Exogenous Gibberellic Acid or Dilute Bee Honey Boosts Drought Stress Tolerance in Vicia faba by Rebalancing Osmoprotectants, Antioxidants, Nutrients, and Phytohormones
Abstract
:1. Introduction
2. Results
2.1. Growth and Green Pod Yield
2.2. Efficiency of the Photosynthetic Machinery
2.3. Leaf Tissue Stability and Oxidative Stress Indicators
2.4. Osmoprotectant Compounds
2.5. Antioxidant Defense System Components
2.6. Nutrient Contents
2.7. Phytohormone Concentrations
3. Discussion
4. Materials and Methods
4.1. Experimental Location and Soil Properties
4.2. Planting, Treatments, and Experimental Layout
4.3. Irrigation Water Applied (IWA)
4.4. Bee Honey Analysis for Physico-Chemical Composition
4.5. Sampling and Measurements
4.5.1. Growth and Yield Characteristics, and WUE
4.5.2. Efficiency of the Photosynthetic Machinery
4.5.3. Leaf Tissue Stability and Oxidative Stress Biomarkers
4.5.4. Contents of Osmoprotectant Compounds
4.5.5. Contents of Non-Enzymatic Antioxidant Compounds
4.5.6. Activities of Antioxidant Enzymes
4.5.7. Contents of Nutrient Elements
4.5.8. Contents of Plant Hormones
4.6. Statistical Tests
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Semida, W.M.; Taha, R.S.; Abdelhamid, M.T.; Rady, M.M. Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. S. Afr. J. Bot. 2014, 95, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Karkanis, A.; Ntatsi, G.; Lepse, L.; Fernández, J.A.; Vågen, I.M.; Rewald, B.; Alsiņa, I.; Kronberga, A.; Balliu, A.; Olle, M.; et al. Faba bean cultivation—Revealing novel managing practices for more sustainable and competitive European cropping systems. Front. Plant Sci. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Khazaei, H.; Vandenberg, A. Seed Mineral Composition and Protein Content of Faba Beans (Vicia faba L.) with Contrasting Tannin Contents. Agronomy 2020, 10, 511. [Google Scholar] [CrossRef] [Green Version]
- Semida, W.M.; Abdelkhalik, A.; Rady, M.O.A.; Marey, R.A.; Abd El-Mageed, T.A. Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Sci. Hortic. 2020, 272, 109580. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; Pascual, B.; Nájera, I.; Domene, M.A.; Baixauli, C.; Pascual-Seva, N. Effects of deficit irrigation on the yield and irrigation water use efficiency of drip-irrigated sweet pepper (Capsicum annuum L.) under Mediterranean conditions. Irrig. Sci. 2020, 38, 89–104. [Google Scholar] [CrossRef]
- AQUASTAT. AQUASTAT—FAO’s Global Information System on Water and Agriculture; Food and Agriculture Organization: Rome, Italy, 2019. [Google Scholar]
- Pal, S.; Zhao, J.; Khan, A.; Yadav, N.S.; Batushansky, A.; Barak, S.; Rewald, B.; Fait, A.; Lazarovitch, N.; Rachmilevitch, S. Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; Pascual-Seva, N.; Nájera, I.; Domene, M.Á.; Baixauli, C.; Pascual, B. Effect of deficit irrigation on the productive response of drip-irrigated onion (Allium cepa L.) in mediterranean conditions. Hortic. J. 2019, 88, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef] [Green Version]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyaya, H.; Sahoo, L.; Panda, S.K. Molecular Physiology of Osmotic Stress in Plants. In Molecular Stress Physiology of Plants; Rout, G.R., Das, A.B., Eds.; Springer: New Delhi, India, 2013; pp. 179–192. ISBN 978-81-322-0807-5. [Google Scholar]
- Zhu, J. Abiotic Stress Signaling and Responses in Plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Mageed, T.A.; Rady, M.M.; Taha, R.S.; Abd El Azeam, S.; Simpson, C.R.; Semida, W.M. Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of Capsicum annuum under salt stress. Sci. Hortic. 2020, 261, 108930. [Google Scholar] [CrossRef]
- Rady, M.M.; Taha, S.S.; Kusvuran, S. Integrative application of cyanobacteria and antioxidants improves common bean performance under saline conditions. Sci. Hortic. 2018, 233, 61–69. [Google Scholar] [CrossRef]
- Khalid, A.; Aftab, F. Effect of exogenous application of IAA and GA3 on growth, protein content, and antioxidant enzymes of Solanum tuberosum L. grown in vitro under salt stress. Vitr. Cell. Dev. Biol. Plant 2020, 56, 377–389. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Semida, W.M.; Mohamed, G.F.; Rady, M.M. Combined effect of foliar-applied salicylic acid and deficit irrigation on physiological-anatomical responses, and yield of squash plants under saline soil. S. Afr. J. Bot. 2016, 106, 8–16. [Google Scholar] [CrossRef]
- Taha, R.S.; Alharby, H.F.; Bamagoos, A.A.; Medani, R.A.; Rady, M.M. Elevating tolerance of drought stress in Ocimum basilicum using pollen grains extract; a natural biostimulant by regulation of plant performance and antioxidant defense system. S. Afr. J. Bot. 2020, 128, 42–53. [Google Scholar] [CrossRef]
- Rady, M.M.; Belal, H.E.E.; Gadallah, F.M.; Semida, W.M. Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Sci. Hortic. 2020, 266, 109290. [Google Scholar] [CrossRef]
- Sitohy, M.Z.; Desoky, E.S.M.; Osman, A.; Rady, M.M. Pumpkin seed protein hydrolysate treatment alleviates salt stress effects on Phaseolus vulgaris by elevating antioxidant capacity and recovering ion homeostasis. Sci. Hortic. 2020, 271, 109495. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Borhannuddin Bhuyan, M.H.M.; Anee, T.I.; Parvin, K.; Nahar, K.; Al Mahmud, J.; Fujita, M. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 2019, 8, 384. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.C. Turgor maintenance by osmotic adjustment: 40 years of progress. J. Exp. Bot. 2018, 69, 3223–3233. [Google Scholar] [CrossRef] [Green Version]
- Miceli, A.; Moncada, A.; Sabatino, L.; Vetrano, F. Effect of gibberellic acid on growth, yield, and quality of leaf lettuce and rocket grown in a floating system. Agronomy 2019, 9, 382. [Google Scholar] [CrossRef] [Green Version]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinauer Associates: Sunderland, MA, USA, 2002; ISBN 0878938230. [Google Scholar]
- Ashraf, M.; Karim, F.; Rasul, E. Interactive effects of gibberellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Regul. 2002, 36, 49–59. [Google Scholar] [CrossRef]
- Iqbal, M.; Ashraf, M. Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ. Exp. Bot. 2013, 86, 76–85. [Google Scholar] [CrossRef]
- Rady, M.M.; Talaat, N.B.; Abdelhamid, M.T.; Shawky, B.T.; Desoky, E.S.M. Maize (Zea mays L.) grains extract mitigates the deleterious effects of salt stress on common bean (Phaseolus vulgaris L.) growth and physiology. J. Hortic. Sci. Biotechnol. 2019, 94, 777–789. [Google Scholar] [CrossRef]
- Al Mahmud, J.; Biswas, P.K.; Nahar, K.; Fujita, M.; Hasanuzzaman, M. Exogenous application of gibberellic acid mitigates drought-induced damage in spring wheat. Acta Agrobot. 2019, 72. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Lu, G.Y.; Zhang, X.K.; Zou, C.S.; Cheng, Y.; Zheng, P.Y. Improving drought tolerance of germinating seeds by exogenous application of gibberellic acid (GA3) in rapeseed (Brassica napus L.). Seed Sci. Technol. 2010, 38, 432–440. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Fujita, M.; Oku, H.; Islam, M.T. Plant Tolerance to Environmental Stress: Role of Phytoprotectants; CRC Press: Boca Raton, FL, USA, 2019; Volume 4, ISBN 9781138559172. [Google Scholar]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouphael, Y.; Colla, G. Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Teklić, T.; Parađiković, N.; Špoljarević, M.; Zeljković, S.; Lončarić, Z.; Lisjak, M. Linking abiotic stress, plant metabolites, biostimulants and functional food. Ann. Appl. Biol. 2020, 1–23. [Google Scholar] [CrossRef]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Canaguier, R.; Kumar, P.; Colla, G. The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. 2015, 182, 124–133. [Google Scholar] [CrossRef]
