Performance Characteristics of Ankistrodesmus falcatus in Different Culture Media and Concentration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Media for A. falcatus Production
2.2. Growth Performance Evaluation
- X1 = biomass concentration at the beginning of the selected time interval;
- X2 = biomass concentration at the end of the selected time interval;
- t2 − t1 = the selected time for the determination of biomass of microalgae species.
2.3. Proximate Composition and Microelement Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Biomass and Growth Characteristics of A. falcatus in Different Culture Media
3.2. Effect of Culture Media on the Proximate Composition of A. falcatus
3.3. Effect of Culture Media on Microelement Concentration of A. falcatus
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozkurt, I. Qualifying of safflower and algae for energy. Energy Educ. Sci. Technol. Part A 2009, 23, 145–151. [Google Scholar]
- Hoek, C.; Mann, D.; Jahns, H.M. Algae: An Introduction to Phycology; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Roque, Y.S.; Pérez-Luna, Y.D.C.; Acosta, J.M.; Vázquez, N.F.; Hernández, R.B.; Trinidad, S.S.; Pathiyamattom, J.S. Evaluation of the population dynamics of microalgae isolated from the state of Chiapas, Mexico with respect to the nutritional quality of water. Biodivers. Data J. 2018, 6, e28496. [Google Scholar] [CrossRef] [Green Version]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Fuentes-Grünewald, C.; Garcés, E.; Rossi, S.; Camp, J. Use of the dinoflagellate Karlodinium veneficum as a sustainable source of biodiesel production. J. Ind. Microb. Biotech. 2009, 36, 1215–1224. [Google Scholar] [CrossRef]
- Shakeel, A.A.; Shanthanu, M.R.; Shivasharana, C.T. Growth kinetics of four fresh water isolated microalgae for optimal biomass and lipid production using response surface methodology. Int. J. Appl. Nat. Sci. 2018, 7, 117–136. [Google Scholar]
- Alabi, A.O.; Tampier, M.; Bibeau, E. Microalgae Technologies and Processes for Biofuels/Bioenergy Production in British Columbia, Current Technology, Suitability and Barriers to Implementation; Final Report, the British Columbia Innovation Council; Seed Science Press: Ottawa, ON, Canada, 2009. [Google Scholar]
- Zhu, L.D.; Li, Z.H.; Hiltunen, E. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock. Biomed Res. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L. The combined production of ethanol and biogas from microalgal residuals to sustain microalgal biodiesel: A theoretical evaluation. Biofuels Bioprod. Biorefin. 2013, 8, 7–15. [Google Scholar] [CrossRef]
- Zhu, C.J.; Lee, Y.K.; Chao, T.M. Effects of temperature andgrowth phase on lipid and biochemical composition ofIsochrysis galbana. J. Appl. Phycol. 1997, 9, 451–457. [Google Scholar] [CrossRef]
- Zhu, F.; Massana, R.; Not, F.; Marie, D.; Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. Fems Microbiol. Ecol. 2005, 52, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Medipally, S.R.; Yusoff, F.M.; Banerjee, S.; Shariff, M. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production. Biomed Res. Int. 2015, 2015, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, J.; Dunahay, T.; Benemann, J.; Roessler, P. A Look Back at the U.S. Department of Energy’s Aquatic Species Program-Biodiesel from Algae, Close-Out Report 1 July 1998; Report Number NREL/TP-580-24190; National Renewable Energy Lab, Department of Energy: Golden, CO, USA, 1998. [Google Scholar]
- Puppan, D. Environmental evaluation of biofuels. Period. Polytech. Ser. Soc. Man. Sci. 2002, 10, 95–116. [Google Scholar]
- Alcaine, A.A. Biodiesel from Microalgae; Royal School of Technology Kungliga Tekniska Högskolan: Stockholm, Sweden, 2010. [Google Scholar]
- Wang, H.-M.D.; Chen, C.-C.; Huynh, P.; Chang, J.-S. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 2015, 184, 355–362. [Google Scholar] [CrossRef]
- Khatoon, H.; Rahman, N.A.; Suleiman, S.S.; Banerjee, S.; Abol-Munafi, A.B. Growth and Proximate Composition of Scenedesmus obliquus and Selenastrum bibraianum Cultured in Different Media and Condition. Proc. Natl. Acad. Sci. USA 2017, 89, 251–257. [Google Scholar] [CrossRef]
- Schenk, P.M.; Thomas-Hall, S.R.; Stephens, E.; Marx, U.C.; Mussgnug, J.H.; Posten, C.; Kruse, O.; Hankamer, B. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. Bioenergy Res. 2008, 1, 20–43. [Google Scholar] [CrossRef]
