Somatic Embryogenesis and Plant Regeneration in Viola canescens Wall. Ex. Roxb.: An Endangered Himalayan Herb
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material and Surface Sterilization
2.2. Culture Medium and Culture Conditions
2.3. Standardization of Somatic Embryogenesis
2.3.1. Induction of SE
2.3.2. Abscisic Acid and Silver Nitrate
2.3.3. Germination of SE
2.3.4. Use of l-Glutamine and Casein Hydrolysate for Induction and Germination of SE
2.4. Acclimatization
2.5. Data Analysis
3. Results and Discussion
3.1. Somatic Embryo Induction
3.2. Maturation of SE
3.3. SE Germination
3.4. Acclimatization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rana, C.S.; Sharma, A.; Kumar, N.; Dangwal, L.R.; Tiwari, J.K. Ethnopharmacology of some important medicinal plants of Nanda Devi National Park (NDNP) Uttarakhand. India. Nat. Sci. 2010, 8, 9–14. [Google Scholar]
- Masood, M.; Arshad, M.; Asif, S.; Chaudhari, S.K. Viola canescens: Herbal wealth to be conserved. J. Bot. 2014. [Google Scholar] [CrossRef] [Green Version]
- Mann, N.; Khajuria, A.K.; Uniyal, P.L.; Lakhanpaul, S. Viola canescens: A potent medicinal herb of Himalaya. Botanica 2016, 66, 58–62. [Google Scholar]
- Hamayun, M.; Khan, S.A.; Sohn, E.Y.; Lee, I.J. Folk medicinal knowledge and conservation status of some economically valued medicinal plants of District Swat, Pakistan. Lyonia 2006, 11, 101–113. [Google Scholar]
- Abbasi, A.M.; Khan, M.A.; Ahmed, M.; Zafar, M. Herbal medicines used to cure various ailments by the inhabitants of Abbottabad district, North West Frontier Province, Pakistan. Indian J. Tradit. Knowl. 2010, 9, 175–183. [Google Scholar]
- Hussain, I.; Bano, A.; Ullah, F. Traditional drug therapies from various medicinal plants of central karakoram national park, Gilgit-Baltistan Pakistan. Pak. J. Bot. 2011, 43, 79–84. [Google Scholar]
- Kumar, S.; Chand, G.; Sankhyan, P.; Chaudhari, M.; Kumar, V.; Gupta, V.; Keshari, B.B.; Sundaresan, S. Herbal folk remedies for curing various ailments in Lug Valley of district Kullu, Himachal Pradesh (NW Himalaya). Int. J. Ayurvedic Herb. Med. 2013, 3, 1308–1314. [Google Scholar]
- Rana, P.K.; Kumar, P.; Singhal, V.K.; Rana, C. Uses of local plant biodiversity among the tribal community of Pangi Valley of district Chamba in cold desert Himalaya, India. Sci. World J. 2014. [Google Scholar] [CrossRef]
- Razzaq, A.; Hadi, F.; Rashid, A.; Ibrar, M.; Ali, U. Exploration of medicinal plants and their conservation status at higher altitude of district Shangla, Khyber Pakhtunkhwa, Pakistan. Am. Eurasian J. Agric. Environ. Sci. 2015, 15, 328–331. [Google Scholar]
- Ahmad, K.S.; Qureshi, R.; Hameed, M.; Ahmad, F.; Nawaz, T. Conservation assessment and medicinal importance of some plants resources from Sharda, Neelum valley, Azad Jammu and Kashmir, Pakistan. Int. J. Agric. Biol. 2012, 14, 997–1000. [Google Scholar]
- Verma, G.; Dua, V.K.; Agarwal, D.D.; Atul, P.K. Antimalarial activity of Holarrhena antidysenterica and Viola canescens, plants traditionally used against malaria in the Garhwal region of north-west Himalaya. Malar J. 2011, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Rawal, P.; Adhikari, R.; Tiwari, A. Antifungal activity of Viola canescens against Fusarium oxysporum f. sp. lycopersici. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 1025–1032. [Google Scholar]
