Based Fertilizer in Maize. Plants 2021, 10, 594. https://doi.org/10.3390/plants10030594
Gil-Ortiz R, Naranjo MÁ, Ruiz-Navarro A, Caballero-Molada M, Atares S, García C, Vicente O. Agronomic Assessment of a Controlled-Release Polymer-Coated Urea-Based Fertilizer in Maize. Plants. 2021; 10(3):594. https://doi.org/10.3390/plants10030594
Chicago/Turabian StyleGil-Ortiz, Ricardo, Miguel Ángel Naranjo, Antonio Ruiz-Navarro, Marcos Caballero-Molada, Sergio Atares, Carlos García, and Oscar Vicente. 2021. "Agronomic Assessment of a Controlled-Release Polymer-Coated Urea-Based Fertilizer in Maize" Plants 10, no. 3: 594. https://doi.org/10.3390/plants10030594
APA StyleGil-Ortiz, R., Naranjo, M. Á., Ruiz-Navarro, A., Caballero-Molada, M., Atares, S., García, C., & Vicente, O. (2021). Agronomic Assessment of a Controlled-Release Polymer-Coated Urea-Based Fertilizer in Maize. Plants, 10(3), 594. https://doi.org/10.3390/plants10030594