- Clarens, A.F.; Resurreccion, E.P.; White, M.A.; Colosi, L.M. Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks. Env. Sci. Technol. 2010, 44, 1813–1819. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Shah, S.Z.; Zhou, W.; Iqbal, M. Microalgae screening under CO 2 stress: Growth and micro-nutrients removal efficiency. J. Photochem. Photobiol. B Biol. 2017, 170, 91–98. [Google Scholar] [CrossRef]
- Guschina, I.A.; Harwood, J.L. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 2006, 45, 160–186. [Google Scholar] [CrossRef]
- Miao, X.; Wu, Q. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol. 2004, 110, 85–93. [Google Scholar] [CrossRef]
- Graef, G.; Lavallee, B.J.; Tenopir, P.; Tat, M.; Schweiger, B.; Kinney, A.J.; Van Gerpen, J.H.; Clemente, T.E. A high-oleic-acid and low-palmitic-acid soybean: Agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotechnol. J. 2009, 7, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, P.; Hao, Z.; Shi, J.; Zhang, S. Characterization and identification of freshwater microalgal strains toward biofuel production. BioResources 2011, 7, 686–695. [Google Scholar] [CrossRef]
- Khatoon, K.; Noorazilah, H.; Sanjoy, B.; Norazira, A.R.; Hasina, B.; Sohel, M.; Abol-Munafia, A.B.; Azizah, E. Effects of different salinities on the growth and proximate composition of Dunaliella sp. isolated from South China Sea at different growth phases. Process Saf. Environ. Prot. 2017, 2, 280–287. [Google Scholar] [CrossRef]
- García, N.; López-Elías, J.A.; Miranda, A.; Martínez-Porchas, M.; Huerta, N.; García, A. Effect of salinity on growth andchemical composition of the diatom Thalassiosira weissflogii atthree culture phases. Lat. Am. J. Aquat. Res. 2012, 40, 435–440. [Google Scholar] [CrossRef]
- Naviner, M.; Bergé, J.-P.; Durand, P.; Le Bris, H. Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens. Aquaculture 1999, 174, 15–24. [Google Scholar] [CrossRef]
- Austin, B.; Baudet, E.; Stobie, M. Inhibition of bacterial fish pathogens by Tetraselmis suecica. J. Fish Dis. 1992, 15, 55–61. [Google Scholar] [CrossRef]
- Sharifah, N.E.; Nosi, M.Z.M.; Khatoon, H. Phytoplankton Ankistrodesmus sp. as an alternative tool in controlling fish disease. Aacl Bioflux 2016, 9, 42–49. [Google Scholar]
- Griffiths, M.J.; Harrison, S.T.L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Env. Boil. Fishes 2009, 21, 493–507. [Google Scholar] [CrossRef]
- Scott, S.A.; Davey, M.P.; Dennis, J.S.; Horst, I.; Howe, C.J.; Lea-Smith, D.J.; Smith, A.G. Biodiesel from algae: Chal-lenges and prospects. Curr. Opin. Biotechnol. 2010, 21, 277–286. [Google Scholar] [CrossRef]
- Lavens, P.; Sorgeloos, P. Manual on the Production and Useof Live Food for Aquaculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1996. [Google Scholar]
- Chang, E.H.; Yang, S.S. Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot. Bull. Acad. Sin. 2003, 44, 43–52. [Google Scholar]
- Banerjee, S.; Hew, W.E.; Khatoon, H.; Shariff, M.; Yusoff, F.M. Growth and proximate composition of tropical marine Chaetoceros calcitrans and Nannochloropsis oculata cultured outdoors and under laboratory conditions. Afr. J. Bio-Technol. 2011, 10, 1375–1383. [Google Scholar]
- Stein, J. Handbook of Phycological Methods: Culture Methods and Growth Measurements; Cambridge University Press: Cambridge, UK, 1980; p. 448. [Google Scholar]
- Bold, H.C. The Morphology of Chlamydomonas chlamydogama. Bull. Torrey Bot. Club 1949, 76, 101. [Google Scholar] [CrossRef]
- Kilham, S.S.; Kreeger, D.A.; Lynn, S.G.; Goulden, C.E.; Herrera, L. COMBO: A defined freshwater culture medium for algae and zooplankton. Hydrobiologia 1998, 377, 147–159. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Marsh, J.B.; Weinstein, D.B. Simple charring method for determination of lipids: Notes on methodology. J. Lipid. Res. 1966, 7, 574–576. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colometric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Arslan, Z.; Ertas, N.; Tyson, J.F.; Uden, P.C.; DeNoyer, E.R. Determination of trace elements in marine plankton by inductively coupled plasma mass spectrometry (ICP-MS). Anal. Bioanal. Chem. 2000, 366, 273–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatoon, H.; Rahman, N.A.; Banerjee, S.; Harun, N.; Suleiman, S.S.; Zakaria, N.H.; Lananan, F.; Hamid, S.H.A.; Endut, A. Effects of different salinities and pH on the growth and proximate composition of Nannochloropsis sp. and Tetraselmis sp. isolated from South China Sea cultured under control and natural condition. Int. Biodeterior. Biodegrad. 2014, 95, 11–18. [Google Scholar] [CrossRef]