- Prasad, D. Antimicrobial activities of whole plant of Voila canescens and Bauhinia variegate. Biosci. Biotechnol. Res. Asia 2014, 11, 357–358. [Google Scholar] [CrossRef]
- Khajuria, A.K.; Bisht, N.S.; Kumar, G. Synthesis of Zinc oxide nanoparticles using leaf extract of Viola canescens Wall. ex, Roxb. and their antimicrobial activity. J. Pharmacogn. Phytochem. 2017, 6, 1301–1304. [Google Scholar]
- Khajuria, A.K.; Bisht, N.S.; Manhas, R.K.; Kumar, G. Callus mediated biosynthesis and antibacterial activities of zinc oxide nanoparticles from Viola canescens: An important Himalayan medicinal herb. SN Appl. Sci. 2019, 1, 455. [Google Scholar] [CrossRef] [Green Version]
- Khajuria, A.K.; Negi, A.; Bisht, N.S.; Mayura, V.; Kandwal, A. Green synthesis, characterization and antimicrobial activity of synthesized zinc oxide nanoparticles using root extract of Viola canescens Wall. ex. Roxb. Asian J. Chem. 2019, 31, 551–554. [Google Scholar] [CrossRef]
- Khan, M.A.; Ahmad, W.; Ahmad, M.; Nisar, M. Hepatoprotective effect of the solvent extracts of Viola canescens Wall. ex. Roxb. against CCl 4 induced toxicity through antioxidant and membrane stabilizing activity. BMC Complement Altern. Med. 2017, 17, 1–11. [Google Scholar]
- Khajuria, A.K.; Bisht, N.S.; Krishan, R. Effect of 2, 4-D and cytokinins on callus induction in different explants of Viola canescens wall. Ex, Roxb. Plant Arch. 2017, 17, 833–838. [Google Scholar]
- Khajuria, A.K.; Bisht, N.S. Indirect in vitro Regeneration of Viola canescens Wall. ex, Roxb. by using Leaf Calli. Plant. Tissue Cult. Biotech. 2018, 28, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Khajuria, A.K.; Chandra, S.; Manhas, R.K.; Bisht, N.S. Effect of different PGRs on in vitro organogenesis in Viola canescens Wall. ex. Roxb. from petiole callus culture. Vegetos 2019, 32, 353–362. [Google Scholar] [CrossRef]
- Nadeem, M.; Palni, L.M.S.; Purohit, A.N.; Pandey, H.; Nandi, S.K. Propagation and conservation of Podophyllum hexandrum Royle: An important medicinal herb. Biol. Conserv. 2000, 92, 121–129. [Google Scholar] [CrossRef]
- Sharma, S.; Katoch, V.; Rathour, R.; Sharma, T.R. In vitro propagation of endangered temperate Himalayan medicinal herb Picrorhiza kurroa Royle ex benth using leaf explants and nodal segments. J. Plant Biochem. Biotechnol. 2010, 19, 111–114. [Google Scholar] [CrossRef]
- Jha, T.B.; Dafadar, A.; Chaudhuri, R.K. Somatic Embryogenesis in Swertia chirata Buch. Ham. ex Wall.—A Multipotent Medicinal Herb. Asian J. Biotechnol. 2011, 3, 186–198. [Google Scholar] [CrossRef] [Green Version]
- Bisht, A.K.; Bhatt, A.; Dhar, U.; Bhatt, A.; Dhar, U. Note on somatic embryogenesis and synthetic seed production in Angelica glauca: A valuable medicinal plant of Himalaya. J. Med. Plants Res. 2015, 9, 419–425. [Google Scholar]
- Kaushal, S.; Sidana, A. Somatic embryogenesis and plant regeneration from cell suspension cultures of Gentiana kurroo Royle. Ann. Plant Sci. 2018, 7, 2239–2246. [Google Scholar] [CrossRef]