- Semida, W.M.; Rady, M.M. Presoaking application of propolis and maize grain extracts alleviates salinity stress in common bean (Phaseolus vulgaris L.). Sci. Hortic. 2014, 168, 210–217. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Semida, W.M.; Rady, M.M. Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. Agric. Water Manag. 2017, 193, 46–54. [Google Scholar] [CrossRef]
- Desoky, E.S.M.; Elrys, A.S.; Rady, M.M. Integrative moringa and licorice extracts application improves Capsicum annuum fruit yield and declines its contaminant contents on a heavy metals-contaminated saline soil. Ecotoxicol. Environ. Saf. 2019, 169, 50–60. [Google Scholar] [CrossRef]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giordano, M.; Rouphael, Y.; Colla, G.; Mori, M. Effect of Vegetal- and Seaweed Extract-Based Biostimulants on Agronomical and Leaf Quality Traits of Plastic Tunnel-Grown Baby Lettuce under Four Regimes of Nitrogen Fertilization. Agronomy 2019, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Semida, W.M.; Abd El-Mageed, T.A.; Hemida, K.; Rady, M.M. Natural bee-honey based biostimulants confer salt tolerance in onion via modulation of the antioxidant defence system. J. Hortic. Sci. Biotechnol. 2019, 94, 632–642. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.; Ustunol, Z. Carbohydrate composition of honey from different floral sources and their influence on growth of selected intestinal bacteria: An in vitro comparison. Food Res. Int. 2005, 38, 721–728. [Google Scholar] [CrossRef]
- Saxena, S.; Gautam, S.; Sharma, A. Physical, biochemical and antioxidant properties of some Indian honeys. Food Chem. 2010, 118, 391–397. [Google Scholar] [CrossRef]
- Inés, M.; Craig, A.; Ordoñez, R.; Zampini, C.; Sayago, J.; Bedascarrasbure, E.; Alvarez, A.; Salomón, V.; Maldonado, L. LWT—Food Science and Technology Physico chemical and bioactive properties of honeys from Northwestern Argentina. LWT Food Sci. Technol. 2011, 44, 1922–1930. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Liu, L.; Cheng, C.; Ren, Z.; Xu, S.; Li, X. GAI functions in the plant response to dehydration stress in arabidopsis Thaliana. Int. J. Mol. Sci. 2020, 21, 819. [Google Scholar] [CrossRef] [Green Version]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [Green Version]
- Alzahrani, Y.; Rady, M.M. Compared to antioxidants and polyamines, the role of maize grain-derived organic biostimulants in improving cadmium tolerance in wheat plants. Ecotoxicol. Environ. Saf. 2019, 182, 109378. [Google Scholar] [CrossRef]
- Desoky, E.M.; El-maghraby, L.M.M.; Awad, A.E.; Abdo, A.I.; Rady, M.M.; Semida, W.M. Fennel and ammi seed extracts modulate antioxidant defence system and alleviate salinity stress in cowpea (Vigna unguiculata). Sci. Hortic. 2020, 272, 109576. [Google Scholar] [CrossRef]
- Sun, T. Gibberellin signal transduction in stem elongation & leaf growth. In Plant Hormones; Davies, P.J., Ed.; Springer: Dordrecht, The Netherlands, 2004; pp. 308–328. ISBN 9781402026867. [Google Scholar]
- Azuma, T.; Ueno, S.; Uchida, N.; Yasuda, T. Gibberellin-induced elongation and osmoregulation in internodes of floating rice. Physiol. Plant. 1997, 99, 517–522. [Google Scholar] [CrossRef]
- Wood, A.; Paleg, L.G. The Influence of Gibberellic Acid on the Permeability of Model Membrane Systems. Plant Physiol. 1972, 50, 103–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, W.; Zhong, Y.; Shangguan, Z. A meta-analysis of leaf gas exchange and water status responses to drought. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Zhang, K.; Zhou, X.; Xi, L.; Wang, Y.; Xu, H.; Pan, T.; Zou, Z. Melatonin alleviates chilling stress in cucumber seedlings by up-regulation of CsZat12 and modulation of polyamine and abscisic acid metabolism. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Slabbert, M.M.; Krüger, G.H.J. Antioxidant enzyme activity, proline accumulation, leaf area and cell membrane stability in water stressed Amaranthus leaves. S. Afr. J. Bot. 2014, 95, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Guidi, L.; Lo Piccolo, E.; Landi, M. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Front. Plant Sci. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Muhammad, I.; Shalmani, A.; Ali, M.; Yang, Q.-H.; Ahmad, H.; Li, F.B. Mechanisms Regulating the Dynamics of Photosynthesis Under Abiotic Stresses. Front. Plant Sci. 2021, 11, 1–25. [Google Scholar] [CrossRef]
- Aktas, L.Y.; Akca, H.; Altun, N.; Battal, P. Phytohormone levels of drought acclimated laurel seedlings in semiarid conditions. Gen. Appl. Plant Physiol. 2008, 34, 203–214. [Google Scholar]
- Singh, M.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Rev. Environ. Sci. Biotechnol. 2015, 14, 407–426. [Google Scholar] [CrossRef]
- Munteanu, V.; Gordeev, V.; Martea, R.; Duca, M. Effect of gibberellin cross talk with other phytohormones on cellular growth and mitosis to endoreduplication transition. Int. J. Adv. Res. Biol. Sci. 2014, 1, 1–18. [Google Scholar]
- Ullah, A.; Manghwar, H.; Shaban, M.; Khan, A.H.; Akbar, A.; Ali, U.; Ali, E.; Fahad, S. Phytohormones enhanced drought tolerance in plants: A coping strategy. Environ. Sci. Pollut. Res. 2018, 25, 33103–33118. [Google Scholar] [CrossRef] [PubMed]
- Kaya, C.; Tuna, A.L.; Alves, A.A.C. Gibberellic acid improves water deficit tolerance in maize plants. Aust. J. Crop Sci. 2006, 28, 331–337. [Google Scholar] [CrossRef]
- ElSayed, A.I.; Boulila, M.; Rafudeen, M.S.; Sengupta, S.; Rady, M.M. Melatonin regulatory mechanisms and phylogenetic analyses implying new sequences of melatonin biosynthesis related genes extracted from peanut under salinity stress. Plants 2020, 9, 854. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Semida, W.M.; Rady, M.M.; Mohamed, G.F.; Hemida, K.A.; Alhammad, B.A.; Hassan, M.M.; Shami, A. Sequenced Antioxidants Application Rectifies Ion Imbalance and Strengthens Antioxidant Systems in Salt-stressed Cucumber. Plants 2020, 9, 1783. [Google Scholar] [CrossRef]
- Taha, R.S.; Seleiman, M.F.; Alotaibi, M.; Alhammad, B.A.; Rady, M.M.; Mahdi, A.H.A. Exogenous potassium treatments elevate salt tolerance and performances of Glycine max by boosting antioxidant defense system under actual saline field conditions. Agronomy 2020, 10, 1741. [Google Scholar] [CrossRef]
- Desoky, E.S.; Mansour, E.; Ali, M.M.A.; Yasin, M.A.T.; Abdul-Hamid, M.I.E.; Rady, M.M.; Ali, E.F. Exogenously used 24-epibrassinolide promotes drought tolerance in maize hybrids by improving plant and water productivity in an arid environment. Plants 2021, 10, 354. [Google Scholar] [CrossRef] [PubMed]
- Semida, W.M.; Abdelkhalik, A.; Mohamed, G.F.; Abd El-Mageed, T.A.; Abd El-Mageed, S.A.; Rady, M.M.; Ali, E.F. Foliar Application of Zinc Oxide Nanoparticles Promotes Drought Stress Tolerance in Eggplant (Solanum melongena L.). Plants 2021, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Soil Survey Staff USDA. Keys to Soil Taxonomy, 12th ed.; USDA-NRCS: Washington, DC, USA, 2014; ISBN 0926487221.