- George, B.; Pancha, I.; Desai, C.; Chokshi, K.; Paliwal, C.; Ghosh, T.; Mishra, S. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus–A potential strain for bio-fuel production. Bioresour. Technol. 2014, 171, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, J.; Kalita, M.C.; Goswami, B.C. Influence of Dissolved Inorganic Carbon and Nitrogen Sources on Growth, Total Lipid Content and Calorific Value of the Freshwater Oleaginous Microalgae Ankistrodesmus falcatus (Corda) Ralfs Aplinkos tyrimai, inžinerija ir vadyba. Environ. Res. Eng. Manag. 2012, 3, 14–25. [Google Scholar]
- Sun, X.; Zhong, Y.; Huang, Z.; Yang, Y. Selenium Accumulation in Unicellular Green Alga Chlorella vulgaris and Its Effects on Antioxidant Enzymes and Content of Photosynthetic Pigments. PLoS ONE 2014, 9, e112270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzovenis, I.; De Pauw, N.; Sorgeloos, P. Effect of different light regimes on the docosahexaenoic acid (DHA) content of Isochrysis aff. galbana (clone T-ISO). Aquac. Int. 1997, 5, 489–507. [Google Scholar] [CrossRef]
- Sipauba-Tavares, L.H.; Millan, R.N.; Braga, F.M.D.S.; Berchielli, F.D.A. Use of alternative media and different types of recipients in a laboratory culture of Ankistrodesmus gracilis (Reinsch) Korshikov (Chlorophyceae). Acta Sci. Biol. Sci. 2011, 33, 247–253. [Google Scholar] [CrossRef]
- Grimm, N.B.; Fisher, S.G. Nitrogen Limitation in a Sonoran Desert Stream. J. N. Am. Benthol. Soc. 1986, 5, 2–15. [Google Scholar] [CrossRef] [Green Version]
- Zevenboom, W. Ecophysiology of nutrient uptake, photosynthesis and growth. Can. Bull. Fish Aquat. Sci. 1986, 214, 391–422. [Google Scholar]
- Roy, S. Effects of changes in physiological condition on HPLC-defined chloropigment composition of Phaeodactylum tricornutum (Bohlin) in batch and turbidostat cultures. J. Exp. Mar. Biol. Ecol. 1988, 118, 137–149. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Horsman, M.; Wang, B.; Wu, N.; Lan, C.Q. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 2008, 81, 629–636. [Google Scholar] [CrossRef]
- Sialve, B.; Bernet, N.; Bernard, O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 2009, 27, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Um, B.-H.; Kim, Y.-S. Review: A chance for Korea to advance algal-biodiesel technology. J. Ind. Eng. Chem. 2009, 15, 1–7. [Google Scholar] [CrossRef]
- Liu, Y.; Ruan, R.; Kong, Q. Mass culture of high oil content microalgae on wastewater and power plant flue gas-es. Chin. J. Bioprocess Eng. 2008, 3, 29–33. [Google Scholar]
- Converti, A.; Casazza, A.A.; Ortiz, E.Y.; Perego, P.; Del Borghi, M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. Process Intensif. 2009, 48, 1146–1151. [Google Scholar] [CrossRef]
- Rodolfi, L.; Zittelli, G.C.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2008, 102, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Yoo, C.; Jun, S.-Y.; Lee, J.-Y.; Ahn, C.-Y.; Oh, H.-M. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol. 2010, 101, S71–S74. [Google Scholar] [CrossRef]
- Brown, M.R. Nutritional value and use of microalgae in aquaculture. In Proceedings of the Memories of the Sixth International Symposium on Aquaculture Nutrition, Cancún, Quintana Roo, México, 3–6 September 2002; Cruz Suárez, L.E., Ricque Marie, D., Tapia Salazar, M., Gaxiola Cortés, M.G., Simoes, N., Eds.; Universidad Autónoma de Nuevo León: Monterrey, México, 2002; pp. 281–292. [Google Scholar]
- Sipaúba-Tavares, L.H.; Pereira, A.M.L. Large scale laboratory cultures of Ankistrodesmus gracilis (Reisch) Korsikov (Chlorophyta) and Diaphanosoma biergei Korinek, 1981 (Cladocera). Braz. J. Biol. 2008, 68, 875–883. [Google Scholar] [CrossRef] [Green Version]
- Tornabene, T.G. Chemical Profiles of Microalgae, with Emphasis on Lipids; U.S. Department of Energy, Office of Scientific and Technical Information: Oak Ridge, TN, USA, 1982; pp. 1–81.
