Responses to Cadmium in Early-Diverging Streptophytes (Charophytes and Bryophytes): Current Views and Potential Applications
Abstract
:1. Introduction
2. Cadmium Effects on Charophytes and Bryophytes
3. Response to Cadmium Toxicity in Charophytes and Bryophytes
4. Charophytes and Bryophytes: Application Potential
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Frausto da Silva, J.J.R.; Williams, R.J.P. The Biological Chemistry of the Elements: The Inorganic Chemistry of Life; OUP Oxford: Oxford, UK, 2001; ISBN 978-0-19-850848-9. [Google Scholar]
- Giles, N.M.; Watts, A.B.; Giles, G.I.; Fry, F.H.; Littlechild, J.A.; Jacob, C. Metal and Redox Modulation of Cysteine Protein Function. Chem. Biol. 2003, 10, 677–693. [Google Scholar] [CrossRef] [Green Version]
- Olson, T.L.; Williams, J.C.; Allen, J.P. Influence of Protein Interactions on Oxidation/Reduction Midpoint Potentials of Cofactors in Natural and de Novo Metalloproteins. Biochim. Biophys. Acta BBA Bioenerg. 2013, 1827, 914–922. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.B.; Husted, S. The Biochemical Properties of Manganese in Plants. Plants 2019, 8, 381. [Google Scholar] [CrossRef] [Green Version]
- Rea, P.A. Phytochelatin Synthase: Of a Protease a Peptide Polymerase Made. Physiol. Plant. 2012, 145, 154–164. [Google Scholar] [CrossRef]
- Nieboer, E.; Richardson, D.H.S. The Replacement of the Nondescript Term ‘Heavy Metals’ by a Biologically and Chemically Significant Classification of Metal Ions. Environ. Pollut. Ser. B Chem. Phys. 1980, 1, 3–26. [Google Scholar] [CrossRef]
- Sengupta, A.K. Environmental Separation of Heavy Metals: Engineering Processes; CRC Press: Boca Raton, FL, USA, 2001; ISBN 978-1-56676-884-9. [Google Scholar]
- Usman, K.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H. The Assessment of Cadmium, Chromium, Copper, and Nickel Tolerance and Bioaccumulation by Shrub Plant Tetraena qataranse. Sci. Rep. 2019, 9, 5658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemens, S. Toxic Metal Accumulation, Responses to Exposure and Mechanisms of Tolerance in Plants. Biochimie 2006, 88, 1707–1719. [Google Scholar] [CrossRef]
- Sanità di Toppi, L.; Gabbrielli, R. Response to Cadmium in Higher Plants. Environ. Exp. Bot. 1999, 41, 105–130. [Google Scholar] [CrossRef]
- Ismael, M.A.; Elyamine, A.M.; Moussa, M.G.; Cai, M.; Zhao, X.; Hu, C. Cadmium in Plants: Uptake, Toxicity, and Its Interactions with Selenium Fertilizers. Metallomics 2019, 11, 255–277. [Google Scholar] [CrossRef] [PubMed]
- Clemens, S.; Aarts, M.G.M.; Thomine, S.; Verbruggen, N. Plant Science: The Key to Preventing Slow Cadmium Poisoning. Trends Plant Sci. 2013, 18, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Choppala, G.; Saifullah; Bolan, N.; Bibi, S.; Iqbal, M.; Rengel, Z.; Kunhikrishnan, A.; Ashwath, N.; Ok, Y.S. Cellular Mechanisms in Higher Plants Governing Tolerance to Cadmium Toxicity. Crit. Rev. Plant Sci. 2014, 33, 374–391. [Google Scholar] [CrossRef]
- Song, Y.; Jin, L.; Wang, X. Cadmium Absorption and Transportation Pathways in Plants. Int. J. Phytoremediat. 2017, 19, 133–141. [Google Scholar] [CrossRef]
- Küpper, H.; Andresen, E. Mechanisms of Metal Toxicity in Plants. Metallomics 2016, 8, 269–285. [Google Scholar] [CrossRef] [PubMed]
- Stanković, J.D.; Sabovljević, A.D.; Sabovljević, M.S. Bryophytes and Heavy Metals: A Review. Acta Bot. Croat. 2018, 77, 109–118. [Google Scholar] [CrossRef]
- Sinclair, S.A.; Krämer, U. The Zinc Homeostasis Network of Land Plants. Biochim. Biophys. Acta BBA Mol. Cell Res. 2012, 1823, 1553–1567. [Google Scholar] [CrossRef]
- Andresen, E.; Mattusch, J.; Wellenreuther, G.; Thomas, G.; Arroyo Abad, U.; Küpper, H. Different Strategies of Cadmium Detoxification in the Submerged Macrophyte Ceratophyllum demersum L. Metallomics 2013, 5, 1377. [Google Scholar] [CrossRef] [Green Version]
- Perfus-Barbeoch, L.; Leonhardt, N.; Vavasseur, A.; Forestier, C. Heavy Metal Toxicity: Cadmium Permeates through Calcium Channels and Disturbs the Plant Water Status. Plant J. 2002, 32, 539–548. [Google Scholar] [CrossRef]
- Rodriguez-Hernandez, M.C.; Bonifas, I.; Alfaro-De la Torre, M.C.; Flores-Flores, J.L.; Bañuelos-Hernández, B.; Patiño-Rodríguez, O. Increased Accumulation of Cadmium and Lead under Ca and Fe Deficiency in Typha latifolia: A Study of Two Pore Channel (TPC1) Gene Responses. Environ. Exp. Bot. 2015, 115, 38–48. [Google Scholar] [CrossRef]
- Chen, X.; Ouyang, Y.; Fan, Y.; Qiu, B.; Zhang, G.; Zeng, F. The Pathway of Transmembrane Cadmium Influx via Calcium-Permeable Channels and Its Spatial Characteristics along Rice Root. J. Exp. Bot. 2018, 69, 5279–5291. [Google Scholar] [CrossRef] [Green Version]
- Volland, S.; Andosch, A.; Milla, M.; Stöger, B.; Lütz, C.; Lütz-Meindl, U. Intracellular Metal Compartmentalization in the Green Algal Model System Micrasterias denticulata (Streptophyta) Measured by Transmission Electron Microscopy–Coupled Electron Energy Loss Spectroscopy. J. Phycol. 2011, 47, 565–579. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Bovet, L.; Maeshima, M.; Martinoia, E.; Lee, Y. The ABC Transporter AtPDR8 Is a Cadmium Extrusion Pump Conferring Heavy Metal Resistance. Plant J. 2007, 50, 207–218. [Google Scholar] [CrossRef]
- Park, J.; Song, W.-Y.; Ko, D.; Eom, Y.; Hansen, T.H.; Schiller, M.; Lee, T.G.; Martinoia, E.; Lee, Y. The Phytochelatin Transporters AtABCC1 and AtABCC2 Mediate Tolerance to Cadmium and Mercury. Plant J. 2012, 69, 278–288. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Hsu, Y.T.; Kao, C.H. Toxicity in Leaves of Rice Exposed to Cadmium Is Due to Hydrogen Peroxide Accumulation. Plant Soil 2007, 298, 231–241. [Google Scholar] [CrossRef]
