Analysis of Graviresponse and Biological Effects of Vertical and Horizontal Clinorotation in Arabidopsis thaliana Root Tip
Abstract
:1. Introduction
2. Results
2.1. Angular Velocity and Sample Orientation Influence Root Growth Direction and Rate
2.2. Distribution of Statoliths in the Columella Is Influenced by Angular Velocity
2.3. Statocytes’ Ultrastructure Is Affected by Horizontal Clinorotation and Displays Features of Stress Response
2.4. The Distribution of PIN2, an Auxin Transporter, Is Affected in the Horizontal but Not Vertical Clinorotation
3. Discussion
4. Materials and Methods
4.1. Material, Growth Conditions, and Quantification
4.2. Optical and Electron Microscopy
4.3. Confocal Microscopy
4.4. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sato, E.M.; Hijazi, H.; Bennett, M.J.; Vissenberg, K.; Swarup, R. New insights into root gravitropic signalling. J. Exp. Bot. 2015, 66, 2155–2165. [Google Scholar] [CrossRef]
- Swarup, R.; Bennett, M.J. Root gravitropism. Annu. Plant. Rev. Online 2018, 157–174. [Google Scholar]
- Morita, M.T. Directional gravity sensing in gravitropism. Annu. Rev. Plant. Biol. 2010, 61, 705–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sack, F.D.; Suyemoto, M.M.; Leopold, A.C. Amyloplast sedimentation and organelle saltation in living corn columella cells. Am. J. Bot. 1986, 73, 1692–1698. [Google Scholar] [CrossRef] [PubMed]
- Fukaki, H.; Wysocka-Diller, J.; Kato, T.; Fujisawa, H.; Benfey, P.N.; Tasaka, M. Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J. 1998, 14, 425–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, J.H.; Chu, H.; Zhang, C.; Ghosh, D.; Gong, X.; Xu, J. A quantitative analysis of stem cell homeostasis in the Arabidopsis columella root cap. Front. Plant. Sci. 2015, 6, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, J.Z.; Hertel, R.; Sack, F.D. Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana. Planta 1989, 177, 198–206. [Google Scholar] [CrossRef]
- Sack, F.D. Plant gravity sensing. Int. Rev. Cytol. 1991, 127, 193–252. [Google Scholar]
- Baum, S.F.; Rost, T.L. Root apical oragnization in Arabidopsis thaliana. Protoplasma 1996, 192, 178–188. [Google Scholar] [CrossRef]
- Olsen, G.M.; Mirza, J.I.; Maher, E.P.; Iversen, T.-H. Ultrastructure and movements of cell organelles in the root cap of agravitropic mutants and normal seedlings of Arabidopsis thaliana. Physiol. Plant. 1984, 60, 523–531. [Google Scholar] [CrossRef]
- Blancaflor, E.B.; Fasano, J.M.; Gilroy, S. Mapping the functional roles of cap cells in the response of arabidopsis primary roots to gravity. Plant Physiol. 1998, 116, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitz, G.; Kang, B.H.; Schoenwaelder, M.E.A. Statolith sedimentation kinetics and force transduction to the cortical endoplasmic reticulum in gravity-sensing Arabidopsis columella cells. Plant. Cell 2009, 21, 843–860. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Vanneste, S.; Brewer, P.B.; Michniewicz, M.; Grones, P.; Kleine-Vehn, J.; Löfke, C.; Teichmann, T.; Bielach, A.; Cannoot, B.; et al. Inositol trisphosphate-induced Ca2+ signaling modulates auxin transport and pin polarity. Dev. Cell 2011, 20, 855–866. [Google Scholar] [CrossRef]
- Yoshihara, T.; Spalding, E.P. LAZY genes mediate the effects of gravity on auxin gradients and plant architecture. Plant. Physiol. 2017, 175, 959–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, M.; Nishimura, T.; Morita, M.T. Bridging the gap between amyloplasts and directional auxin transport in plant gravitropism. Curr. Opin. Plant. Biol. 2019, 52, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Furutani, M.; Hirano, Y.; Nishimura, T.; Nakamura, M.; Taniguchi, M.; Suzuki, K.; Oshida, R.; Kondo, C.; Sun, S.; Kato, K.; et al. Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nat. Commun. 2020, 11, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisniewska, J.; Xu, J.; Seifartová, D.; Brewer, P.B.; Růžička, K.; Blilou, L. Polar PIN localization directs auxin flow in plants. Science 2006, 312, 883. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; Guan, C.; Gälweiler, L.; Tänzler, P.; Huijser, P.; Marchant, A.; Parry, G.; Bennett, M.; Wisman, E.; Palme, K. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 1998, 17, 6903–6911. [Google Scholar] [CrossRef]