- Klute, A. Methods of Soil Analysis: Part. 1 Physical and Mineralogical Methods, 2nd ed.; The American Society of Agronomy, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 1986. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis Part. 2. Chemical and Microbiological Properties; American Society of Agronomy, Inc.: Madison, WI, USA, 1982. [Google Scholar]
- Dahnke, W.C.; Whitney, D.A. Measurement of soil salinity. In Recommended Chemical Soil Test Procedures for the North Central Region. North Central Regional Publication 221.; Dahnke, W.C., Ed.; North Dakota Agricultural Experiment Station Bulletin: Fargo, ND, USA, 1988; Volume 499, pp. 32–34. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements; Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1988. [Google Scholar]
- AOAC. Official methods of analysis of AOAC international. In Association of Official Analysis Chemists International; Horwitz, W., Ed.; AOAC: Rockville, MD, 1995; Volume II, pp. 1058–1059. [Google Scholar]
- Bogdanov, S.; Baumann, E. Bestimmung von Honigzuckern mit HPLC. Mitt. Geb. Lebensm. Hyg. 1988, 79, 198–206. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soil, Plants and Water; Division of Agricultural Science, University of California: Berkeley, CA, USA, 1961; pp. 60–61, 150–179. [Google Scholar]
- Mukherjee, S.P.; Choudhuri, M.A. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Plant. 1983, 58, 166–170. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Jeong, S.; Kim, D. Effect of far-infrared radiation on the antioxidant activity of rice hulls. J. Agric. Food Chem. 2003, 51, 4400–4403. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.E. Design and Operation of Farm Irrigation Systems; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1983; p. 827. [Google Scholar]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris L. Plant Physiol. 1949, 24, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagendorf, A.T. Oxidation and reduction of pyridine nucleotides by purified chloroplasts. Arch. Biochem. Biophys. 1956, 62, 141–150. [Google Scholar] [CrossRef]
- Avron, M. Photophosphorylation by Swis- chard chloroplasts chloroplasts. Biochim. Biophys. Acta 1960, 40, 257–272. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Clark, A.J.; Landolt, W.; Bucher, J.B.; Strasser, R.J. Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index. Environ. Pollut. 2000, 109, 501–507. [Google Scholar] [CrossRef]
- Osman, A.S.; Rady, M.M. Effect of humic acid as an additive to growing media to enhance the production of eggplant and tomato transplants. J. Hortic. Sci. Biotechnol. 2014, 89, 237–244. [Google Scholar] [CrossRef]
- Rady, M.M. Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci. Hortic. 2011, 129, 232–237. [Google Scholar] [CrossRef]
- Madhava Rao, K.V.; Sresty, T.V.S. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci. 2000, 157, 113–128. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Kubiś, J. Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves. J. Plant Physiol. 2008, 165, 397–406. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 207, 205–207. [Google Scholar] [CrossRef]
- Grieve, C.M.; Grattan, S.R. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 1983, 70, 303–307. [Google Scholar] [CrossRef]
- Irigoyen, J.J.; Einerich, D.W.; Sánchez-Díaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant. 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Huang, C.; He, W.; Guo, J.; Chang, X.; Su, P.; Zhang, L. Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J. Exp. Bot. 2005, 56, 3041–3049. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.W.; Murphy, T.M.; Lin, C.H. Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct. Plant Biol. 2003, 30, 955–963. [Google Scholar] [CrossRef]
- Paradiso, A.; Berardino, R.; De Pinto, M.C.; Sanità Di Toppi, L.; Storelli, M.M.; Tommasi, F.; De Gara, L. Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol. 2008, 49, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Ching, L.S.; Mohamed, S. Alpha-tocopherol content in 62 edible tropical plants. J. Agric. Food Chem. 2001, 49, 3101–3105. [Google Scholar] [CrossRef] [PubMed]
- Konings, E.J.M.; Roomans, H.H.S.; Beljaars, P.R. Liquid Chromatographic Determination of Tocopherols and Tocotrienols in Margarine, Infant Foods, and Vegetables. J. AOAC Int. 1996, 79, 902–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makkar, H.P.S.; Becker, K.; Abel, H.; Pawelzik, E. Nutrient contents, rumen protein degradability and antinutritional factors in some colour- and white-flowering cultivars of Vicia faba beans. J. Sci. Food Agric. 1997, 75, 511–520. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]