- Shah, K.; Kumar, R.G.; Verma, S.; Dubey, R.S. Effect of Cadmium on Lipid Peroxidation, Superoxide Anion Generation and Activities of Antioxidant Enzymes in Growing Rice Seedlings. Plant Sci. 2001, 161, 1135–1144. [Google Scholar] [CrossRef]
- Romero-Puertas, M.C.; Palma, J.M.; Gómez, M.; Río, L.A.D.; Sandalio, L.M. Cadmium Causes the Oxidative Modification of Proteins in Pea Plants. Plant Cell Environ. 2002, 25, 677–686. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Tennstedt, P.; Peisker, D.; Böttcher, C.; Trampczynska, A.; Clemens, S. Phytochelatin Synthesis Is Essential for the Detoxification of Excess Zinc and Contributes Significantly to the Accumulation of Zinc. Plant Physiol. 2009, 149, 938–948. [Google Scholar] [CrossRef] [Green Version]
- Sooksawat, N.; Meetam, M.; Kruatrachue, M.; Pokethitiyook, P.; Nathalang, K. Phytoremediation Potential of Charophytes: Bioaccumulation and Toxicity Studies of Cadmium, Lead and Zinc. J. Environ. Sci. 2013, 25, 596–604. [Google Scholar] [CrossRef]
- Leliaert, F.; Smith, D.R.; Moreau, H.; Herron, M.D.; Verbruggen, H.; Delwiche, C.F.; De Clerck, O. Phylogeny and Molecular Evolution of the Green Algae. Crit. Rev. Plant Sci. 2012, 31, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Domozych, D.; Popper, Z.A.; Sorensen, I. Charophytes: Evolutionary Giants and Emerging Model Organisms. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harholt, J.; Moestrup, Ø.; Ulvskov, P. Why Plants Were Terrestrial from the Beginning. Trends Plant Sci. 2016, 21, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Holzinger, A.; Pichrtová, M. Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, J.L. Walkabout on the Long Branches of Plant Evolution. Curr. Opin. Plant Biol. 2013, 16, 70–77. [Google Scholar] [CrossRef]
- Wickett, N.J.; Mirarab, S.; Nguyen, N.; Warnow, T.; Carpenter, E.; Matasci, N.; Ayyampalayam, S.; Barker, M.S.; Burleigh, J.G.; Gitzendanner, M.A.; et al. Phylotranscriptomic Analysis of the Origin and Early Diversification of Land Plants. Proc. Natl. Acad. Sci. USA 2014, 111, E4859–E4868. [Google Scholar] [CrossRef] [Green Version]
- Schneider, S.C.; García, A.; Martín-Closas, C.; Chivas, A.R. The Role of Charophytes (Charales) in Past and Present Environments: An Overview. Aquat. Bot. 2015, 120, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Lütz-Meindl, U. Micrasterias as a Model System in Plant Cell Biology. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef]
- Urbaniak, J.; Gąbka, M. Polish Charophytes: An Illustrated Guide to Identification; Wydawnictwo Uniwersytetu Przyrodniczego: Poznań, Poland, 2014. [Google Scholar]
- Vanderpoorten, A.; Goffinet, B. Introduction to Bryophytes; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-1-107-37736-3. [Google Scholar]
- Qiu, Y.-L.; Li, L.; Wang, B.; Chen, Z.; Knoop, V.; Groth-Malonek, M.; Dombrovska, O.; Lee, J.; Kent, L.; Rest, J.; et al. The Deepest Divergences in Land Plants Inferred from Phylogenomic Evidence. Proc. Natl. Acad. Sci. USA 2006, 103, 15511–15516. [Google Scholar] [CrossRef] [Green Version]
- Renzaglia, K.S.; Aguilar, J.C.V.; Garbary, D.J. Morphology Supports the Setaphyte Hypothesis: Mosses plus Liverworts Form a Natural Group. Bryophyt. Divers. Evol. 2018, 40, 11–17. [Google Scholar] [CrossRef]
- Morris, J.L.; Puttick, M.N.; Clark, J.W.; Edwards, D.; Kenrick, P.; Pressel, S.; Wellman, C.H.; Yang, Z.; Schneider, H.; Donoghue, P.C.J. The Timescale of Early Land Plant Evolution. Proc. Natl. Acad. Sci. USA 2018, 115, E2274–E2283. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, S.; Panda, S.K. Toxic Effects, Oxidative Stress and Ultrastructural Changes in Moss Taxithelium nepalense (Schwaegr.) Broth. Under Chromium and Lead Phytotoxicity. Water Air Soil Pollut. 2005, 167, 73–90. [Google Scholar] [CrossRef]
- Koz, B.; Cevik, U. Lead Adsorption Capacity of Some Moss Species Used for Heavy Metal Analysis. Ecol. Indic. 2014, 36, 491–494. [Google Scholar] [CrossRef]
- Shakya, K.; Chettri, M.K.; Sawidis, T. Impact of Heavy Metals (Copper, Zinc, and Lead) on the Chlorophyll Content of Some Mosses. Arch. Environ. Contam. Toxicol. 2008, 54, 412–421. [Google Scholar] [CrossRef]
- González, A.G.; Pokrovsky, O.S. Metal Adsorption on Mosses: Toward a Universal Adsorption Model. J. Colloid Interface Sci. 2014, 415, 169–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremper, A.H.; Agneta, M.; Burton, S.; Higgs, D.E.B. Field and Laboratory Exposures of Two Moss Species to Low Level Metal Pollution. J. Atmos. Chem. 2004, 49, 111–120. [Google Scholar] [CrossRef]
- Dudev, T.; Lim, C. Competition among Metal Ions for Protein Binding Sites: Determinants of Metal Ion Selectivity in Proteins. Chem. Rev. 2014, 114, 538–556. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Serrano, M.; Romero-Puertas, M.C.; Pazmiño, D.M.; Testillano, P.S.; Risueño, M.C.; del Río, L.A.; Sandalio, L.M. Cellular Response of Pea Plants to Cadmium Toxicity: Cross Talk between Reactive Oxygen Species, Nitric Oxide, and Calcium. Plant Physiol. 2009, 150, 229–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.-H.; Shih, C.-M.; Huang, C.-J.; Lin, C.-M.; Chou, C.-M.; Tsai, M.-L.; Liu, T.P.; Chiu, J.-F.; Chen, C.-T. Effects of Cadmium on Structure and Enzymatic Activity of Cu,Zn-SOD and Oxidative Status in Neural Cells. J. Cell. Biochem. 2006, 98, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Besson-Bard, A.; Gravot, A.; Richaud, P.; Auroy, P.; Duc, C.; Gaymard, F.; Taconnat, L.; Renou, J.-P.; Pugin, A.; Wendehenne, D. Nitric Oxide Contributes to Cadmium Toxicity in Arabidopsis by Promoting Cadmium Accumulation in Roots and by Up-Regulating Genes Related to Iron Uptake. Plant Physiol. 2009, 149, 1302–1315. [Google Scholar] [CrossRef] [Green Version]