- Narayani, M.; Varsha, M.S.; Potunuru, U.R.; Beaula, W.S.; Rayala, S.K.; Dixit, M.; Chadha, A.; Srivastava, S. Production of bioactive cyclotides in somatic embryos of Viola odorata. Phytochemistry 2018, 156, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Ohga, Y.; Ono, M.; Furuno, K. Somatic embryogenesis and plant regeneration from hypocotyls and cotyledons of Angelica acutiloba and Foeniculum vulgare. Rep. Kyushu Branch Crop Sci. Soc. Jpn. 1989, 56, 89–91. [Google Scholar]
- Wakhlu, A.K.; Nagari, S.; Barna, K.S. Somatic embryogenesis and plant regeneration from callus cultures of Bunium persicum Boiss. Plant. Cell. Rep. 1990, 9, 137–138. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, M.Z.; Kukreja, A.K.; Bisht, N.S. In vitro propagation of an endangered medicinal herb Chlorophytum borivilianum Sant. et Fernand. through somatic embryogenesis. Physiol. Mol. Biol. Plants 2010, 16, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Rai, M.K.; Kumari, N. Somatic embryogenesis and plant regeneration in Sapindus mukorossi Gaertn. from leaf-derived callus induced with 6-benzylaminopurine. Appl. Biochem. Biotechnol. 2015, 177, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Sagare, A.P.; Lee, Y.L.; Lin, T.C.; Chen, C.C.; Tsay, H.S. Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo (Fumariaceae)—A medicinal plant. Plant Sci. 2000, 160, 139–147. [Google Scholar] [CrossRef]
- Chen, J.T.; Chang, W.C. Effects of auxins and cytokinins on direct somatic embryogenesison leaf explants of Oncidium ‘Gower Ramsey’. Plant Growth Regul. 2001, 34, 229–232. [Google Scholar] [CrossRef]
- Raghavan, V. Role of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: Cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2, 4-D. Am. J. Bot. 2004, 91, 1743–1756. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, K.; Prakash, J. Effect of 2, 4-D and Picloram on Somatic Embryogenesis in Carica papaya var. P-7-9. Plant Tissue Cult. Biotechnol. 2019, 29, 25–32. [Google Scholar] [CrossRef]
- Méndez-Hernández, H.A.; Ledezma-Rodríguez, M.; Avilez-Montalvo, R.N.; Juárez-Gómez, Y.L.; Skeete, A.; Avilez-Montalvo, J.; De-La-Peña, C.; Loyola-Vargas, V.M. Signaling overview of plant somatic embryogenesis. Front. Plant Sci. 2019, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Gray, D.J.; Conger, B.V. Influence of dicamba and casein hydrolysate on somatic embryo number and culture quality in cell suspensions of Dactylis glomerata (Gramineae). Plant Cell Tissue Organ Cult. 1985, 4, 123–133. [Google Scholar] [CrossRef]
- Varisai, M.S.; Wang, C.S.; Thiruvengadam, M.; Jayabalan, N. In vitro plant regeneration via somatic embryogenesis through cell suspension cultures of horsegram [Macrotyloma uniflorum (Lam.) Verdc.]. In Vitro Cell. Dev. Biol. Plant. 2004, 40, 284–289. [Google Scholar] [CrossRef]
- Ageel, S.; Elmeer, P. Effects of casein hydrolysates and glutamine on callus and somatic embryogenesis of date palm (Phoenix dactylifera). N. Y. Sci. J. 2011, 4, 121–125. [Google Scholar]
- Elmeer, K.E.S. Factors Regulating Somatic Embryogenesis in Plants. Somatic Embryogenesis and Gene Expression. In Somatic Embryogenesis and Gene Expression; Junaid, A., Srivastava, P.S., Sharma, M.P., Eds.; Narosa Publishing House: New Delhi, India, 2013; pp. 56–81. [Google Scholar]