- Foster, J.G.; Hess, J.L. Responses of Superoxide Dismutase and Glutathione Reductase Activities in Cotton Leaf Tissue Exposed to an Atmosphere Enriched in Oxygen. Plant Physiol. 1980, 66, 482–487. [Google Scholar] [CrossRef]
- Yu, Q.; Rengel, Z. Drought and salinity differentially influence activities of superoxide dismutases in narrow-leafed lupins. Plant Sci. 1999, 142, 1–11. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Agricultural Chemists, 6th ed.; AOAC: Washington, DC, USA, 1995. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1967. [Google Scholar]
- Johnson, C.M.; Ulrich, A. Analytical Methods for Use in Plant Analysis; Bulletin (Agricultural Experiment Station, Berkeley, Calif.); University of California: Berkeley, CA, USA, 1959. [Google Scholar]
- Nehela, Y.; Hijaz, F.; Elzaawely, A.A.; El-Zahaby, H.M.; Killiny, N. Phytohormone profiling of the sweet orange (Citrus sinensis (L.) Osbeck) leaves and roots using GC-MS-based method. J. Plant Physiol. 2016, 199, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Ünyayar, S.; Topcuoglu, S.F.; Ünyayar, A. A modified method for extraction and identification of indole-3-acetic acid (IAA), gibberellic acid (GA3), abscisic acid (ABA) and zeatin produced by Phanerochaete chrysosporium ME446. Bulg. J. Plant Physiol. 1996, 22, 105–110. [Google Scholar]
Source of Variation | No. of Leaves per Plant | Leaf Area per Plant (cm2) | Shoot DW per Plant (g) | No. of Green Pods per Plant | Green Pods Yield per Hectare (ton) | WUE (Kg per m3) |
---|---|---|---|---|---|---|
Season of 2018/2019 | ||||||
Irrigation (Ir) | * | * | ** | * | ** | * |
100% of ETc | 31.8 ± 3.1a | 136.0 ± 13.7a | 17.7 ± 1.7a | 20.2 ± 1.7a | 32.5 ± 2.9a | 8.81 ± 1.12a |
60% of ETc | 24.8 ± 2.4b | 100.7 ± 10.1b | 10.4 ± 1.0b | 14.2 ± 1.3b | 16.8 ± 1.7b | 7.59 ± 1.09b |
Regulators (Re) | * | * | * | * | * | * |
Control (Cn) | 23.5 ± 2.3c | 95.0 ± 10.3c | 10.1 ± 1.0c | 13.3 ± 1.3c | 15.1 ± 1.5c | 5.12 ± 0.88c |
GA3 | 29.7 ± 3.0b | 125.8 ± 12.6b | 15.0 ± 1.6b | 18.2 ± 1.4b | 26.9 ± 2.3b | 9.11 ± 1.03b |
Db-H | 31.7 ± 3.0a | 134.3 ± 12.9a | 17.2 ± 1.6a | 20.0 ± 1.9a | 32.1 ± 3.1a | 10.87 ± 1.21a |
Ir × Re | * | * | * | * | * | * |
100% ETc × Cn | 28.3 ± 2.7c | 117.5 ± 12.1c | 11.9 ± 1.2c | 16.5 ± 1.3c | 20.8 ± 1.8c | 5.64 ± 0.98d |
100% ETc × GA3 | 31.7 ± 3.4b | 137.7 ± 14.2b | 18.5 ± 1.9b | 20.3 ± 1.5b | 33.3 ± 2.4b | 9.02 ± 1.13b |
100% ETc × Db-H | 35.3 ± 3.2a | 152.7 ± 14.8a | 22.7 ± 2.1a | 23.7 ± 2.4a | 43.5 ± 4.4a | 11.79 ± 1.23a |
60% ETc × Cn | 18.7 ± 1.9c | 72.4 ± 8.4d | 8.2 ± 0.7d | 10.1 ± 1.3d | 9.4 ± 1.1d | 4.25 ± 0.86c |
60% ETc × GA3 | 27.7 ± 2.6c | 113.8 ± 11.0c | 11.4 ± 1.2c | 16.1 ± 1.3c | 20.4 ± 2.1c | 9.21 ± 0.99b |
60% ETc × Db-H | 28.0 ± 2.8c | 115.9 ± 10.9c | 11.7 ± 1.0c | 16.3 ± 1.4c | 20.7 ± 1.8c | 9.35 ± 1.21b |
Season of 2019/2020 | ||||||
Irrigation (Ir) | * | * | ** | * | ** | * |
100% of ETc | 33.1 ± 3.2a | 152.4 ± 13.3a | 19.8 ± 2.0a | 19.1 ± 2.2a | 31.2 ± 3.1a | 8.31 ± 0.93a |
60% of ETc | 25.6 ± 2.4b | 113.9 ± 11.1b | 11.2 ± 1.0b | 13.5 ± 1.5b | 17.2 ± 1.7b | 7.64 ± 1.02b |
Regulators (Re) | * | * | * | * | * | * |
Control (Cn) | 24.2 ± 2.4b | 105.6 ± 9.3c | 10.7 ± 1.1c | 12.6 ± 1.4c | 15.2 ± 1.7c | 5.06 ± 1.03c |
GA3 | 31.0 ± 3.0a | 140.8 ± 12.3b | 17.2 ± 1.8b | 17.3 ± 2.0b | 26.6 ± 2.6b | 8.86 ± 1.16b |
Db-H | 33.0 ± 3.2a | 151.4 ± 15.1a | 18.7 ± 1.7a | 19.2 ± 2.2a | 30.9 ± 3.1a | 10.29 ± 1.32a |
Ir × Re | * | * | * | * | * | * |
100% ETc × Cn | 29.4 ± 2.8c | 134.1 ± 10.4c | 12.7 ± 1.3c | 15.9 ± 1.8c | 21.8 ± 2.3c | 5.81 ± 0.69d |
100% ETc × GA3 | 33.1 ± 3.2b | 150.2 ± 12.2b | 21.9 ± 2.2b | 18.8 ± 2.2b | 31.7 ± 2.8b | 8.44 ± 1.06c |
100% ETc × Db-H | 36.7 ± 3.7a | 169.4 ± 17.4a | 24.8 ± 2.3a | 22.7 ± 2.5a | 40.1 ± 4.2a | 10.68 ± 1.22a |
60% ETc × Cn | 18.9 ± 1.9d | 77.1 ± 8.2d | 8.7 ± 0.9d | 9.2 ± 1.0d | 8.5 ± 1.0d | 3.77 ± 0.63e |
60% ETc × GA3 | 28.8 ± 2.7c | 131.4 ± 12.4c | 12.4 ± 1.2c | 15.7 ± 1.7c | 21.4 ± 2.3c | 9.50 ± 1.11b |
60% ETc × Db-H | 29.2 ± 2.6c | 133.3 ± 12.7c | 12.6 ± 1.0c | 15.7 ± 1.8c | 21.7 ± 1.9c | 9.63 ± 1.13b |
Source of Variation | Total Chlorophylls (mg per g FW) | Total Carotenoids (mg per g FW) | Photochemical Activity | SPAD Chlorophyll Index | Fv/Fm | Performance Index (%) |
---|---|---|---|---|---|---|
Season of 2018/2019 | ||||||
Irrigation (Ir) | * | * | * | * | * | * |
100% of ETc | 3.13 ± 0.19a | 0.75 ± 0.02a | 45.2 ± 1.6a | 66.6 ± 2.4a | 0.85 ± 0.02a | 16.8 ± 0.21a |
60% of ETc | 2.44 ± 0.12b | 0.63 ± 0.01b | 38.9 ± 1.3b | 56.8 ± 1.9b | 0.77 ± 0.02b | 13.8 ± 0.17b |
Regulators (Re) | * | * | * | * | * | * |
Control (Cn) | 2.33 ± 0.12c | 0.60 ± 0.01c | 37.5 ± 1.2b | 54.0 ± 1.8b | 0.75 ± 0.02b | 13.0 ± 0.18c |