- Grimm, B.; Porra, R.J.; Rüdiger, W.; Scheer, H. Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; ISBN 978-1-4020-4516-5. [Google Scholar]
- Rother, M.; Krauss, G.-J.; Grass, G.; Wesenberg, D. Sulphate Assimilation under Cd2+ Stress in Physcomitrella patens—Combined Transcript, Enzyme and Metabolite Profiling. Plant Cell Environ. 2006, 29, 1801–1811. [Google Scholar] [CrossRef]
- Rau, S.; Miersch, J.; Neumann, D.; Weber, E.; Krauss, G.-J. Biochemical Responses of the Aquatic Moss Fontinalis antipyretica to Cd, Cu, Pb and Zn Determined by Chlorophyll Fluorescence and Protein Levels. Environ. Exp. Bot. 2007, 59, 299–306. [Google Scholar] [CrossRef]
- Bruns, I.N.A.; Sutter, K.; Menge, S.; Neumann, D.; Krauss, G.-J. Cadmium Lets Increase the Glutathione Pool in Bryophytes. J. Plant Physiol. 2001, 158, 79–89. [Google Scholar] [CrossRef]
- Ares, Á.; Itouga, M.; Kato, Y.; Sakakibara, H. Differential Metal Tolerance and Accumulation Patterns of Cd, Cu, Pb and Zn in the Liverwort Marchantia polymorpha L. Bull. Environ. Contam. Toxicol. 2018, 100, 444–450. [Google Scholar] [CrossRef]
- Clabeaux, B.L.; Navarro, D.A.G.; Aga, D.S.; Bisson, M.A. Cd Tolerance and Accumulation in the Aquatic Macrophyte, Chara australis: Potential Use for Charophytes in Phytoremediation. Environ. Sci. Technol. 2011, 45, 5332–5338. [Google Scholar] [CrossRef]
- Sutter, K.; Jung, K.; Krauss, G.-J. Effects of Heavy Metals on the Nitrogen Metabolism of the Aquatic Moss Fontinalis antipyretica L. Ex Hedw. Environ. Sci. Pollut. Res. 2002, 9, 417. [Google Scholar] [CrossRef]
- Sun, S.-Q.; He, M.; Cao, T.; Yusuyin, Y.; Han, W.; Li, J.-L. Antioxidative Responses Related to H2O2 Depletion in Hypnum plumaeforme under the Combined Stress Induced by Pb and Ni. Environ. Monit. Assess. 2010, 163, 303–312. [Google Scholar] [CrossRef]
- Bellini, E.; Maresca, V.; Betti, C.; Castiglione, M.R.; Fontanini, D.; Capocchi, A.; Sorce, C.; Borsò, M.; Bruno, L.; Sorbo, S.; et al. The Moss Leptodictyum riparium Counteracts Severe Cadmium Stress by Activation of Glutathione Transferase and Phytochelatin Synthase, but Slightly by Phytochelatins. Int. J. Mol. Sci. 2020, 21, 1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basile, A.; Sorbo, S.; Pisani, T.; Paoli, L.; Munzi, S.; Loppi, S. Bioacumulation and Ultrastructural Effects of Cd, Cu, Pb and Zn in the Moss Scorpiurum circinatum (Brid.) Fleisch. & Loeske. Environ. Pollut. 2012, 166, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Basile, A.; Sorbo, S.; Bassi, P.; Napolitano, E.; Cogoni, A.E.; Castaldo Cobianchi, R. Effects of Heavy Metals on Protonemal Development and Ultrastructure in Populations of the Moss Funaria hygrometrica Hedw.(Bryophyta) from a Mine and an Unpolluted Site. Fresenius Environ. Bull. 2008, 17, 1956–1963. [Google Scholar]
- Carginale, V.; Sorbo, S.; Capasso, C.; Trinchella, F.; Cafiero, G.; Basile, A. Accumulation, Localisation, and Toxic Effects of Cadmium in the Liverwort Lunularia cruciata. Protoplasma 2004, 223, 53–61. [Google Scholar] [CrossRef]
- Basile, A.; Sorbo, S.; Aprile, G.; Conte, B.; Castaldo Cobianchi, R.; Pisani, T.; Loppi, S. Heavy Metal Deposition in the Italian “Triangle of Death” Determined with the Moss Scorpiurum circinatum. Environ. Pollut. 2009, 157, 2255–2260. [Google Scholar] [CrossRef]
- Vidi, P.-A.; Kanwischer, M.; Baginsky, S.; Austin, J.R.; Csucs, G.; Dörmann, P.; Kessler, F.; Bréhélin, C. Tocopherol Cyclase (VTE1) Localization and Vitamin E Accumulation in Chloroplast Plastoglobule Lipoprotein Particles. J. Biol. Chem. 2006, 281, 11225–11234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havaux, M.; Eymery, F.; Porfirova, S.; Rey, P.; Dörmann, P. Vitamin E Protects against Photoinhibition and Photooxidative Stress in Arabidopsis thaliana. Plant Cell 2005, 17, 3451–3469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bréhélin, C.; Kessler, F.; van Wijk, K.J. Plastoglobules: Versatile Lipoprotein Particles in Plastids. Trends Plant Sci. 2007, 12, 260–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basile, A.; Sorbo, S.; Conte, B.; Cobianchi, R.C.; Trinchella, F.; Capasso, C.; Carginale, V. Toxicity, Accumulation, and Removal of Heavy Metals by Three Aquatic Macrophytes. Int. J. Phytoremediat. 2012, 14, 374–387. [Google Scholar] [CrossRef]
- Schwartzman, R.A.; Cidlowski, J.A. Apoptosis: The Biochemistry and Molecular Biology of Programmed Cell Death. Endocr. Rev. 1993, 14, 133–151. [Google Scholar] [CrossRef] [PubMed]
- Andosch, A.; Affenzeller, M.J.; Lütz, C.; Lütz-Meindl, U. A Freshwater Green Alga under Cadmium Stress: Ameliorating Calcium Effects on Ultrastructure and Photosynthesis in the Unicellular Model Micrasterias. J. Plant Physiol. 2012, 169, 1489–1500. [Google Scholar] [CrossRef]