- Friml, J.; Wiŝniewska, J.; Benková, E.; Mendgen, K.; Palme, K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 2002, 415, 806–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleine-Vehn, J.; Ding, Z.; Jones, A.R.; Tasaka, M.; Morita, M.T.; Friml, J. Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc. Natl. Acad. Sci. USA 2010, 107, 22344–22349. [Google Scholar] [CrossRef] [Green Version]
- Luschnig, C.; Gaxiola, R.A.; Grisafi, P.; Fink, G.R. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 1998, 12, 2175–2187. [Google Scholar] [CrossRef] [Green Version]
- Abas, L.; Benjamins, R.; Malenica, N.; Paciorek, T.T.; Wiřniewska, J.; Moulinier-Anzola, J.C.; Sieberer, T.; Friml, J.; Luschnig, C. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 2006, 8, 249–256. [Google Scholar] [CrossRef]
- Rashotte, A.M.; Brady, S.R.; Reed, R.C.; Ante, S.J.; Muday, G.K. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol. 2000, 122, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Herranz, R.; Anken, R.; Boonstra, J.; Braun, M.; Christianen, P.C.M.; De Geest, M.; Hauslage, J.; Hilbig, R.; Hill, R.J.A.; Lebert, M.; et al. Ground-based facilities for simulation of microgravity: Organism-specific recommendations for their use, and recommended terminology. Astrobiology 2013, 13, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, T.A. On the direction of the radicle and germen during the vegetation of seeds. Philos. Trans. R. Soc. Lond. 1806, 96, 99–108. [Google Scholar]
- Hawker, L.E. A quantitative study of the geotropism of seedlings with special reference to the nature and development of their statolith apparatus. Ann. Bot. 1932, os-46, 121–157. [Google Scholar] [CrossRef]
- von Sachs, J. Über Ausschliessung der geotropischen und heliotropischen Krümmungen wärend des Wachsthums. Würzburg Arb 1879, 2, 209–225. [Google Scholar]
- Ciesielski, T. Untersuchungen über die Abwärtskrümmung der Wurzel. Beitraege Zur Biol Der Pflanz 1872, 1, 1–31. [Google Scholar]
- Moseyko, N.; Zhu, T.; Chang, H.S.; Wang, X.; Feldman, L.J. Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiol. 2002, 130, 720–728. [Google Scholar] [CrossRef] [Green Version]
- Dedolph, R.R.; Dipert, M.H. The physical basis of gravity stimulus nullification by clinostat rotation. Plant Physiol. 1971, 47, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, X.; Krause, L.; Görög, M.; Schüler, O.; Hauslage, J.; Hemmersbach, R.; Kircher, S.; Lasok, H.; Haser, T.; et al. 2-D Clinostat for simulated microgravity experiments with Arabidopsis seedlings. Microgravity Sci. Technol. 2016, 28, 59–66. [Google Scholar] [CrossRef]
- Boucheron-Dubuisson, E.; Manzano, A.I.; Le Disquet, I.; Matia, I.; Saez-Vasquez, J.; van Loon, J.J.W.A.; Herranz, R.; Carnero-Diaz, E.; Medina, F.J. Functional alterations of root meristematic cells of Arabidopsis thaliana induced by a simulated microgravity environment. J. Plant Physiol. 2016, 207, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Wang, T.; Wu, J.; Xu, W.; Li, H.; Liu, M.; Wu, L.; Lu, J.; Bian, B. Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana. Mutat Res. 2017, 796, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Polinski, E.; Schueler, O.; Krause, L.; Wimmer, M.A.; Hemmersbach, R.; Goldbach, H.E. 2-D clinorotation alters the uptake of some nutrients in Arabidopsis thaliana. J. Plant Physiol. 2017, 212, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Schüler, O.; Krause, L.; Görög, M.; Hauslage, J.; Kesseler, L.; Böhmer, M.; Hemmersbach, R. ARADISH—Development of a standardized plant growth chamber for experiments in gravitational biology using ground based facilities. Microgravity Sci. Technol. 2016, 28, 297–305. [Google Scholar] [CrossRef]