GA3 | 2.94 ± 0.19b | 0.72 ± 0.02b | 43.7 ± 1.6a | 64.7 ± 2.5a | 0.83 ± 0.03a | 16.0 ± 0.19b |
Db-H | 3.10 ± 0.15a | 0.76 ± 0.02a | 45.0 ± 1.7a | 66.4 ± 2.2c | 0.86 ± 0.03a | 17.1 ± 0.22a |
Ir × Re | * | * | * | * | * | * |
100% ETc × Cn | 2.78 ± 0.17c | 0.68 ± 0.01c | 42.3 ± 1.3b | 62.4 ± 2.1c | 0.81 ± 0.02b | 15.8 ± 0.21b |
100% ETc× GA3 | 3.18 ± 0.21b | 0.76 ± 0.02b | 45.4 ± 1.6a | 67.1 ± 2.7a | 0.85 ± 0.02ab | 16.3 ± 0.18b |
100% ETc × Db-H | 3.42 ± 0.18a | 0.82 ± 0.02a | 47.9 ± 2.0a | 70.2 ± 2.4a | 0.89 ± 0.03a | 18.4 ± 0.25a |
60% ETc × Cn | 1.87 ± 0.07d | 0.52 ± 0.00d | 32.6 ± 1.1c | 45.6 ± 1.4d | 0.69 ± 0.01c | 10.1 ± 0.14c |
60% ETc × GA3 | 2.69 ± 0.16c | 0.68 ± 0.01c | 41.9 ± 1.5b | 62.3 ± 2.2c | 0.80 ± 0.03b | 15.6 ± 0.20b |
60% ETc × Db-H | 2.77 ± 0.12c | 0.70 ± 0.02c | 42.1 ± 1.3b | 62.5 ± 2.0c | 0.82 ± 0.02b | 15.7 ± 0.18b |
Season of 2019/2020 | ||||||
Irrigation (Ir) | * | * | * | * | * | * |
100% of ETc | 3.41 ± 0.14a | 0.76 ± 0.03a | 46.1 ± 1.6a | 68.2 ± 2.2a | 0.85 ± 0.03a | 17.2 ± 0.17a |
60% of ETc | 2.60 ± 0.11b | 0.65 ± 0.01b | 39.2 ± 1.5b | 57.1 ± 2.0b | 0.75 ± 0.02b | 13.7 ± 0.13b |
Regulators (Re) | * | * | * | * | * | * |
Control (Cn) | 2.38 ± 0.10b | 0.63 ± 0.01b | 37.5 ± 1.5b | 53.9 ± 2.1b | 0.73 ± 0.02b | 12.9 ± 0.14b |
GA3 | 3.26 ± 0.13a | 0.73 ± 0.02a | 44.6 ± 1.8a | 65.7 ± 2.0a | 0.83 ± 0.02a | 16.3 ± 0.16a |
Db-H | 3.40 ± 0.14a | 0.76 ± 0.03a | 46.0 ± 1.6a | 68.3 ± 2.3a | 0.85 ± 0.04a | 17.2 ± 0.16a |
Ir × Re | * | * | * | * | * | * |
100% ETc × Cn | 3.01 ± 0.12b | 0.70 ± 0.02b | 43.1 ± 1.5b | 63.5 ± 2.4b | 0.80 ± 0.03b | 15.5 ± 0.16c |
100% ETc× GA3 | 3.49 ± 0.15a | 0.76 ± 0.02a | 46.4 ± 1.8a | 68.1 ± 1.9a | 0.86 ± 0.02a | 17.1 ± 0.18b |
100% ETc × Db-H | 3.74 ± 0.14a | 0.81 ± 0.04a | 48.9 ± 1.6a | 72.9 ± 2.2a | 0.89 ± 0.04a | 19.0 ± 0.18a |
60% ETc × Cn | 1.74 ± 0.08c | 0.56 ± 0.00c | 31.8 ± 1.4c | 44.3 ± 1.7c | 0.66 ± 0.01c | 10.3 ± 0.11d |
60% ETc × GA3 | 3.02 ± 0.11b | 0.69 ± 0.02b | 42.8 ± 1.7b | 63.3 ± 2.1b | 0.79 ± 0.02b | 15.4 ± 0.14c |
60% ETc × Db-H | 3.05 ± 0.14b | 0.71 ± 0.02b | 43.0 ± 1.5b | 63.6 ± 2.3b | 0.80 ± 0.04b | 15.4 ± 0.14c |
Source of Variation | Relative Water Content (%) | Membrane Stability Index (%) | Electrolyte Leakage (%) | Malondialdehyde Level (µmole per g FW) | Hydrogen Peroxide (H2O2) Level (µmole per g FW) | Superoxide (O2•‒) Level (µmole per g FW) |
---|---|---|---|---|---|---|
Season of 2018/2019 | ||||||
Irrigation (Ir) | * | * | ** | ** | ** | ** |
100% of ETc | 87.6 ± 4.6a | 76.3 ± 3.8a | 10.6 ± 0.5b | 0.12 ± 0.01b | 1.29 ± 0.03b | 0.50 ± 0.01b |
60% of ETc | 74.0 ± 4.3b | 61.2 ± 3.3b | 18.9 ± 1.0a | 0.20 ± 0.01a | 2.04 ± 0.02a | 1.01 ± 0.02a |
Regulators (Re) | * | * | * | * | * | * |
Control (Cn) | 70.5 ± 3.8b | 55.6 ± 3.3b | 22.4 ± 1.3a | 0.24 ± 0.02a | 2.29 ± 0.05a | 1.22 ± 0.03a |
GA3 | 85.2 ± 4.7a | 75.1 ± 3.8a | 11.0 ± 0.6b | 0.13 ± 0.01b | 1.37 ± 0.02b | 0.53 ± 0.02b |
Db-H | 86.8 ± 4.9a | 75.5 ± 3.6a | 10.8 ± 0.5b | 0.12 ± 0.00b | 1.34 ± 0.02b | 0.52 ± 0.01b |
Ir × Re | * | * | * | * | * | * |
100% ETc × Cn | 82.6 ± 4.5b | 72.8 ± 3.3b | 11.1 ± 0.6b | 0.13 ± 0.01b | 1.46 ± 0.04b | 0.55 ± 0.02b |
100% ETc × GA3 | 88.9 ± 4.2a | 77.9 ± 4.1a | 10.4 ± 0.6b | 0.12 ± 0.01b | 1.21 ± 0.02c | 0.48 ± 0.01c |
100% ETc × Db-H | 91.4 ± 5.1a | 78.1 ± 3.9a | 10.2 ± 0.4b | 0.12 ± 0.00b | 1.19 ± 0.02c | 0.47 ± 0.01c |
60% ETc × Cn | 58.3 ± 3.0c | 38.4 ± 3.2c | 33.7 ± 2.0a | 0.34 ± 0.02a | 3.11 ± 0.06a | 1.88 ± 0.04a |
60% ETc × GA3 | 81.4 ± 5.1b | 72.2 ± 3.4b | 11.6 ± 0.5b | 0.14 ± 0.01b | 1.52 ± 0.02b | 0.57 ± 0.02b |
60% ETc × Db-H | 82.2 ± 4.7b | 72.9 ± 3.3b | 11.3 ± 0.6b | 0.12 ± 0.00b | 1.48 ± 0.02b | 0.57 ± 0.01b |
Season of 2019/2020 | ||||||
Irrigation (Ir) | * | * | ** | ** | ** | ** |
100% of ETc | 88.3 ± 5.1a | 76.2 ± 3.7a | 10.4 ± 0.4b | 0.12 ± 0.00b | 1.36 ± 0.09b | 0.44 ± 0.02a |
60% of ETc | 74.5 ± 4.0b | 61.0 ± 3.9b | 17.8 ± 0.7a | 0.20 ± 0.01a | 2.18 ± 0.11a | 0.88 ± 0.04a |
Regulators (Re) | * | * | * | * | * | * |
Control (Cn) | 70.5 ± 4.3b | 55.8 ± 4.0b | 21.5 ± 0.9a | 0.27 ± 0.02a | 2.48 ± 0.15a | 1.06 ± 0.06a |
GA3 | 86.1 ± 4.7a | 74.8 ± 4.0a | 10.6 ± 0.5b | 0.12 ± 0.01b | 1.45 ± 0.10b | 0.47 ± 0.02b |
Db-H | 87.7 ± 4.8a | 75.3 ± 3.5a | 10.4 ± 0.3b | 0.11 ± 0.00b | 1.37 ± 0.06b | 0.46 ± 0.02b |
Ir × Re | * | * | * | * | * | * |
100% ETc × Cn | 83.7 ± 5.1b | 71.4 ± 3.3b | 10.8 ± 0.3b | 0.15 ± 0.01b | 1.55 ± 0.08b | 0.49 ± 0.03b |
100% ETc× GA3 | 89.4 ± 4.8a | 78.2 ± 4.1a | 10.4 ± 0.5b | 0.11 ± 0.00cd | 1.30 ± 0.12c | 0.42 ± 0.02c |
100% ETc × Db-H | 91.8 ± 5.4a | 78.9 ± 3.8a | 10.1 ± 0.3b | 0.11 ± 0.00cd | 1.22 ± 0.07c | 0.41 ± 0.02c |