- Volland, S.; Bayer, E.; Baumgartner, V.; Andosch, A.; Lütz, C.; Sima, E.; Lütz-Meindl, U. Rescue of Heavy Metal Effects on Cell Physiology of the Algal Model System Micrasterias by Divalent Ions. J. Plant Physiol. 2014, 171, 154–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, S.; Sorbo, S.; Conte, B.; Basile, A. Effects of Heavy Metals on Ultrastructure and HSP70S Induction in the Aquatic Moss Leptodictyum riparium Hedw. Int. J. Phytoremediat. 2012, 14, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Degola, F.; De Benedictis, M.; Petraglia, A.; Massimi, A.; Fattorini, L.; Sorbo, S.; Basile, A.; Sanità di Toppi, L. A Cd/Fe/Zn-Responsive Phytochelatin Synthase Is Constitutively Present in the Ancient Liverwort Lunularia cruciata (L.) Dumort. Plant Cell Physiol. 2014, 55, 1884–1891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basile, A.; Sorbo, S.; Conte, B.; Cardi, M.; Esposito, S. Ultrastructural Changes and Heat Shock Proteins 70 Induced by Atmospheric Pollution Are Similar to the Effects Observed under in vitro Heavy Metals Stress in Conocephalum conicum (Marchantiales—Bryophyta). Environ. Pollut. 2013, 182, 209–216. [Google Scholar] [CrossRef]
- Fontanini, D.; Andreucci, A.; Ruffini Castiglione, M.; Basile, A.; Sorbo, S.; Petraglia, A.; Degola, F.; Bellini, E.; Bruno, L.; Varotto, C.; et al. The Phytochelatin Synthase from Nitella mucronata (Charophyta) Plays a Role in the Homeostatic Control of Iron(II)/(III). Plant Physiol. Biochem. 2018, 127, 88–96. [Google Scholar] [CrossRef]
- Krzeslowska, M.; Rabęda, I.; Lewandowski, M.; Samardakiewicz, S.; Basińska, A.; Napieralska, A.; Mellerowicz, E.J.; Wozny, A. Pb Induces Plant Cell Wall Modifications—In Particular—The Increase of Pectins Able to Bind Metal Ions Level. E3S Web Conf. 2013, 1, 26008. [Google Scholar] [CrossRef]
- Oertel, A.; Aichinger, N.; Hochreiter, R.; Thalhamer, J.; Lütz-Meindl, U. Analysis of Mucilage Secretion and Excretion in Micrasterias (Chlorophyta) by Means of Immunoelectron Microscopy and Digital Time Lapse Video Microscopy. J. Phycol. 2004, 40, 711–720. [Google Scholar] [CrossRef]
- Affenzeller, M.J.; Darehshouri, A.; Andosch, A.; Lütz, C.; Lütz-Meindl, U. Salt Stress-Induced Cell Death in the Unicellular Green Alga Micrasterias denticulata. J. Exp. Bot. 2009, 60, 939–954. [Google Scholar] [CrossRef] [Green Version]
- Parrotta, L.; Guerriero, G.; Sergeant, K.; Cai, G.; Hausman, J.-F. Target or Barrier? The Cell Wall of Early- and Later-Diverging Plants vs Cadmium Toxicity: Differences in the Response Mechanisms. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, J.M.; Brown, D.H. Ionic Control of Intracellular and Extracellular Cd Uptake by the Moss Rhytidiadelphus squarrosus (Hedw.) Warnst. New Phytol. 1990, 116, 541–553. [Google Scholar] [CrossRef]
- Tipping, E.; Vincent, C.D.; Lawlor, A.J.; Lofts, S. Metal Accumulation by Stream Bryophytes, Related to Chemical Speciation. Environ. Pollut. 2008, 156, 936–943. [Google Scholar] [CrossRef]
- Sarkar, P.; Bosneaga, E.; Auer, M. Plant Cell Walls throughout Evolution: Towards a Molecular Understanding of Their Design Principles. J. Exp. Bot. 2009, 60, 3615–3635. [Google Scholar] [CrossRef] [Green Version]
- Popper, Z.A.; Fry, S.C. Primary Cell Wall Composition of Bryophytes and Charophytes. Ann. Bot. 2003, 91, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Florek, M.; Sykora, I.; Kantova, Z.; Mankovska, B.; Frontaseva, E.V.; Ermakova, E.V. Mosses as Biomonitors to Study the Atmospheric Deposition of Heavy Metals over the Territory of Slovakia. In Proceedings of the 4th Banskostiavnicke Days, Banska Stiavnica, Slovakia, 3–4 October 2002. [Google Scholar]
- Lazo, P.; Bekteshi, L.; Shehu, A. Active Moss Biomonitoring Technique for Atmospheric Deposition of Heavy Metals in Elbasan City, Albania. Fresenius Environ. Bull. 2013, 22, 213–218. [Google Scholar]
- Leblanc, F.; Rao, D.N. A Review of the Literature on Bryophytes with Respect to Air Pollution. Bull. Société Bot. Fr. 1974, 121, 237–255. [Google Scholar] [CrossRef] [Green Version]
- Mróz, T.; Szufa, K.; Frontasyeva, M.V.; Tselmovich, V.; Ostrovnaya, T.; Kornaś, A.; Olech, M.A.; Mietelski, J.W.; Brudecki, K. Determination of Element Composition and Extraterrestrial Material Occurrence in Moss and Lichen Samples from King George Island (Antarctica) Using Reactor Neutron Activation Analysis and SEM Microscopy. Environ. Sci. Pollut. Res. 2018, 25, 436–446. [Google Scholar] [CrossRef] [Green Version]
- Basile, A.; Fabrizi, E.; Bassi, P.; Cogoni, A.; Cobianchi, R.C. Distribution of Lead in Gametophytes and Sporophytes of the Moss Funaria hygrometrica Hedw. Grown in a Mining Site in Relation to Placenta Development. G. Bot. Ital. 1996, 130, 412. [Google Scholar] [CrossRef]
- Basile, A.; Cogoni, A.E.; Bassi, P.; Fabrizi, E.; Sorbo, S.; Giordano, S.; Castaldo Cobianchi, R. Accumulation of Pb and Zn in Gametophytes and Sporophytes of the Moss Funaria hygrometrica (Funariales). Ann. Bot. 2001, 87, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Grill, E.; Winnacker, E.-L.; Zenk, M.H. Phytochelatins: The Principal Heavy-Metal Complexing Peptides of Higher Plants. Science 1985, 230, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Grill, E.; Löffler, S.; Winnacker, E.-L.; Zenk, M.H. Phytochelatins, the Heavy-Metal-Binding Peptides of Plants, Are Synthesized from Glutathione by a Specific γ-Glutamylcysteine Dipeptidyl Transpeptidase (Phytochelatin Synthase). Proc. Natl. Acad. Sci. USA 1989, 86, 6838–6842. [Google Scholar] [CrossRef] [Green Version]