- Daniel, M.A.; David, R.H.A.; Caesar, S.A.; Ramakrishnan, M.; Duraipandiyan, V.; Ignacimuthu, S.; Al-Dhabi, N.A. Effect of l-glutamine and casein hydrolysate in the development of somatic embryos from cotyledonary leaf explants in okra (Abelmoschus esculentus L. monech). S. Afr. J. Bot. 2018, 114, 223–231. [Google Scholar] [CrossRef]
- Fitch, M.M. High frequency somatic embryogenesis and plant regeneration from papaya hypocotyls callus. Plant Cell Tissue Organ Cult. 1993, 32, 205–212. [Google Scholar] [CrossRef]
- Choi, Y.E.; Kim, J.W.; Yoon, E.S. High frequency of plant production via somatic embryogenesis from callus or cell suspension cultures in Eleutherococcus senticosus. Ann. Bot. 1999, 83, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Lim, S.; Choi, Y.E.; Anbazhagan, V.R. High frequency plant regeneration via somatic embryogenesis in Podophyllum peltatum L., an important medicinal plant for source of anticancer drug. Curr. Sci. 2007, 92, 662–666. [Google Scholar]
- Zavattieri, M.A.; Frederico, A.M.; Lima, M.; Sabino, R.; Arnholdt-Schmitt, B. Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron. J. Biotechnol. 2010, 13, 12–13. [Google Scholar] [CrossRef] [Green Version]
- Roustan, J.P.; Latche, A.; Fallot, J. Control of carrot somatic embryogenesis by AgNO3, an inhibitor of ethylene action: Effect on arginine decarboxylase activity. Plant Sci. 1990, 67, 89–95. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Al-Bahrany, A.M. Silver nitrate and 2-isopentyladenine promote somatic embryogenesis in date palm (Phoenix dactylifera L.). Sci. Hortic. 2001, 89, 291–298. [Google Scholar] [CrossRef]
- Rai, M.K.; Jaiswal, V.S.; Jaiswal, U. Shoot multiplication and plant regeneration of guava (Psidium guajava L.) from nodal explants of in vitro raised plantlets. J. Fruit. Ornam. Plant Res. 2009, 17, 29–38. [Google Scholar]
- Rizvi, M.Z.; Kukreja, A.K.; Bisht, N.S. Plant regeneration in Chlorophytum borivilianum Sant. et Fernand. from embryogenic callus and cell suspension culture and assessment of genetic fidelity of plants derived through somatic embryogenesis. Physiol. Mol. Biol. Plants 2012, 18, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Corbin, C.; Decourtil, C.; Marosevic, D.; Bailly, M.; Lopez, T.; Renouard, S.; Doussot, J.; Dutilleul, C.; Auguin, D.; Giglioli-Guivarc’H, N.; et al. Role of protein farnesylation events in the ABA-mediated regulation of the pinoresinol–lariciresinol Reductase 1 (LuPLR1) gene expression and lignan biosynthesis in flax (Linum usitatissimum L.). Plant Physiol. Biochem. 2013, 72, 96–111. [Google Scholar] [CrossRef]
- Markulin, L.; Drouet, S.; Corbin, C.; Decourtil, C.; Garros, L.; Renouard, S.; Lopez, T.; Mongelard, G.; Gutierrez, L.; Auguin, D.; et al. The control exerted by ABA on lignan biosynthesis in flax (Linum usitatissimum L.) is modulated by a Ca2+ signal transduction involving the calmodulin-like LuCML15b. J. Plant Physiol. 2019, 236, 74–87. [Google Scholar] [CrossRef]