- Habib, M.A.B.; Yusoff, F.M.; Phang, S.M.; Mohamed, S.; Kamarudin, M.S. Growth and nutritional value of a tropical green alga, Ankistrodesmus convolutus Corda, in agro-industrial effluents. Pertanika J. Trop. Agric. Sci. 2004, 27, 79. [Google Scholar]
- Kalita, N.; Baruah, G.; Goswami, R.C.D.; Talukdar, J.; Kalita, M.C. Ankistrodesmus falcatus: A promising candidate for lipid production, its biochemical analysis and strategies to enhance lipid productivity. J. Microbiol. Biotechnol. Res. 2011, 1, 148–157. [Google Scholar]
- Chen, M.; Tang, H.; Ma, H.; Holland, T.C.; Ng, K.S.; Salley, S.O. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour. Technol. 2011, 102, 1649–1655. [Google Scholar] [CrossRef]
- Demirbas, A. Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems. Appl. Energy 2011, 88, 3541–3547. [Google Scholar] [CrossRef]
- Wong, Y.K.; Ho, Y.H.; Ho, K.C.; Leung, H.M.; Yung, K.K.L. Growth Medium Screening for Chlorella vulgaris Growth and Lipid Production. J. Aquac. Marter. Biol. 2017, 6, 00143. [Google Scholar] [CrossRef] [Green Version]
- Juneja, A.; Ceballos, R.M.; Murthy, G.S. Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review. Energies 2013, 6, 4607–4638. [Google Scholar] [CrossRef] [Green Version]
- Golub, N.B.; Voyevoda, D.V. Effect of sulphur compounds on cultivation process of microalgae Chlorella vulgaris. Chem. Technol. Appl. Subst. 2013, 761, 151–158. [Google Scholar]
- IAEA. Major. Minor and Trace Elements in Algae; (Series No 14 (IAEA/AQ/413); International Atomic Energy: Vienna, Austria, 2010. [Google Scholar]
Reagents | Stock Solution g/L | Quantity mL/L | ||||
---|---|---|---|---|---|---|
BBM | Bristol | COMBO | BBM | Bristol | COMBO | |
KH2PO4 | 17.5 | 17.5 | - | 10.0 | 10.0 | - |
CaCl2·2H2O | 2.5 | 2.5 | 36.76 | 10.0 | 10.0 | 1.0 |
MgSO4·7H2O | 7.5 | 7.5 | 36.76 | 10.0 | 10.0 | 1.0 |
NaNO3 | 25.0 | 25.0 | 85.01 | 10.0 | 10.0 | 1.0 |
K2HPO4 | 7.5 | 7.5 | 8.71 | 10.0 | 10.0 | 1.0 |
NaCl | 2.5 | 2.5 | - | 10.0 | 10.0 | - |
Na2SiO3·9H2O | - | - | 2.842 | - | - | 1.0 |
NaHCO3 | - | - | 12.60 | - | - | 1.0 |
KCL | - | - | 7.45 | - | - | 1.0 |
Na2EDTA·2H2O | 10.0 | - | - | 1.0 | - | - |
KOH | 6.2 | - | - | 1.0 | - | - |
FeSO4·7H2O | 4.98 | - | - | 1.0 | - | - |
H2SO4 (conc.) | 1 mL/L | - | - | 1.0 | - | - |
H3BO3 | 11.5 | - | 1.0 | 0.7 | - | 1.0 |
Trace Metal Solution | ||||||
H3BO3 | - | - | 1.0 | - | - | 1.0 |
MnCl2·4H2O ZnSO4·7H2O | 2.86 - | - - | - 1.0 | 1.0 - | - - | - 1.0 |