- Vatamaniuk, O.K.; Mari, S.; Lang, A.; Chalasani, S.; Demkiv, L.O.; Rea, P.A. Phytochelatin Synthase, a Dipeptidyltransferase That Undergoes Multisite Acylation with γ-Glutamylcysteine during Catalysis. J. Biol. Chem. 2004, 279, 22449–22460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivares, D.; Arnoux, P.; Pignol, D. A Papain-like Enzyme at Work: Native and Acyl-Enzyme Intermediate Structures in Phytochelatin Synthesis. Proc. Natl. Acad. Sci. USA 2005, 102, 18848–18853. [Google Scholar] [CrossRef] [Green Version]
- Romanyuk, N.D.; Rigden, D.J.; Vatamaniuk, O.K.; Lang, A.; Cahoon, R.E.; Jez, J.M.; Rea, P.A. Mutagenic Definition of a Papain-Like Catalytic Triad, Sufficiency of the N-Terminal Domain for Single-Site Core Catalytic Enzyme Acylation, and C-Terminal Domain for Augmentative Metal Activation of a Eukaryotic Phytochelatin Synthase. Plant Physiol. 2006, 141, 858–869. [Google Scholar] [CrossRef] [Green Version]
- Loeffler, S.; Hochberger, A.; Grill, E.; Winnacker, E.-L.; Zenk, M.H. Termination of the Phytochelatin Synthase Reaction through Sequestration of Heavy Metals by the Reaction Product. FEBS Lett. 1989, 258, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Speiser, D.M.; Abrahamson, S.L.; Banuelos, G.; Ow, D.W. Brassica juncea Produces a Phytochelatin-Cadmium-Sulfide Complex. Plant Physiol. 1992, 99, 817–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krotz, R.M.; Evangelou, B.P.; Wagner, G.J. Relationships between Cadmium, Zinc, Cd-Peptide, and Organic Acid in Tobacco Suspension Cells. Plant Physiol. 1989, 91, 780–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruns, I.; Friese, K.; Markert, B.; Krauss, G.-J. Heavy Metal Inducible Compounds from Fontinalis antipyretica Reacting with Ellman’s Reagent Are Not Phytochelatins. Sci. Total Environ. 1999, 241, 215–216. [Google Scholar] [CrossRef]
- Leinenweber, G.; Stegen, S.; Diaz-Palma, P. Increase of Total Glutathione as a Response to Cd Induced Stress in a Chilean Endemic Bryophytes (Thuidium sp.). J. Chil. Chem. Soc. 2009, 54, 401–404. [Google Scholar] [CrossRef]
- Bleuel, C.; Wesenberg, D.; Meyer, A.J. Degradation of Glutathione S-Conjugates in Physcomitrella patens Is Initiated by Cleavage of Glycine. Plant Cell Physiol. 2011, 52, 1153–1161. [Google Scholar] [CrossRef] [Green Version]
- Petraglia, A.; De Benedictis, M.; Degola, F.; Pastore, G.; Calcagno, M.; Ruotolo, R.; Mengoni, A.; Sanità di Toppi, L. The Capability to Synthesize Phytochelatins and the Presence of Constitutive and Functional Phytochelatin Synthases Are Ancestral (Plesiomorphic) Characters for Basal Land Plants. J. Exp. Bot. 2014, 65, 1153–1163. [Google Scholar] [CrossRef] [Green Version]
- Maresca, V.; Sorbo, S.; Loppi, S.; Funaro, F.; Del Prete, D.; Basile, A. Biological Effects from Environmental Pollution by Toxic Metals in the “Land of Fires” (Italy) Assessed Using the Biomonitor Species Lunularia cruciata L. (Dum). Environ. Pollut. 2020, 265, 115000. [Google Scholar] [CrossRef]
- Bellini, E.; Varotto, C.; Borsò, M.; Rugnini, L.; Bruno, L.; Sanità di Toppi, L. Eukaryotic and Prokaryotic Phytochelatin Synthases Differ Less in Functional Terms Than Previously Thought: A Comparative Analysis of Marchantia polymorpha and Geitlerinema Sp. PCC 7407. Plants 2020, 9, 914. [Google Scholar] [CrossRef]
- Li, M.; Barbaro, E.; Bellini, E.; Saba, A.; Sanità di Toppi, L.; Varotto, C. Ancestral Function of the Phytochelatin Synthase C-Terminal Domain in Inhibition of Heavy Metal-Mediated Enzyme Overactivation. J. Exp. Bot. 2020, 71, 6655–6669. [Google Scholar] [CrossRef]
- Rensing, S.A.; Lang, D.; Zimmer, A.D.; Terry, A.; Salamov, A.; Shapiro, H.; Nishiyama, T.; Perroud, P.-F.; Lindquist, E.A.; Kamisugi, Y.; et al. The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science 2008, 319, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Kopriva, S.; Wiedemann, G.; Reski, R. Sulfate Assimilation in Basal Land Plants—What Does Genomic Sequencing Tell Us? Plant Biol. 2007, 9, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Pakdee, O.; Songnuan, W.; Panvisavas, N.; Pokethitiyook, P.; Yokthongwattana, K.; Meetam, M. Functional Characterization of Metallothionein-like Genes from Physcomitrella patens: Expression Profiling, Yeast Heterologous Expression, and Disruption of PpMT1.2a Gene. Planta 2019, 250, 427–443. [Google Scholar] [CrossRef]
- Ziller, A.; Fraissinet-Tachet, L. Metallothionein Diversity and Distribution in the Tree of Life: A Multifunctional Protein. Metallomics 2018, 10, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Cobbett, C.; Goldsbrough, P. Phytochelatins and Metallothioneins: Roles in Heavy Metal Detoxification and Homeostasis. Annu. Rev. Plant Biol. 2002, 53, 159–182. [Google Scholar] [CrossRef] [Green Version]
- Freisinger, E. Structural Features Specific to Plant Metallothioneins. JBIC J. Biol. Inorg. Chem. 2011, 16, 1035–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leszczyszyn, O.I.; Imam, H.T.; Blindauer, C.A. Diversity and Distribution of Plant Metallothioneins: A Review of Structure, Properties and Functions. Metallomics 2013, 5, 1146. [Google Scholar] [CrossRef]
- Schultze, P.; Wörgötter, E.; Braun, W.; Wagner, G.; Va?ák, M.; Kägi, J.H.R.; Wüthrich, K. Conformation of [Cd7]-metallothionein-2 from Rat Liver in Aqueous Solution Determined by Nuclear Magnetic Resonance Spectroscopy. In NMR in Structural Biology; World Scientific Series in 20th Century Chemistry; WORLD SCIENTIFIC: Singapore, 1995; Volume 5, pp. 364–381. ISBN 978-981-02-2242-0. [Google Scholar]