60% ETc × Cn | 57.2 ± 3.4c | 40.1 ± 4.6c | 32.1 ± 1.4a | 0.38 ± 0.02a | 3.41 ± 0.21a | 1.62 ± 0.09a |
60% ETc × GA3 | 82.8 ± 4.6b | 71.3 ± 3.8b | 10.7 ± 0.5b | 0.12 ± 0.01c | 1.60 ± 0.07b | 0.52 ± 0.02b |
60% ETc × Db-H | 83.6 ± 4.1b | 71.6 ± 3.2b | 10.7 ± 0.3b | 0.10 ± 0.00d | 1.52 ± 0.05b | 0.50 ± 0.01b |
Source of Variation | Soluble Sugars (mg per g DW) | Free Proline (µM per g W) | Glycine Betaine (µM per g DW) | Total Soluble Protein (mg per g DW) |
---|---|---|---|---|
Season of 2018/2019 | ||||
Irrigation (Ir) | * | ** | ** | * |
100% of ETc | 14.1 ± 0.3b | 138.5 ± 1.8b | 22.4 ± 0.4b | 72.1 ± 1.5b |
60% of ETc | 19.9 ± 0.4a | 221.5 ± 2.5a | 41.4 ± 0.7a | 88.6 ± 1.9a |
Regulators (Re) | * | * | * | * |
Control (Cn) | 14.0 ± 0.3c | 154.4 ± 1.6b | 26.6 ± 0.5b | 85.4 ± 1.8a |
GA3 | 17.1 ± 0.4b | 192.2 ± 2.6a | 34.3 ± 0.6a | 78.1 ± 1.8b |
Db-H | 20.1 ± 0.5a | 193.5 ± 2.3a | 34.9 ± 0.7a | 77.6 ± 1.5b |
Ir × Re | * | * | * | * |
100% ETc × Cn | 10.4 ± 0.2e | 114.2 ± 1.5d | 18.1 ± 0.3d | 71.8 ± 1.5c |
100% ETc× GA3 | 14.2 ± 0.4d | 149.3 ± 2.0c | 24.3 ± 0.4c | 72.0 ± 1.7c |
100% ETc × Db-H | 17.8 ± 0.4c | 152.1 ± 1.8c | 24.8 ± 0.6c | 72.4 ± 1.3c |
60% ETc × Cn | 17.5 ± 0.3c | 194.6 ± 1.7b | 35.1 ± 0.6b | 98.9 ± 2.0a |
60% ETc × GA3 | 19.9 ± 0.4b | 235.1 ± 3.1a | 44.2 ± 0.7a | 84.2 ± 1.9b |
60% ETc × Db-H | 22.3 ± 0.5a | 234.9 ± 2.8a | 45.0 ± 0.7a | 82.7 ± 1.7b |
Season of 2019/2020 | ||||
Irrigation (Ir) | * | ** | ** | ** |
100% of ETc | 17.2 ± 0.4b | 145.5 ± 2.2b | 20.8 ± 0.3b | 73.9 ± 1.6b |
60% of ETc | 24.8 ± 0.5a | 245.5 ± 3.2a | 38.5 ± 0.6a | 87.6 ± 1.8a |
Regulators (Re) | * | * | * | * |
Control (Cn) | 17.1 ± 0.4c | 167.0 ± 2.5b | 23.9 ± 0.4b | 85.6 ± 1.8a |
GA3 | 21.3 ± 0.5b | 209.0 ± 3.0a | 32.5 ± 0.5a | 78.6 ± 1.7b |
Db-H | 24.6 ± 0.6a | 210.6 ± 2.7a | 32.6 ± 0.5a | 78.1 ± 1.6b |
Ir × Re | * | * | * | * |
100% ETc × Cn | 12.1 ± 0.3e | 121.4 ± 2.0d | 16.4 ± 0.2d | 73.5 ± 1.7c |
100% ETc× GA3 | 18.0 ± 0.5d | 158.3 ± 2.5c | 23.1 ± 0.4c | 73.9 ± 1.6c |
100% ETc × Db-H | 21.4 ± 0.5c | 156.8 ± 2.2c | 22.8 ± 0.3c | 74.2 ± 1.4c |
60% ETc × Cn | 22.1 ± 0.4c | 212.6 ± 2.9b | 31.3 ± 0.5b | 97.6 ± 1.9a |
60% ETc × GA3 | 24.6 ± 0.4b | 259.7 ± 3.4a | 41.8 ± 0.6a | 83.2 ± 1.8b |
60% ETc × Db-H | 27.8 ± 0.6a | 264.3 ± 3.2a | 42.3 ± 0.6a | 81.9 ± 1.8b |
Source of Variation | Ascorbate (µM per g FW) | Glutathione (µM per g FW) | α-Tocopherol (µM per g DW) | Total Phenolic Compounds (mg GAE per g DW) |
---|---|---|---|---|
Season of 2018/2019 | ||||
Irrigation (Ir) | * | ** | * | * |
100% of ETc | 1.59 ± 0.03b | 0.88 ± 0.02b | 2.22 ± 0.04b | 8.10 ± 0.27b |
60% of ETc | 2.28 ± 0.04a | 1.49 ± 0.03a | 3.10 ± 0.05a | 10.08 ± 0.32a |
Regulators (Re) | * | * | * | * |
Control (Cn) | 1.69 ± 0.03c | 0.98 ± 0.02c | 2.39 ± 0.04c | 10.27 ± 0.35a |
GA3 | 1.99 ± 0.04b | 1.22 ± 0.03b | 2.72 ± 0.04b | 8.86 ± 0.28b |
Db-H | 2.14 ± 0.04a | 1.36 ± 0.03a | 2.88 ± 0.05a | 8.15 ± 0.26c |
Ir × Re | * | * | * | * |
100% ETc × Cn | 1.23 ± 0.02e | 0.64 ± 0.01e | 1.89 ± 0.03e | 8.12 ± 0.30c |
100% ETc× GA3 | 1.64 ± 0.03d | 0.89 ± 0.02d | 2.24 ± 0.04d | 8.10 ± 0.26c |
100% ETc × Db-H | 1.91 ± 0.03c | 1.11 ± 0.02c | 2.53 ± 0.05c | 8.09 ± 0.24c |
60% ETc × Cn | 2.14 ± 0.04b | 1.32 ± 0.03b | 2.88 ± 0.05b | 12.42 ± 0.39a |
60% ETc × GA3 | 2.33 ± 0.04a | 1.55 ± 0.04a | 3.19 ± 0.04a | 9.62 ± 0.30b |
60% ETc × Db-H | 2.36 ± 0.04a | 1.60 ± 0.03a | 3.23 ± 0.05a | 8.21 ± 0.27c |
Season of 2019/2020 | ||||
Irrigation (Ir) | ** | ** | * | * |
100% of ETc | 1.47 ± 0.02b | 0.80 ± 0.01b | 2.39 ± 0.05b | 7.88 ± 0.20b |
60% of ETc | 2.26 ± 0.05a | 1.43 ± 0.03a | 3.37 ± 0.07a | 9.85 ± 0.25a |
Regulators (Re) | * | * | * | * |
Control (Cn) | 1.58 ± 0.03c | 0.95 ± 0.02c | 2.56 ± 0.05c | 10.05 ± 0.27a |
GA3 | 1.93 ± 0.04b | 1.16 ± 0.02b | 2.94 ± 0.06b | 8.68 ± 0.23b |
Db-H | 2.09 ± 0.05a | 1.25 ± 0.02a | 3.15 ± 0.07a | 7.88 ± 0.18c |
Ir × Re | * | * | * | * |
100% ETc × Cn | 1.19 ± 0.01e | 0.66 ± 0.01e | 1.98 ± 0.04e | 7.89 ± 0.21c |
100% ETc× GA3 | 1.44 ± 0.02d | 0.79 ± 0.01d | 2.41 ± 0.04d | 7.91 ± 0.19c |
100% ETc × Db-H | 1.79 ± 0.04c | 0.94 ± 0.01c | 2.79 ± 0.06c | 7.85 ± 0.20c |
60% ETc × Cn | 1.97 ± 0.04b | 1.23 ± 0.02b | 3.14 ± 0.06b | 12.20 ± 0.32a |
60% ETc × GA3 | 2.41 ± 0.05a | 1.52 ± 0.03a | 3.47 ± 0.07a | 9.44 ± 0.26b |
60% ETc × Db-H | 2.39 ± 0.06a | 1.55 ± 0.03a | 3.51 ± 0.08a | 7.91 ± 0.16c |
Source of Variation | Superoxide Dismutase (A564 per min per g Protein) | Catalase (A290 per min per g Protein) | Glutathione Reductase (A340 per min per g Protein) | Ascorbate Peroxidase (A290 per min per g Protein) |
---|---|---|---|---|
Season of 2018/2019 | ||||
Irrigation (Ir) | ** | ** | ** | * |
100% of ETc | 15.5 ± 0.2b | 56.5 ± 0.7b | 23.4 ± 0.3b | 68.4 ± 0.8b |