Na2MoO4·2H2O CuSO4·5H2O Co(NO3)2·6H2O | 1.81 - - | - - - | 180.0 1.0 1.0 | 1.0 - - | - - - | 1.0 1.0 1.0 |
CoCl2·6H2O Na3VO4 | 0.222 - | - - | 22.0 1.0 | 1.0 - | - - | 1.0 1.0 |
H2SeO3 Na2EDTA·2H20 | 0.390 - | - - | 6.0 0.5 | 1.0 - | - - | 1.0 1.0 |
FeCl3 | 0.079 | - | 10.0 | 1.0 | - | 1.0 |
Vitamin Solution: Thiamine·HCl (Vit. B1) | - - | - - | 1.0 1.0 | - - | - - | 1.0 1.0 |
Biotin (Vit. H) | - | - | 0.5 | - | - | 1.0 |
Cyanocobalamin (Vit. B12) | - | - | 0.55 | - | - | 1.0 |
Parameter | Media Concentration | |
---|---|---|
100% | 50% | |
Cell Density; Cells/mL (×106) | ||
BBM | 39.00 ± 0.58 a | 37.00 ± 0.58 a |
COMBO | 37.67 ± 1.45 a | 35.00 ± 1.73 a |
Bristol | 31.33 ± 0.88 b | 30.00 ± 0.58 b |
Optical Density (680 nm) | ||
BBM | 0.26 ± 0.002 a | 0.26 ± 0.002 a |
COMBO | 0.25 ± 0.017 a | 0.24 ± 0.008 ab |
Bristol | 0.22 ± 0.004 b | 0.23 ± 0.002 b |
Biomass Dry Weight (g/L) | ||
BBM | 2.33 ± 0.06 a | 2.20 ± 0.01 a |
COMBO | 2.13 ± 0.06 b,* | 1.87 ± 0.06 b,* |
Bristol | 1.73 ± 0.06 c | 1.70 ± 0.01 c |
Specific Growth Rate (%/day) | ||
BBM | 0.443 ± 0.001 a | 0.437 ± 0.002 a |
COMBO | 0.439 ± 0.003 a | 0.429 ± 0.002 a |
Bristol | 0.416 ± 0.004 b | 0.411 ± 0.006 b |
Parameter | Media Concentration | |
---|---|---|
100% | 50% | |
Protein (%) | ||
BBM | 46.41 ± 0.57 a,* | 44.25 ± 0.26 a,* |
COMBO | 45.99 ± 0.15 a,b,* | 43.45 ± 0.26 a,* |
Bristol | 44.37 ± 0.65 b | 43.48 ± 0.51 a |
Lipid (%) | ||
BBM | 23.22 ± 0.56 a | 22.93 ± 0.58 a |
COMBO | 21.70 ± 0.63 b | 22.29 ± 0.57 a |
Bristol | 21.64 ± 0.21 b | 21.28 ± 0.52 a |
Carbohydrate (%) | ||
BBM | 32.99 ± 0.26 a | 32.11 ± 0.07 a |
COMBO | 31.23 ± 0.05 b | 30.79 ± 0.02 b |
Bristol | 29.76 ± 0.62 b | 28.93 ± 0.24 c |
Element (mg/L) | Media Concentration | Element (mg/L) | Media Concentration | ||
---|---|---|---|---|---|
100% | 50% | 100% | 50% | ||
Mg+2 | Na+ | ||||
BBM | 555.76 ± 8.85 a,* | 477.14 ± 2.94 a,* | BBM | 364.54 ± 1.27 a,* | 132.21 ± 2.45 a,* |
COMBO | 301.57 ± 7.34 b,* | 431.56 ± 7.80 b,* | COMBO | 281.76 ± 4.53 b,* | 131.75 ± 1.25 a,* |
Bristol | 279.16 ± 1.72 b | 205.95 ± 6.35 c | Bristol | 133.20 ± 0.86 c,* | 80.29 ± 1.85 b,* |
Cr+3 | Al+3 | ||||
BBM | 4.91 ± 0.18 a | 4.12 ± 0.07 a | BBM | 92.73 ± 0.71 a,* | 47.22 ± 1.58 a,* |
COMBO | 2.49 ± 0.21 b,* | 3.76 ± 0.14 a,* | COMBO | 15.28 ± 0.09 b,* | 32.84 ± 0.96 b,* |
Bristol | 3.20 ± 0.09 b | 3.13 ± 0.04 b | Bristol | 11.01 ± 0.07 c,* | 23.18 ± 0.63 c,* |
Fe+3 | Mn+4 | ||||