- Thiele, D.J.; Hamer, D.H. Tandemly Duplicated Upstream Control Sequences Mediate Copper-Induced Transcription of the Saccharomyces cerevisiae Copper-Metallothionein Gene. Mol. Cell. Biol. 1986, 6, 1158–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benatti, M.R.; Yookongkaew, N.; Meetam, M.; Guo, W.-J.; Punyasuk, N.; AbuQamar, S.; Goldsbrough, P. Metallothionein Deficiency Impacts Copper Accumulation and Redistribution in Leaves and Seeds of Arabidopsis. New Phytol. 2014, 202, 940–951. [Google Scholar] [CrossRef]
- Guo, W.-J.; Meetam, M.; Goldsbrough, P.B. Examining the Specific Contributions of Individual Arabidopsis Metallothioneins to Copper Distribution and Metal Tolerance. Plant Physiol. 2008, 146, 1697–1706. [Google Scholar] [CrossRef] [Green Version]
- Xue, T.; Li, X.; Zhu, W.; Wu, C.; Yang, G.; Zheng, C. Cotton Metallothionein GhMT3a, a Reactive Oxygen Species Scavenger, Increased Tolerance against Abiotic Stress in Transgenic Tobacco and Yeast. J. Exp. Bot. 2009, 60, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Mir, G.; Domènech, J.; Huguet, G.; Guo, W.-J.; Goldsbrough, P.; Atrian, S.; Molinas, M. A Plant Type 2 Metallothionein (MT) from Cork Tissue Responds to Oxidative Stress. J. Exp. Bot. 2004, 55, 2483–2493. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, Y.; Zhang, X.; Peng, Y.; Merewitz, E.; Ma, X.; Huang, L.; Yan, Y. The Alterations of Endogenous Polyamines and Phytohormones Induced by Exogenous Application of Spermidine Regulate Antioxidant Metabolism, Metallothionein and Relevant Genes Conferring Drought Tolerance in White Clover. Environ. Exp. Bot. 2016, 124, 22–38. [Google Scholar] [CrossRef]
- Steffens, B.; Sauter, M. Epidermal Cell Death in Rice Is Confined to Cells with a Distinct Molecular Identity and Is Mediated by Ethylene and H2O2 through an Autoamplified Signal Pathway. Plant Cell 2009, 21, 184–196. [Google Scholar] [CrossRef] [Green Version]
- Steffens, B.; Geske, T.; Sauter, M. Aerenchyma Formation in the Rice Stem and Its Promotion by H2O2. New Phytol. 2011, 190, 369–378. [Google Scholar] [CrossRef]
- Yi, J.; Moon, S.; Lee, Y.-S.; Zhu, L.; Liang, W.; Zhang, D.; Jung, K.-H.; An, G. Defective Tapetum Cell Death 1 (DTC1) Regulates ROS Levels by Binding to Metallothionein during Tapetum Degeneration. Plant Physiol. 2016, 170, 1611–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dresler, S.; Hanaka, A.; Bednarek, W.; Maksymiec, W. Accumulation of Low-Molecular-Weight Organic Acids in Roots and Leaf Segments of Zea mays Plants Treated with Cadmium and Copper. Acta Physiol. Plant. 2014, 36, 1565–1575. [Google Scholar] [CrossRef] [Green Version]
- Kováčik, J.; Babula, P.; Hedbavny, J. Comparison of Vascular and Non-Vascular Aquatic Plant as Indicators of Cadmium Toxicity. Chemosphere 2017, 180, 86–92. [Google Scholar] [CrossRef]
- Kováčik, J.; Dresler, S.; Babula, P. Long-Term Impact of Cadmium in Protonema Cultures of Physcomitrella patens. Ecotoxicol. Environ. Saf. 2020, 193, 110333. [Google Scholar] [CrossRef]
- Moons, A. Osgstu3 and Osgtu4, Encoding Tau Class Glutathione S-Transferases, Are Heavy Metal- and Hypoxic Stress-Induced and Differentially Salt Stress-Responsive in Rice Roots. FEBS Lett. 2003, 553, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Cadmium Induced Oxidative Stress Influence on Glutathione Metabolic Genes of Camellia sinensis (L.) O. Kuntze. Environ. Toxicol. 2007, 22, 368–374. [Google Scholar] [CrossRef]
- Zhang, C.; Yin, X.; Gao, K.; Ge, Y.; Cheng, W. Non-Protein Thiols and Glutathione S-Transferase Alleviate Cd Stress and Reduce Root-to-Shoot Translocation of Cd in Rice. J. Plant Nutr. Soil Sci. 2013, 176, 626–633. [Google Scholar] [CrossRef]
- Grzam, A.; Tennstedt, P.; Clemens, S.; Hell, R.; Meyer, A.J. Vacuolar Sequestration of Glutathione S-Conjugates Outcompetes a Possible Degradation of the Glutathione Moiety by Phytochelatin Synthase. FEBS Lett. 2006, 580, 6384–6390. [Google Scholar] [CrossRef] [Green Version]
- Rea, P.A.; Li, Z.-S.; Lu, Y.-P.; Drozdowicz, Y.M.; Martinoia, E. From Vacuolar Gs-X Pumps to Multispecific ABC Transporters. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 727–760. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Loppi, S.; Monaci, F.; Paoli, L.; Vannini, A.; Sorbo, S.; Maresca, V.; Fusaro, L.; Karam, E.A.; Lentini, M.; et al. In-Field and in-vitro Study of the Moss Leptodictyum riparium as Bioindicator of Toxic Metal Pollution in the Aquatic Environment: Ultrastructural Damage, Oxidative Stress and HSP70 Induction. PLoS ONE 2018, 13, e0195717. [Google Scholar] [CrossRef] [PubMed]
- Giordano, S.; Cobianchi, R.C.; Basile, A.; Spagnuolo, V. The Structure and Role of Hyaline Parenchyma in the Liverwort Lunularia cruciata (L.) Dum. G. Bot. Ital. 1989, 123, 169–176. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology; Luch, A., Ed.; Experientia Supplementum; Springer: Basel, Switzerland, 2012; pp. 133–164. ISBN 978-3-7643-8340-4. [Google Scholar]
- Markert, B.; Oehlmann, J.; Roth, M. General Aspects of Heavy Metal Monitoring by Plants and Animals. In Environmental Biomonitoring; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1997; Volume 654, pp. 19–29. ISBN 978-0-8412-3477-2. [Google Scholar]
- Stankovic, S.; Kalaba, P.; Stankovic, A.R. Biota as Toxic Metal Indicators. Environ. Chem. Lett. 2014, 12, 63–84. [Google Scholar] [CrossRef]
- Onianwa, P.C. Monitoring Atmospheric Metal Pollution: A Review of the Use of Mosses as Indicators. Environ. Monit. Assess. 2001, 71, 13–50. [Google Scholar] [CrossRef]