60% of ETc | 23.4 ± 0.4a | 85.5 ± 0.8a | 37.1 ± 0.4a | 93.2 ± 0.7a |
Regulators (Re) | * | * | * | * |
Control (Cn) | 16.7 ± 0.3b | 63.4 ± 0.7b | 26.6 ± 0.3b | 71.6 ± 0.7b |
GA3 | 20.9 ± 0.3a | 75.3 ± 0.8a | 32.2 ± 0.4a | 85.4 ± 0.8a |
Db-H | 20.8 ± 0.3a | 74.3 ± 0.8a | 32.1 ± 0.4a | 85.4 ± 0.7a |
Ir × Re | * | * | * | * |
100% ETc × Cn | 14.1 ± 0.2d | 48.5 ± 0.6d | 19.8 ± 0.2d | 62.1 ± 0.8d |
100% ETc× GA3 | 16.4 ± 0.2c | 61.2 ± 0.8c | 25.1 ± 0.3c | 71.6 ± 0.8c |
100% ETc × Db-H | 16.0 ± 0.2c | 59.8 ± 0.7c | 25.4 ± 0.3c | 71.4 ± 0.7c |
60% ETc × Cn | 19.2 ± 0.4b | 78.3 ± 0.8b | 33.3 ± 0.3b | 81.1 ± 0.6b |
60% ETc × GA3 | 25.4 ± 0.3a | 89.4 ± 0.8a | 39.2 ± 0.5a | 99.2 ± 0.8a |
60% ETc × Db-H | 25.6 ± 0.4a | 88.7 ± 0.9a | 38.8 ± 0.5a | 99.3 ± 0.7a |
Season of 2019/2020 | ||||
Irrigation (Ir) | ** | ** | ** | * |
100% of ETc | 17.3 ± 0.3b | 52.9 ± 0.5b | 24.2 ± 0.3b | 64.5 ± 0.7b |
60% of ETc | 27.4 ± 0.4a | 80.1 ± 0.8a | 38.4 ± 0.5a | 85.4 ± 1.0a |
Regulators (Re) | * | * | * | * |
Control (Cn) | 20.1 ± 0.3b | 58.3 ± 0.7b | 27.1 ± 0.4b | 69.2 ± 0.8b |
GA3 | 23.4 ± 0.4a | 70.7 ± 0.8a | 33.8 ± 0.5a | 77.9 ± 0.9a |
Db-H | 23.7 ± 0.4a | 70.7 ± 0.6a | 33.1 ± 0.4a | 78.0 ± 0.8a |
Ir × Re | * | * | * | * |
100% ETc × Cn | 15.6 ± 0.2d | 44.2 ± 0.5d | 21.0 ± 0.3d | 59.7 ± 0.7d |
100% ETc× GA3 | 18.1 ± 0.3c | 57.1 ± 0.6c | 26.2 ± 0.3c | 66.8 ± 0.6c |
100% ETc × Db-H | 18.3 ± 0.3c | 57.4 ± 0.5c | 25.4 ± 0.2c | 67.1 ± 0.7c |
60% ETc × Cn | 24.5 ± 0.3b | 72.3 ± 0.8b | 33.1 ± 0.4b | 78.6 ± 0.9b |
60% ETc × GA3 | 28.7 ± 0.4a | 84.2 ± 0.9a | 41.3 ± 0.6a | 88.9 ± 1.1a |
60% ETc × Db-H | 29.0 ± 0.5a | 83.9 ± 0.7a | 40.7 ± 0.5a | 88.8 ± 0.9a |
Source of Variation | Nitrogen (mg per g Dry Weight) | Phosphorus (mg per g Dry Weight) | Potassium (mg per g Dry Weight) | Iron (mg per g Dry Weight) | Manganese (mg per g Dry Weight) | Zinc (mg per g Dry Weight) |
---|---|---|---|---|---|---|
Season of 2018/2019 | ||||||
Irrigation (Ir) | * | * | * | * | * | * |
100% of ETc | 19.3 ± 1.2a | 2.51 ± 0.14a | 19.0 ± 1.3a | 0.77 ± 0.03a | 0.50 ± 0.01a | 0.33 ± 0.01a |
60% of ETc | 15.3 ± 1.3b | 1.95 ± 0.10b | 16.3 ± 1.0b | 0.61 ± 0.01b | 0.41 ± 0.01b | 0.26 ± 0.01b |
Regulators (Re) | * | * | * | * | * | * |
Control (Cn) | 14.5 ± 1.1c | 1.81 ± 0.10c | 14.6 ± 1.0c | 0.59 ± 0.02c | 0.38 ± 0.01c | 0.24 ± 0.00c |
GA3 | 18.2 ± 1.2b | 2.37 ± 0.11b | 18.2 ± 1.1b | 0.71 ± 0.02b | 0.48 ± 0.01b | 0.31 ± 0.01b |
Db-H | 19.4 ± 1.5a | 2.51 ± 0.15a | 20.3 ± 1.5a | 0.77 ± 0.03a | 0.52 ± 0.02a | 0.35 ± 0.01a |
Ir × Re | * | * | * | * | * | * |
100% ETc × Cn | 16.8 ± 0.9c | 2.10 ± 0.12c | 17.2 ± 1.1c | 0.68 ± 0.02c | 0.44 ± 0.01c | 0.29 ± 0.00c |
100% ETc× GA3 | 19.7 ± 1.2b | 2.56 ± 0.12b | 18.9 ± 1.2b | 0.76 ± 0.02b | 0.49 ± 0.01b | 0.33 ± 0.01b |
100% ETc × Db-H | 21.5 ± 1.5a | 2.88 ± 0.17a | 20.9 ± 1.7a | 0.88 ± 0.04a | 0.57 ± 0.02a | 0.38 ± 0.01a |
60% ETc × Cn | 12.1 ± 1.3d | 1.52 ± 0.07d | 11.9 ± 0.8d | 0.50 ± 0.01d | 0.31 ± 0.00d | 0.18 ± 0.00d |
60% ETc × GA3 | 16.7 ± 1.2c | 2.18 ± 0.10c | 17.4 ± 0.9c | 0.66 ± 0.01c | 0.46 ± 0.01c | 0.28 ± 0.01c |
60% ETc × Db-H | 17.2 ± 1.4c | 2.14 ± 0.12c | 19.6 ± 1.2b | 0.66 ± 0.01c | 0.47 ± 0.01c | 0.31 ± 0.01b |
Season of 2019/2020 | ||||||
Irrigation (Ir) | * | * | * | * | * | * |
100% of ETc | 20.2 ± 0.9a | 2.41 ± 0.11a | 20.9 ± 1.0a | 0.80 ± 0.02a | 0.57 ± 0.01a | 0.36 ± 0.00a |
60% of ETc | 15.9 ± 0.6b | 1.84 ± 0.09b | 15.9 ± 0.8b | 0.65 ± 0.01b | 0.44 ± 0.00b | 0.29 ± 0.00b |
Regulators (Re) | * | * | * | * | * | * |
Control (Cn) | 14.7 ± 0.6c | 1.70 ± 0.07c | 14.8 ± 0.8c | 0.61 ± 0.01c | 0.41 ± 0.00c | 0.27 ± 0.00c |
GA3 | 18.9 ± 0.7b | 2.22 ± 0.11b | 18.9 ± 1.0b | 0.75 ± 0.02b | 0.53 ± 0.01b | 0.34 ± 0.00b |
Db-H | 20.7 ± 1.0a | 2.45 ± 0.13a | 21.6 ± 1.0a | 0.83 ± 0.02a | 0.58 ± 0.01a | 0.37 ± 0.01a |
Ir × Re | * | * | * | * | * | * |
100% ETc × Cn | 17.4 ± 0.8c | 1.98 ± 0.09c | 16.9 ± 0.9c | 0.71 ± 0.01c | 0.50 ± 0.00c | 0.31 ± 0.00c |
100% ETc× GA3 | 19.9 ± 0.8b | 2.42 ± 0.11b | 20.4 ± 0.9b | 0.78 ± 0.02b | 0.56 ± 0.01b | 0.36 ± 0.00b |
100% ETc × Db-H | 23.4 ± 1.1a | 2.83 ± 0.14a | 25.3 ± 1.2a | 0.91 ± 0.02a | 0.64 ± 0.01a | 0.42 ± 0.01a |
60% ETc × Cn | 11.9 ± 0.4d | 1.42 ± 0.05d | 12.6 ± 0.6d | 0.50 ± 0.00d | 0.32 ± 0.00d | 0.22 ± 0.00d |
60% ETc × GA3 | 17.8 ± 0.6c | 2.02 ± 0.10c | 17.4 ± 1.0c | 0.72 ± 0.01c | 0.49 ± 0.00c | 0.32 ± 0.00c |
60% ETc × Db-H | 17.9 ± 0.9c | 2.07 ± 0.12c | 17.8 ± 0.8c | 0.74 ± 0.01bc | 0.51 ± 0.01c | 0.32 ± 0.00c |
Source of Variation | Indole-3-Acetic Acid (µg per g FW) | Gibberellic Acid (µg per g FW) | Cytokinins (µg per g FW) | Abscisic Acid (µg per g FW) |
---|---|---|---|---|
Season of 2018/2019 | ||||
Irrigation (Ir) | * | * | * | * |