BBM | 235.86 ± 1.27 a,* | 124.66 ± 1.64 a,* | BBM | 29.08 ± 0.54 a,* | 21.87 ± 0.44 a,* |
COMBO | 32.64 ± 0.23 c,* | 91.27 ± 1.60 b,* | COMBO | 2.97 ± 0.24 c,* | 13.85 ± 0.07 b,* |
Bristol | 81.06 ± 1.22 b,* | 50.25 ± 0.35 c,* | Bristol | 6.33 ± 0.14 b | 4.16 ± 0.09 c |
Zn+2 | Co+2 | ||||
BBM | 7.01 ± 0.26 a,* | 4.94 ± 0.34 a,* | BBM | 0.28 ± 0.010 a,* | 0.12 ± 0.008 a,* |
COMBO | 2.68 ± 0.04 b,* | 5.22 ± 0.25 a,* | COMBO | 0.03 ± 0.001 b,* | 0.07 ± 0.005 b,* |
Bristol | 3.69 ± 0.17 b | 3.58 ± 0.37 a | Bristol | 0.09 ± 0.001 b | 0.06 ± 0.006 b |
Se+2 | Cu+2 | ||||
BBM | 0.21 ± 0.001 a,* | 0.06 ± 0.001 b,* | BBM | 3.64 ± 0.16 a | 3.39 ± 0.04 a |
COMBO | 0.09 ± 0.001 b | 0.06 ± 0.001 b | COMBO | 0.48 ± 0.03 c,* | 1.83 ± 0.03 b,* |
Bristol | 0.07 ± 0.001 c | 0.08 ± 0.002 a | Bristol | 1.22 ± 0.004 b,* | 1.04 ± 0.008 c,* |
Pb+2 | Cd+2 | ||||
BBM | 0.25 ± 0.002 a,* | 0.34 ± 0.001 a,* | BBM | 0.01 ± 0.001 c | 0.02 ± 0.001 c |
COMBO | 0.06 ± 0.002 c,* | 0.12 ± 0.001 b,* | COMBO | 0.05 ± 0.002 a | 0.06 ± 0.005 a |
Bristol | 0.11 ± 0.001 b | 0.09 ± 0.002 c | Bristol | 0.02 ± 0.001 b,* | 0.04 ± 0.006 a,* |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okomoda, V.T.; Abdulrahman, A.K.; Khatoon, H.; Mithun, S.; Oladimeji, A.S.; Abol-Munafi, A.B.; Alabi, K.I.; Alamanjo, C.C.; Anuar, H. Performance Characteristics of Ankistrodesmus falcatus in Different Culture Media and Concentration. Plants 2021, 10, 755. https://doi.org/10.3390/plants10040755
Okomoda VT, Abdulrahman AK, Khatoon H, Mithun S, Oladimeji AS, Abol-Munafi AB, Alabi KI, Alamanjo CC, Anuar H. Performance Characteristics of Ankistrodesmus falcatus in Different Culture Media and Concentration. Plants. 2021; 10(4):755. https://doi.org/10.3390/plants10040755
Chicago/Turabian StyleOkomoda, Victor Tosin, Ali Kerdasi Abdulrahman, Helena Khatoon, Sukumaran Mithun, Abraham Sunday Oladimeji, Ambok Bolong Abol-Munafi, Korede Isaiah Alabi, Cosmas Chidiebere Alamanjo, and Hassan Anuar. 2021. "Performance Characteristics of Ankistrodesmus falcatus in Different Culture Media and Concentration" Plants 10, no. 4: 755. https://doi.org/10.3390/plants10040755
APA StyleOkomoda, V. T., Abdulrahman, A. K., Khatoon, H., Mithun, S., Oladimeji, A. S., Abol-Munafi, A. B., Alabi, K. I., Alamanjo, C. C., & Anuar, H. (2021). Performance Characteristics of Ankistrodesmus falcatus in Different Culture Media and Concentration. Plants, 10(4), 755. https://doi.org/10.3390/plants10040755