- Chakrabortty, S.; Paratkar, G.T. Biomonitoring of Trace Element Air Pollution Using Mosses. Aerosol Air Qual. Res. 2006, 6, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.Á.; Pérez-Llamazares, A.; Carballeira, A.; Aboal, J.R. Temporal Variability of Metal Uptake in Different Cell Compartments in Mosses. Water. Air. Soil Pollut. 2013, 224, 1481. [Google Scholar] [CrossRef]
- Knasmüller, S.; Gottmann, E.; Steinkellner, H.; Fomin, A.; Pickl, C.; Paschke, A.; Göd, R.; Kundi, M. Detection of Genotoxic Effects of Heavy Metal Contaminated Soils with Plant Bioassays. Mutat. Res. Toxicol. Environ. Mutagenes. 1998, 420, 37–48. [Google Scholar] [CrossRef]
- Markert, B.; Weckert, V. Use of Polytrichum formosum (Moss) as a Passive Biomonitor for Heavy Metal Pollution (Cadmium, Copper, Lead and Zinc). Sci. Total Environ. 1989, 86, 289–294. [Google Scholar] [CrossRef]
- Chandra, P.; Kulshreshtha, K. Chromium Accumulation and Toxicity in Aquatic Vascular Plants. Bot. Rev. 2004, 70, 313–327. [Google Scholar] [CrossRef]
- Zechmeister, H.G.; Hohenwallner, D.; Riss, A.; Hanus-Illnar, A. Variations in Heavy Metal Concentrations in the Moss Species Abietinella abietina (Hedw.) Fleisch. According to Sampling Time, within Site Variability and Increase in Biomass. Sci. Total Environ. 2003, 301, 55–65. [Google Scholar] [CrossRef]
- Kelly, M.G.; Girton, C.; Whitton, B.A. Use of Moss-Bags for Monitoring Heavy Metals in Rivers. Water Res. 1987, 21, 1429–1435. [Google Scholar] [CrossRef]
- Harmens, H.; Norris, D.A.; Koerber, G.R.; Buse, A.; Steinnes, E.; Rühling, Å. Temporal Trends in the Concentration of Arsenic, Chromium, Copper, Iron, Nickel, Vanadium and Zinc in Mosses across Europe between 1990 and 2000. Atmos. Environ. 2007, 41, 6673–6687. [Google Scholar] [CrossRef] [Green Version]
- Szczepaniak, K.; Biziuk, M. Aspects of the Biomonitoring Studies Using Mosses and Lichens as Indicators of Metal Pollution. Environ. Res. 2003, 93, 221–230. [Google Scholar] [CrossRef]
- Mahapatra, B.; Dhal, N.K.; Dash, A.K.; Panda, B.P.; Panigrahi, K.C.S.; Pradhan, A. Perspective of Mitigating Atmospheric Heavy Metal Pollution: Using Mosses as Biomonitoring and Indicator Organism. Environ. Sci. Pollut. Res. 2019, 26, 29620–29638. [Google Scholar] [CrossRef] [PubMed]
- Nickrent, D.L.; Parkinson, C.L.; Palmer, J.D.; Duff, R.J. Multigene Phylogeny of Land Plants with Special Reference to Bryophytes and the Earliest Land Plants. Mol. Biol. Evol. 2000, 17, 1885–1895. [Google Scholar] [CrossRef]
- Govindapyari, H.; Leleeka, M.; Nivedita, M.; Uniyal, P.L. Bryophytes: Indicators and Monitoring Agents of Pollution. NeBIO 2010, 1, 35–41. [Google Scholar]
- Sassmann, S.; Wernitznig, S.; Lichtscheidl, I.K.; Lang, I. Comparing Copper Resistance in Two Bryophytes: Mielichhoferia elongata Hornsch. versus Physcomitrella patens Hedw. Protoplasma 2010, 246, 119–123. [Google Scholar] [CrossRef]
- Zechmeister, H.G.; Dirnböck, T.; Hülber, K.; Mirtl, M. Assessing Airborne Pollution Effects on Bryophytes—Lessons Learned through Long-Term Integrated Monitoring in Austria. Environ. Pollut. 2007, 147, 696–705. [Google Scholar] [CrossRef]
- Crandall-Stotler, B.J.; Bartholomew-Began, S.E. Morphology of Mosses (Phylum Bryophyta). In Flora of North America, Bryophytes: Mosses. Part 1: North of Mexico; Oxford University Press: Oxford, UK, 2007; Volume 27. [Google Scholar]
- Sun, S.-Q.; He, M.; Cao, T.; Zhang, Y.-C.; Han, W. Response Mechanisms of Antioxidants in Bryophyte (Hypnum plumaeforme) under the Stress of Single or Combined Pb and/or Ni. Environ. Monit. Assess. 2009, 149, 291–302. [Google Scholar] [CrossRef]
- Jiang, L.; Feng, Z.; Dai, L.; Shang, B.; Paoletti, E. Large Variability in Ambient Ozone Sensitivity across 19 Ethylenediurea-Treated Chinese Cultivars of Soybean Is Driven by Total Ascorbate. J. Environ. Sci. 2018, 64, 10–22. [Google Scholar] [CrossRef]
- Roberts, A.W.; Roberts, E.M.; Haigler, C.H. Moss Cell Walls: Structure and Biosynthesis. Front. Plant Sci. 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- Little, P.; Martin, M.H. Biological Monitoring of Heavy Metal Pollution. Environ. Pollut. 1970 1974, 6, 1–19. [Google Scholar] [CrossRef]
- Zvereva, E.L.; Kozlov, M.V. Impacts of Industrial Polluters on Bryophytes: A Meta-Analysis of Observational Studies. Water Air Soil Pollut. 2011, 218, 573–586. [Google Scholar] [CrossRef]
- Gupta, V.K.; Rastogi, A. Sorption and Desorption Studies of Chromium(VI) from Nonviable Cyanobacterium Nostoc muscorum Biomass. J. Hazard. Mater. 2008, 154, 347–354. [Google Scholar] [CrossRef]
- Deng, L.; Zhang, Y.; Qin, J.; Wang, X.; Zhu, X. Biosorption of Cr(VI) from Aqueous Solutions by Nonliving Green Algae Cladophora albida. Miner. Eng. 2009, 22, 372–377. [Google Scholar] [CrossRef]
- Coops, H. Ecology of Charophytes: An Introduction. Aquat. Bot. 2002, 3–4, 205–208. [Google Scholar] [CrossRef]
- Królikowska, J. Eutrophication Processes in a Shallow, Macrophyte-Dominated Lake—Species Differentiation, Biomass and the Distribution of Submerged Macrophytes in Lake Łuknajno (Poland). Hydrobiologia 1997, 342, 411–416. [Google Scholar] [CrossRef]
- Petty, G. Aquatic Plant Management: Best Management Practices in Support of Fish and Wildlife Habitat; Aquatic Ecosystem Restoration Foundation AERF: Marietta, GA, USA, 2005; pp. 9–25. [Google Scholar]
- Gomes, P.I.A.; Asaeda, T. Phycoremediation of Chromium (VI) by Nitella and Impact of Calcium Encrustation. J. Hazard. Mater. 2009, 166, 1332–1338. [Google Scholar] [CrossRef] [PubMed]