- Lorenzi, G.; Perbal, G. Root growth and statocyte polarity in lentil seedling roots grown in microgravity or on a slowly rotating clinostat. Physiol. Plant. 1990, 78, 532–537. [Google Scholar] [CrossRef]
- Kuznetsov, O.A.; Hasenstein, K.H. Intracellular magnetophoresis of Amyloplasts and induction of root curvature. Planta 1996, 198, 87–94. [Google Scholar] [CrossRef]
- John, S.P.; Hasenstein, K.H. Effects of mechanostimulation on gravitropism and signal persistence in flax roots. Plant Signal. Behav 2011, 6, 1365–1370. [Google Scholar] [CrossRef]
- Dümmer, M.; Forreiter, C.; Galland, P. Gravitropism in Arabidopsis thaliana: Root-specific action of the EHB gene and violation of the resultant law. J. Plant Physiol. 2015, 189, 24–33. [Google Scholar] [CrossRef]
- Villacampa, A.; Sora, L.; Medina, J.F.; Ciska, M. Optimal clinorotation settings for microgravity simulation in A. thaliana seedlings. In Proceedings of the 69th International Astronautical Congress (IAC), Bremen, Germany, 1–5 October 2018. [Google Scholar]
- Shen-Miller, J.; Hinchman, R.; Gordon, S.A. Thresholds for georesponse to acceleration in gravity-compensated avena seedlings. Plant Physiol. 1968, 43, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Driss-Ecole, D.; Legué, V.; Carnero-Diaz, E.; Perbal, G. Gravisensitivity and automorphogenesis of lentil seedling roots grown on board the International Space Station. Physiol. Plant. 2008, 134, 191–201. [Google Scholar] [CrossRef]
- Limbach, C.; Hauslage, J.; Schäfer, C.; Braun, M. How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights. Plant Physiol. 2005, 139, 1030–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabov, A.; Ashley, M.K.; Rigas, S.; Hatzopoulos, P.; Dolan, L.; Vicente-Agullo, F. Morphometric analysis of root shape. New Phytol. 2005, 165, 641–651. [Google Scholar] [CrossRef]
- Doyle, S.M.; Rigal, A.; Grones, P.; Karady, M.; Barange, D.K.; Majda, M.; Pařízková, B.; Karampelias, M.; Zwiewka, M.; Pěnčík, A.; et al. A role for the auxin precursor anthranilic acid in root gravitropism via regulation of PIN-FORMED protein polarity and relocalisation in Arabidopsis. New Phytol. 2019, 223, 1420–1432. [Google Scholar] [CrossRef] [Green Version]
- Feraru, E.; Feraru, M.I.; Kleine-Vehn, J.; Martinière, A.; Mouille, G.; Vanneste, S.; Vernhettes, S.; Runions, J.; Friml, J. PIN polarity maintenance by the cell wall in Arabidopsis. Curr. Biol. 2011, 21, 338–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xuan, W.; Audenaert, D.; Parizot, B.; Möller, B.K.; Njo, M.F.; De Rybel, B.; Van Isterdael, G.; Mähönen, A.P.; Vanneste, S.; Beeckman, T. Root cap-derived auxin pre-patterns the longitudinal axis of the Arabidopsis root. Curr. Biol. 2015, 25, 1381–1388. [Google Scholar] [CrossRef] [Green Version]
- Zemová, R.; Zwiewka, M.; Bielach, A.; Robert, H.S.; Friml, J. A forward genetic screen for new regulators of auxin-mediated degradation of auxin transport proteins in Arabidopsis thaliana. J. Plant Growth Regul. 2016, 35, 465–476. [Google Scholar] [CrossRef]
- Smith, J.D.; Todd, P.; Andrew Staehelin, L. Modulation of statolith mass and grouping in white clover (Trifolium repens) grown in 1-g, microgravity and on the clinostat. Plant J. 1997, 12, 1361–1373. [Google Scholar] [CrossRef]