- Markulin, L.; Corbin, C.; Renouard, S.; Drouet, S.; Durpoix, C.; Mathieu, C.; Lopez, T.; Auguin, D.; Hano, C.; Lainé, É. Characterization of LuWRKY36, a flax transcription factor promoting secoisolariciresinol biosynthesis in response to Fusarium oxysporum elicitors in Linum usitatissimum L. hairy roots. Planta 2019, 250, 347–366. [Google Scholar] [CrossRef]
- Rojas-Lorz, L.; Arrieta-Espinoza, G.; Valdez-Melara, M.; Pereira, L.F.P.; Gatica-Arias, A. Influence of silver nitrate on somatic embryogenesis induction in Arabica Coffee (Coffea arabica L.). Braz. Arch. Biol. Technol. 2019, 62, e19180228. [Google Scholar] [CrossRef] [Green Version]
- Arnold Von, S.; Sabala, I.; Bozhkov, P.; Dyachok, J.; Filonova, L. Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult. 2002, 69, 233–249. [Google Scholar] [CrossRef]
- Kackar, A.; Bhat, S.R.; Chandel, K.P.; Malik, S.K. Plant regeneration via somatic embryogenesis in ginger. Plant Cell Tissue Organ Cult. 1993, 32, 289–292. [Google Scholar] [CrossRef]
- Yusuf, N.A.; Annuar, M.S.; Khalid, N. Rapid micropropagation of Boesenbergia rotunda (L.) Mansf. Kulturpfl. (a valuable medicinal plant) from shoot bud explants. Afr. J. Biotechnol. 2011, 10, 1194–1199. [Google Scholar]
- Verma, M.; Bansal, Y.K. Induction of somatic embryogenesis in endangered butterfly ginger Hedychium coronarium J. Koenig. Indian J. Exp. Biol. 2012, 50, 904–909. [Google Scholar]
- Hazarika, B.N. Acclimatization of tissue-cultured plants. Curr. Sci. 2003, 85, 1704–1712. [Google Scholar]
- Deb, C.R.; Imchen, T. An Efficient In vitro Hardening Technique of Tissue Culture Raised Plants. Biotechnology 2010, 9, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Bandopadhyay, R.; Kumar, V.; Chandra, R. Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnol. Lett. 2010, 32, 1199–1205. [Google Scholar] [CrossRef]
- Perrino, E.V.; Silletti, G.N.; Erben, M.; Wagensommer, R.P. Viola cassinensislucana (Violaceae), a new subspecies from Lucanian Apennine, southern Italy. Phyton 2018, 58, 109–115. [Google Scholar] [CrossRef]
- Slazak, B.; Sliwinska, E.; Saługa, M.; Ronikier, M.; Bujak, J.; Słomka, A.; Göransson, U.; Kuta, E. Micropropagation of Viola uliginosa (Violaceae) for endangered species conservation and for somaclonal variation-enhanced cyclotide biosynthesis. Plant Cell Tissue Organ Cult. 2015, 120, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Ballard, H.E.; Sytsma, K.J.; Kowal, R.R. Shrinking the violets: Phylogenetic relationships of infrageneric groups in Viola (Violaceae) based on internal transcribed spacer DNA sequences. Syst. Bot. 1999, 23, 439–458. [Google Scholar] [CrossRef]
Concentration (mg L−1) | Response | Frequency of Embryogenesis | Number of SE Derived from 300 mg Callus | |||
---|---|---|---|---|---|---|
2,4-D | IBA | Kn | 2,4-D + Kn | |||
0.10 | RT | n.d. | n.d. | |||
0.15 | SE | 77.77 | 17.55 ± 2.90 b | |||
0.20 | SE | 59.26 | 15.14 ± 2.89c | |||
0.25 | CA | n.d. | n.d. | |||
0.10 | CA | n.d. | n.d. | |||
0.15 | SE | 29.62 | 8.03 ± 2.06 f | |||
0.20 | SE | 37.03 | 10.66 ± 2.46 e | |||
0.25 | CA | n.d. | n.d. | |||
0.10 | CA | n.d. | n.d. | |||
0.15 | CA | n.d. | n.d. | |||
0.20 | SE | 55.55 | 10.25 ± 2.26 e | |||
0.25 | SE | 48.14 | 13.11 ± 2.29 d | |||
0.50 | SH | n.d. | n.d. | |||