100% of ETc | 18.1 ± 0.15a | 33.1 ± 0.29a | 24.6 ± 0.18a | 4.23 ± 0.05b |
60% of ETc | 14.2 ± 0.14b | 25.1 ± 0.26b | 18.4 ± 0.16b | 6.29 ± 0.06a |
Regulators (Re) | * | ** | * | * |
Control (Cn) | 12.2 ± 0.10c | 18.5 ± 0.20c | 15.5 ± 0.13c | 7.43 ± 0.07a |
GA3 | 16.0 ± 0.15b | 41.9 ± 0.40a | 22.0 ± 0.18b | 4.45 ± 0.05b |
Db-H | 20.4 ± 0.19a | 26.9 ± 0.23b | 27.2 ± 0.21a | 3.91 ± 0.05c |
Ir × Re | * | * | * | * |
100% ETc × Cn | 14.1 ± 0.11c | 22.4 ± 0.19d | 18.7 ± 0.15c | 5.22 ± 0.06b |
100% ETc× GA3 | 17.4 ± 0.15b | 45.6 ± 0.39a | 25.4 ± 0.20b | 3.77 ± 0.04e |
100% ETc × Db-H | 22.9 ± 0.19a | 31.2 ± 0.28c | 29.8 ± 0.20a | 3.69 ± 0.04e |
60% ETc × Cn | 10.3 ± 0.09d | 14.6 ± 0.20e | 12.2 ± 0.11d | 9.64 ± 0.07a |
60% ETc × GA3 | 14.5 ± 0.15c | 38.2 ± 0.41b | 18.5 ± 0.15c | 5.12 ± 0.06c |
60% ETc × Db-H | 17.9 ± 0.18b | 22.6 ± 0.18d | 24.6 ± 0.22b | 4.12 ± 0.05d |
Season of 2019/2020 | ||||
Irrigation (Ir) | * | * | * | ** |
100% of ETc | 20.4 ± 0.18a | 33.9 ± 0.29a | 24.2 ± 0.20a | 3.75 ± 0.04b |
60% of ETc | 15.8 ± 0.14b | 24.7 ± 0.22b | 18.2 ± 0.19b | 6.29 ± 0.07a |
Regulators (Re) | * | ** | * | * |
Control (Cn) | 14.1 ± 0.13c | 17.6 ± 0.20c | 15.0 ± 0.14c | 7.47 ± 0.08a |
GA3 | 18.1 ± 0.15b | 44.4 ± 0.37a | 20.9 ± 0.19b | 4.19 ± 0.05b |
Db-H | 22.3 ± 0.20a | 26.0 ± 0.21b | 27.7 ± 0.26a | 3.40 ± 0.04c |
Ir × Re | * | * | * | * |
100% ETc × Cn | 16.8 ± 0.18c | 21.6 ± 0.22d | 17.6 ± 0.12c | 4.98 ± 0.05b |
100% ETc× GA3 | 19.7 ± 0.17b | 50.2 ± 0.45a | 23.8 ± 0.25b | 3.48 ± 0.03c |
100% ETc × Db-H | 24.8 ± 0.19a | 29.8 ± 0.21c | 31.2 ± 0.22a | 2.78 ± 0.03d |
60% ETc × Cn | 11.3 ± 0.08d | 13.6 ± 0.18e | 12.4 ± 0.15d | 9.96 ± 0.11a |
60% ETc × GA3 | 16.4 ± 0.12c | 38.5 ± 0.29b | 18.0 ± 0.13c | 4.89 ± 0.06b |
60% ETc × Db-H | 19.7 ± 0.21b | 22.1 ± 0.20d | 24.2 ± 0.30b | 4.01 ± 0.04c |
Layer (cm) | Particle Size Distribution | Bulk Density (g cm−3) | Ksat Cm h−1 | FC (%) | WP (%) | AW (%) | pH | ECe (dS.m−1) | OM (%) | CaCO3 (%) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand % | Silt % | Clay % | TC | ||||||||||
0–30 | 20 | 38 | 42 | CL | 1.40 | 1.2 | 34.3 | 19.7 | 14.6 | 7.76 | 2.85 | 1.50 | 4.3 |
30–60 | 17 | 37 | 46 | CL | 1.36 | 0.9 | 32.2 | 19.1 | 13.1 | 7.75 | 2.98 | 1.10 | 4.2 |
Property/Component | Unit | Value |
---|---|---|
Moisture | % | 16.8 |
Proteins | 0.28 | |
Organic acids | 0.48 | |
pH | 4.14 | |
Osmoprotectants: | ||
Proline | mg kg−1 FW | 47.8 |
Total soluble sugars | % | 82.6 |
Amino acids | 0.33 | |
Sugar fractions: | ||
Fructose | % | 44.2 |
Glucose | 25.9 | |
Maltose | 3.7 | |
Sucrose | 4.21 | |
Mineral nutrients: | ||
Potassium (K) | mg kg−1 FW | 456.8 |
Phosphorus (P) | 50.2 | |
Magnesium (Mg) | 84.2 | |
Calcium (Ca) | 71.4 | |
Sulphur (S) | 77.8 | |
Iron (Fe) | 69.8 | |
Manganese (Mn) | 8.4 | |
Zinc (Zn) | 5.5 | |
Copper (Cu) | 4.6 | |
Iodine (I) | 81.4 | |
Sodium (Na) | 42.9 | |
Selenium (Se) | 0.92 | |
Antioxidants and Vitamins: | ||
Ascorbic acid (vitamin C) | mg kg−1 FW | 24.2 |
Thiamine (B1) | 0.14 | |
Riboflavin (B2) | 0.18 | |
Niacin (B3) | 1.67 | |
Pantothenic acid (B5) | 1.08 | |
Pyridoxine (B6) | 2.27 | |
Folate (B9) | 0.21 | |
DPPH radical-scavenging activity | % | 88.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rady, M.M.; Boriek, S.H.K.; Abd El-Mageed, T.A.; Seif El-Yazal, M.A.; Ali, E.F.; Hassan, F.A.S.; Abdelkhalik, A. Exogenous Gibberellic Acid or Dilute Bee Honey Boosts Drought Stress Tolerance in Vicia faba by Rebalancing Osmoprotectants, Antioxidants, Nutrients, and Phytohormones. Plants 2021, 10, 748. https://doi.org/10.3390/plants10040748
Rady MM, Boriek SHK, Abd El-Mageed TA, Seif El-Yazal MA, Ali EF, Hassan FAS, Abdelkhalik A. Exogenous Gibberellic Acid or Dilute Bee Honey Boosts Drought Stress Tolerance in Vicia faba by Rebalancing Osmoprotectants, Antioxidants, Nutrients, and Phytohormones. Plants. 2021; 10(4):748. https://doi.org/10.3390/plants10040748
Chicago/Turabian StyleRady, Mostafa M., Sara H. K. Boriek, Taia A. Abd El-Mageed, Mohamed A. Seif El-Yazal, Esmat F. Ali, Fahmy A. S. Hassan, and Abdelsattar Abdelkhalik. 2021. "Exogenous Gibberellic Acid or Dilute Bee Honey Boosts Drought Stress Tolerance in Vicia faba by Rebalancing Osmoprotectants, Antioxidants, Nutrients, and Phytohormones" Plants 10, no. 4: 748. https://doi.org/10.3390/plants10040748
APA StyleRady, M. M., Boriek, S. H. K., Abd El-Mageed, T. A., Seif El-Yazal, M. A., Ali, E. F., Hassan, F. A. S., & Abdelkhalik, A. (2021). Exogenous Gibberellic Acid or Dilute Bee Honey Boosts Drought Stress Tolerance in Vicia faba by Rebalancing Osmoprotectants, Antioxidants, Nutrients, and Phytohormones. Plants, 10(4), 748. https://doi.org/10.3390/plants10040748