- Ding, Z.; Friml, J. Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc. Natl. Acad. Sci. USA 2010, 107, 12046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbez, E.; Dünser, K.; Gaidora, A.; Lendl, T.; Busch, W. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2017, 114, E4884–E4893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swarup, R.; Kramer, E.M.; Perry, P.; Knox, K.; Leyser, H.M.O.; Haseloff, J.; Beemster, G.T.S.; Bhalerao, R.; Bennett, M.J. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat. Cell Biol. 2005, 7, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Bannigan, A.; Sulaman, W.; Priit, P.; Blancaflor, E.B.; Baskin, T.I. Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J. 2007, 50, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Ulmasov, T.; Murfett, J.; Hagen, G.; Guilfoyle, T.J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 1997, 9, 1963–1971. [Google Scholar] [PubMed] [Green Version]
- Sabatini, S.; Beis, D.; Wolkenfelt, H.; Murfett, J.; Guilfoyle, T.; Malamy, J.; Benfey, P.; Leyser, O.; Bechtold, N.; Weisbeek, P.; et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 1999, 99, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Brunoud, G.; Wells, D.M.; Oliva, M.; Larrieu, A.; Mirabet, V.; Burrow, A.H.; Beeckman, T.; Kepinski, S.; Traas, J.; Bennett, M.J.; et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 2012, 482, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Herranz, R.; Benguría, A.; Laván, D.A.; López-Vidriero, I.; Gasset, G.; Medina, J.F.; van Loon, J.J.W.A.; Marco, R. Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome. Mol. Ecol. 2010, 19, 4255–4264. [Google Scholar] [CrossRef]
- Brungs, S.; Hauslage, J.; Hilbig, R.; Hemmersbach, R.; Anken, R. Effects of simulated weightlessness on fish otolith growth: Clinostat versus Rotating-Wall Vessel. Adv. Sp. Res. 2011, 48, 792–798. [Google Scholar] [CrossRef]
- Thiel, C.S.; Paulsen, K.; Bradacs, G.; Lust, K.; Tauber, S.; Dumrese, C.; Hilliger, A.; Schoppmann, K.; Biskup, J.; Gölz, N.; et al. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity. Cell Commun. Signal. 2012, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Eiermann, P.; Kopp, S.; Hauslage, J.; Hemmersbach, R.; Gerzer, R.; Ivanova, K. Adaptation of a 2-D clinostat for simulated microgravity experiments with adherent cells. Microgravity Sci. Technol. 2013, 25, 153–159. [Google Scholar] [CrossRef]
- Fischer, J.; Schoppmann, K.; Knie, M.; Laforsch, C. Responses of microcrustaceans to simulated microgravity (2D-clinorotation)—Preliminary assessments for the development of Bioregenerative Life Support Systems (BLSS). Microgravity Sci Technol 2016, 28, 337–344. [Google Scholar] [CrossRef]
- Unruh, E.; Brungs, S.; Langer, S.; Bornemann, G.; Frett, T.; Hansen, P.D. Comprehensive study of the influence of altered gravity on the oxidative burst of mussel (Mytilus edulis) hemocytes. Microgravity Sci. Technol. 2016, 28, 275–285. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, G.; Wang, X.; Zhang, X.; Friml, J. Evolution of fast root gravitropism in seed plants. Nat. Commun. 2019, 10, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Hilaire, E.; Paulsen, A.Q.; Brown, C.S.; Guikema, J.A. Effects of clinorotation and microgravity on sweet clover columella cells treated with cytochalasin D. Physiol. Plant. 1995, 95, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Kozeko, L.; Kordyum, E. The stress protein level under clinorotation in context of the seedling developmental program and the stress response. Microgravity Sci. Technol. 2006, 18, 254–256. [Google Scholar] [CrossRef]
- Matía, I.; González-Camacho, F.; Herranz, R.; Kiss, J.Z.; Gasset, G.; van Loon, J.J.W.A.; Marco, R.; Medina, F.J. Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. J. Plant Physiol. 2010, 167, 184–193. [Google Scholar] [CrossRef]