0.10 + 0.05 | CA | n.d. | n.d. | |||
0.15 + 0.05 | SE | 88.88 | 19.15 ± 2.66 a | |||
0.20 + 0.05 | SE | 70.37 | 16.81 ± 3.02 b | |||
0.25 + 0.05 | SE | 62.96 | 15.22 ± 3.01 c |
Treatment | Concentration | Number of SE per Callus Clump | Mature SE | Germination Percentage (%) per 20 Mature SE |
---|---|---|---|---|
Control | 19.33 ± 2.9 | n.d. | n.d. | |
l-Glutamine (mg L−1) | 50 | 18.94 ± 1.95e | n.d. | n.d. |
100 | 23.33 ± 2.76 cd | 9.05 ± 3.13 c | 20 | |
200 | 19.05 ± 2.66 e | 5.11 ± 3.54 e | 15 | |
Casein (% w/v) | 1 | 21.66 ± 2.80 d | n.d. | n.d. |
2 | 25.88 ± 2.56 b | 12.16 ± 3.39 ab | 55 | |
3 | 18.89 ± 2.05 e | 7.33 ± 3.69 d | 45 | |
4 | 13.05 ± 3.53 f | 2.38 ± 1.97 f | n.d. | |
Casein+ l-Glutamine | 1 % + 50 mg L−1 | 21.61 ± 2.93 d | 10.61 ± 2.68bc | 60 |
2 % + 50 mg L−1 | 27.66 ± 2.67 a | 13.16 ± 3.48 a | 55 | |
2 % + 100 mg L−1 | 24.16 ± 2.57bc | 10.83 ± 1.82bc | 35 |
Treatments | Concentration (mg L−1) | Number of Mature SE per Callus |
---|---|---|
Control | 21.25 ± 2.48 ef | |
ABA | 0.5 | 24.81 ± 2.94 d |
1.0 | 29.59 ± 3.52 b | |
1.5 | 35.96 ± 3.68 a | |
2.0 | 27.70 ± 2.85 c | |
Silver nitrate | 1.0 | 22.81 ± 3.85 e |
2.0 | 19.59 ± 2.73 f | |
3.0 | 20.88 ± 3.27 f |
BAP (mg L−1) | Kn (mg L−1) | Number of SE Cultured | Response of SE | Frequency of Plantlet Formation in SE Matured on the Medium with ABA | Response of SE | Frequency of Plantlet Formation in SE Matured on the Medium with AgNO3 |
---|---|---|---|---|---|---|
Control | 48 | PL | 47.91 | PL | 52.08 | |
0.10 | 60 | PL | 83.33 | PL | 86.67 | |
0.20 | 60 | PL | 73.33 | PL | 81.67 | |
0.35 | 60 | MR | 28.33 | SH | n.d. | |
0.50 | 60 | SH | n.d. | SH | n.d. | |
0.10 | 48 | PL | 77.08 | PL | 81.25 | |
0.20 | 48 | MR | 43.75 | PL | 75.00 | |
0.35 | 48 | SH | n.d. | MR | 64.58 | |
0.50 | 48 | SH | n.d. | SH | n.d. |
Number of Plantlets | Plantlet Type | Duration in Growth Chamber (Weeks) | Irrigated with | Grown in Shade (Time Period in Weeks) | Survival % |
---|---|---|---|---|---|
30 | SE | 0 | Water | 0 | 00.00 |
Rhizospheric forest soil + organic compost (2:1 v/v) | |||||
45 | SE | 2 | 1/10 MS medium + water | 2 | 88.89 |
Forest soil+ organic compost + sand (1:1:1 v/v) | |||||
45 | SE | 2 | 1/10 MS medium + water | 2 | 73.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khajuria, A.K.; Hano, C.; Bisht, N.S. Somatic Embryogenesis and Plant Regeneration in Viola canescens Wall. Ex. Roxb.: An Endangered Himalayan Herb. Plants 2021, 10, 761. https://doi.org/10.3390/plants10040761
Khajuria AK, Hano C, Bisht NS. Somatic Embryogenesis and Plant Regeneration in Viola canescens Wall. Ex. Roxb.: An Endangered Himalayan Herb. Plants. 2021; 10(4):761. https://doi.org/10.3390/plants10040761
Chicago/Turabian StyleKhajuria, Arun Kumar, Christophe Hano, and Narendra Singh Bisht. 2021. "Somatic Embryogenesis and Plant Regeneration in Viola canescens Wall. Ex. Roxb.: An Endangered Himalayan Herb" Plants 10, no. 4: 761. https://doi.org/10.3390/plants10040761
APA StyleKhajuria, A. K., Hano, C., & Bisht, N. S. (2021). Somatic Embryogenesis and Plant Regeneration in Viola canescens Wall. Ex. Roxb.: An Endangered Himalayan Herb. Plants, 10(4), 761. https://doi.org/10.3390/plants10040761