- Bibi, M.H.; Asaeda, T.; Azim, E. Effects of Cd, Cr, and Zn on Growth and Metal Accumulation in an Aquatic Macrophyte, Nitella graciliformis. Chem. Ecol. 2010, 26, 49–56. [Google Scholar] [CrossRef]
- Gao, Y.; Yan, X. Response of Chara globularis and Hydrodictyon reticulatum to Lead Pollution: Their Survival, Bioaccumulation, and Defense. J. Appl. Phycol. 2012, 24, 245–251. [Google Scholar] [CrossRef]
- Chojnacka, K. Biosorption and Bioaccumulation—The Prospects for Practical Applications. Environ. Int. 2010, 36, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Sooksawat, N.; Meetam, M.; Kruatrachue, M.; Pokethitiyook, P.; Inthorn, D. Equilibrium and Kinetic Studies on Biosorption Potential of Charophyte Biomass to Remove Heavy Metals from Synthetic Metal Solution and Municipal Wastewater. Bioremediat. J. 2016, 20, 240–251. [Google Scholar] [CrossRef]
- Clabeaux, B.L.; Navarro, D.A.; Aga, D.S.; Bisson, M.A. Combined Effects of Cadmium and Zinc on Growth, Tolerance, and Metal Accumulation in Chara australis and Enhanced Phytoextraction Using EDTA. Ecotoxicol. Environ. Saf. 2013, 98, 236–243. [Google Scholar] [CrossRef]
- De Vleeschouwer, F.; Gérard, L.; Goormaghtigh, C.; Mattielli, N.; Le Roux, G.; Fagel, N. Atmospheric Lead and Heavy Metal Pollution Records from a Belgian Peat Bog Spanning the Last Two Millenia: Human Impact on a Regional to Global Scale. Sci. Total Environ. 2007, 377, 282–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mighall, T.M.; Timberlake, S.; Foster, I.D.; Krupp, E.; Singh, S. Ancient Copper and Lead Pollution Records from a Raised Bog Complex in Central Wales, UK. J. Archaeol. Sci. 2009, 36, 1504–1515. [Google Scholar] [CrossRef]
- Novak, M.; Erel, Y.; Zemanova, L.; Bottrell, S.H.; Adamova, M. A Comparison of Lead Pollution Record in Sphagnum Peat With Known Historical Pb Emission Rates in the British Isles and the Czech Republic. Atmos. Environ. 2008, 42, 8997–9006. [Google Scholar] [CrossRef]
- Oliver, M.J.; Velten, J.E.F.F.; Mishler, B.D. Desiccation Tolerance in Bryophytes: A Reflection of The Primitive Strategy for Plant Survival in Dehydrating Habitats? Integr. Comp. Biol. 2005, 45, 788–799. [Google Scholar] [CrossRef] [Green Version]
Effect | Reference No. |
---|---|
Essential metal ion replacement | [51,52] |
Uptake reduction of essential elements | [9,17,18,19,53] |
Mg2+ replacement in the RuBisCo catalytic centre and in Chl porphyrin ring | [15,54] |
Total Chl content reduction | [16,47,55,58,59] |
Nitrogen metabolism alteration | [60] |
Oxidative stress induction | [28,58,61,62] |
Shape of chloroplasts and thylakoid membrane arrangement alterations | [63,64,65,66] |
Cell plasmolysis and cytoplasm vacuolization | [62,70] |
Multivesicular bodies and autophagosome formation | [63,65,72,73,74,75,76,77] |
Response | Reference No. |
---|---|
Avoidance mechanisms | |
Cd adsorption onto the cell wall | [16,47,48,59,63,66,73,78,81,86,87,88,89] |
Cd chelation by the mucilage produced in charophytes | [79,81] |
Cd sequestration in the placenta of mosses | [90] |
Detoxification mechanisms | |
Cd chelation by PCn | [62,75,77,103,104,105,106] |
Cd chelation by vacuolar organic acids | [124,125,126] |
Cd complexation by phosphate | [75] |
Antioxidant response | [63,104] |
Heat Shock Protein induction | [74,76,104,132] |
Metal allocation arrangement | [65,75,76,133] |
Phytomonitoring and Phytoremediation | ||
---|---|---|
Advantages | Disadvantages | |
Charophytes | Fast growth rate [158,159] | Little known responses in metal(loid) phytomonitoring and phytoremediation |
Easy to harvest [158,159] | Use limited to freshwater wetlands [160] | |
High metal(loid) bioaccumulation [163,164,165,168] | ||
Both dead (dry) and living biomass can be used [166] | ||
Advantages | Disadvantages | |
Bryophytes | Good performance in bioindication [145,146] | Low growth rate [138] |
High metal(loid) bioaccumulation capacity [146,147,149,150] | Low biomass production for most species [138] | |
Sphagnum species produce large biomass and may record past pollution events in peat bogs [169,170,171] | ||
High surface/volume ratio [153,154] | ||
Lack of (or very thin) protective cuticle(true also for charophytes) [155] | ||
Use of moss bags in areas where bryophytes are naturally lacking [144] | ||
Somatic desiccation tolerance allows some mosses to survive in prolonged exposition to air [172] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellini, E.; Betti, C.; Sanità di Toppi, L. Responses to Cadmium in Early-Diverging Streptophytes (Charophytes and Bryophytes): Current Views and Potential Applications. Plants 2021, 10, 770. https://doi.org/10.3390/plants10040770
Bellini E, Betti C, Sanità di Toppi L. Responses to Cadmium in Early-Diverging Streptophytes (Charophytes and Bryophytes): Current Views and Potential Applications. Plants. 2021; 10(4):770. https://doi.org/10.3390/plants10040770
Chicago/Turabian StyleBellini, Erika, Camilla Betti, and Luigi Sanità di Toppi. 2021. "Responses to Cadmium in Early-Diverging Streptophytes (Charophytes and Bryophytes): Current Views and Potential Applications" Plants 10, no. 4: 770. https://doi.org/10.3390/plants10040770
APA StyleBellini, E., Betti, C., & Sanità di Toppi, L. (2021). Responses to Cadmium in Early-Diverging Streptophytes (Charophytes and Bryophytes): Current Views and Potential Applications. Plants, 10(4), 770. https://doi.org/10.3390/plants10040770