- Paul, A.L.; Sng, N.J.; Zupanska, A.K.; Krishnamurthy, A.; Schultz, E.R.; Ferl, R.J. Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight? PLoS ONE 2017, 12, e0180186. [Google Scholar] [CrossRef] [PubMed]
- Perbal, G.; Driss-Ecole, D. Polarity of statocytes in lentil seedling roots grown in space (Spacelab D1 Mission). Physiol. Plant. 1989, 75, 518–524. [Google Scholar] [CrossRef]
- Smith, J.D.; Staehelin, L.A.; Todd, P. Early root cap development and graviresponse in white clover (Trifolium repens) grown in space and on a two-axis clinostat. J. Plant Physiol. 1999, 155, 543–550. [Google Scholar] [CrossRef]
- Volkmann, D.; Baluska, F.; Lichtscheidl, I.; Driss-Ecole, D.; Perbal, G. Statoliths motions in gravity-perceiving plant cells: Does actomyosin counteract gravity? FASEB J. 1999, 13, S143–S147. [Google Scholar] [CrossRef]
- Kraft, T.F.B.; Van Loon, J.J.W.A.; Kiss, J.Z. Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine. Planta 2000, 211, 415–422. [Google Scholar] [CrossRef]
- Perbal, G.; Lefranc, A.; Jeune, B.; Driss-Ecole, D. Mechanotransduction in root gravity sensing cells. Physiol. Plant. 2004, 120, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Hensel, W.; Sievers, A. Effects of prolonged omnilateral gravistimulation on the ultrastructure of statocytes and on the graviresponse of roots. Planta 1980, 150, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Aarrouf, J.; Darbelley, N.; Demandre, C.; Razafindramboa, N.; Perbal, G. Effect of horizontal clinorotation on the root system development and on lipid breakdown in rapeseed (Brassica napus) seedlings. Plant Cell Physiol. 1999, 40, 396–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyon, C.J. Choice of rotation rate for the horizontal clinostat. Plant Physiol. 1970, 46, 355–358. [Google Scholar] [CrossRef] [Green Version]
- Eleftheriou, E.P.; Adamakis, I.D.S.; Panteris, E.; Fatsiou, M. Chromium-induced ultrastructural changes and oxidative stress in roots of Arabidopsis thaliana. Int. J. Mol. Sci. 2015, 16, 15852–15871. [Google Scholar] [CrossRef] [Green Version]
- Adamakis, I.D.S.; Eleftheriou, E.P. Structural evidence of programmed cell death induction by tungsten in root tip cells of Pisum sativum. Plants 2019, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Lexy, R.O.; Xu, M.; Sang, Y.; Chen, X.; Yu, Q.; Gallagher, K.L. Symplastic signaling instructs cell division, cell expansion, and cell polarity in the ground tissue of Arabidopsis thaliana roots. Proc. Natl. Acad. Sci. USA 2016, 113, 11621–11626. [Google Scholar] [CrossRef] [Green Version]
- Rigó, G.; Ayaydin, F.; Tietz, O.; Zsigmond, L.; Salchert, K.; Darula, Z.; Medzihradszky, K.F.; Szabados, L.; Palme, K.; Koncz, C.; et al. Inactivation of plasma membrane—Localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell 2013, 25, 1592–1608. [Google Scholar] [CrossRef] [Green Version]
- Kleine-Vehn, J.; Leitner, J.; Zwiewka, M.; Sauer, M.; Abas, L.; Luschnig, C. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc. Natl. Acad. Sci. USA 2008, 105, 17812–17817. [Google Scholar] [CrossRef] [Green Version]
- Fukaki, H.; Fujisawa, H.; Tasaka, M. SGR1, SGR2, and SGR3: Novel genetic loci involved in shoot gravitropism in Arabidopsis thaliana. Plant Physiol. 1996, 110, 945–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, K.; Shimura, Y. Reversible root tip rotation in arabidopsis seedlings induced by obstacle-touching stimulus. Science 1990, 250, 274–276. [Google Scholar] [CrossRef]
- Simmons, C.; Migliaccio, F.; Masson, P.; Caspar, T.; Söll, D. A novel root gravitropism mutant of Arabidopsis thaliana exhibiting altered auxin physiology. Physiol. Plant. 1995, 93, 790–798. [Google Scholar] [CrossRef]
- Thompson, M.V.; Holbrook, N.M. Root-gel interactions and the root waving behavior of Arabidopsis. Plant Physiol. 2004, 135, 1822–1837. [Google Scholar] [CrossRef] [Green Version]
- Massa, G.D.; Gilroy, S. Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant. J. 2003, 33, 435–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legué, V.; Biancaflor, E.; Wymer, C.; Perbal, G.; Fantin, D.; Gilroy, S. Cytoplasmic free Ca2+ in arabidopsis roots changes in response to touch but not gravity. Plant Physiol. 1997, 114, 789–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Kim, H.S.; Park, J.M.; Cho, H.S.; Jeon, J.H. PIN-mediated polar auxin transport facilitates root-obstacle avoidance. New Phytol. 2020, 225, 1285–1296. [Google Scholar] [CrossRef]
- van Loon, J.J.W.A. Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Sp. Res. 2007, 39, 1161–1165. [Google Scholar] [CrossRef]
- Herranz, R.; Vandenbrink, J.P.; Villacampa, A.; Manzano, A.; Poehlman, W.L.; Feltus, F.A.; Kiss, J.Z.; Medina, F.J. RNAseq analysis of the response of Arabidopsis thaliana to fractional gravity under blue-light stimulation during spaceflight. Front. Plant. Sci. 2019, 10, 1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzano, A.; Herranz, R.; Den Toom, L.A.; Te Slaa, S.; Borst, G.; Visser, M.; Medina, F.J.; van Loon, J.J.W.A. Novel, Moon and Mars, partial gravity simulation paradigms and their effects on the balance between cell growth and cell proliferation during early plant development. NPJ Microgravity 2018, 4, 9. [Google Scholar] [CrossRef]
- Hilaire, E.; Peterson, B.V.; Guikema, J.A.; Brown, C.S. Clinorotation affects morphology and ethylene production in soybean seedlings. Plant. Cell Physiol. 1996, 37, 929–934. [Google Scholar] [CrossRef] [Green Version]
- González-Camacho, F.; Medina, F.J. The nucleolar structure and the activity of NopA100, a nucleolin-like protein, during the cell cycle in proliferating plant cells. Histochem. Cell Biol. 2006, 125, 139–153. [Google Scholar] [CrossRef]
- Xu, J.; Scheres, B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 Function in Epidermal Cell Polarity. Plant Cell. 2005, 17, 525–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasternak, T.; Tietz, O.; Rapp, K.; Begheldo, M.; Nitschke, R.; Ruperti, B.; Palme, K. Protocol: An improved and universal procedure for whole-mount immunolocalization in plants. Plant Methods 2015, 11, 50. [Google Scholar] [CrossRef] [PubMed]
- Musielak, T.J.; Schenkel, L.; Kolb, M.; Henschen, A.; Bayer, M. A simple and versatile cell wall staining protocol to study plant reproduction. Plant Reprod. 2015, 28, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Robert, H.S.; Grunewald, W.; Sauer, M.; Cannoot, B.; Soriano, M.; Swarup, R.; Weijers, D.; Bennett, M.; Boutilier, K.; Friml, J. Plant embryogenesis requires aux/lax-mediated auxin influx. Development 2015, 142, 702–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villacampa, A.; Sora, L.; Herranz, R.; Medina, F.-J.; Ciska, M. Analysis of Graviresponse and Biological Effects of Vertical and Horizontal Clinorotation in Arabidopsis thaliana Root Tip. Plants 2021, 10, 734. https://doi.org/10.3390/plants10040734
Villacampa A, Sora L, Herranz R, Medina F-J, Ciska M. Analysis of Graviresponse and Biological Effects of Vertical and Horizontal Clinorotation in Arabidopsis thaliana Root Tip. Plants. 2021; 10(4):734. https://doi.org/10.3390/plants10040734
Chicago/Turabian StyleVillacampa, Alicia, Ludovico Sora, Raúl Herranz, Francisco-Javier Medina, and Malgorzata Ciska. 2021. "Analysis of Graviresponse and Biological Effects of Vertical and Horizontal Clinorotation in Arabidopsis thaliana Root Tip" Plants 10, no. 4: 734. https://doi.org/10.3390/plants10040734
APA StyleVillacampa, A., Sora, L., Herranz, R., Medina, F. -J., & Ciska, M. (2021). Analysis of Graviresponse and Biological Effects of Vertical and Horizontal Clinorotation in Arabidopsis thaliana Root Tip. Plants, 10(4), 734. https://doi.org/10.3390/plants10040734