Checklist of African Soapy Saponin—Rich Plants for Possible Use in Communities’ Response to Global Pandemics
Abstract
:1. Introduction
2. Results
2.1. Saponin-Rich Plants
2.2. Occurrence and Distribution
2.3. Traditional Uses
2.4. Topical Use
2.5. Studies to Support Antimicrobial Use
2.6. Activity against Viruses
2.6.1. Non-Enveloped Viruses
2.6.2. Enveloped Viruses
2.7. Activity against Bacteria
2.7.1. Gram-Positive Bacteria
2.7.2. Gram-Negative Bacteria
2.8. Activity against Fungi
2.9. Product Development
2.10. Conservation Status
2.11. Relevance of Soapy Plants in Community Health
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Applequist, W.L.; Brinckmann, J.A.; Cunningham, A.B.; Hart, R.E.; Heinrich, M.; Katerere, D.R.; van Andel, T. Scientists’ warning on climate change and medicinal plants. Planta Med. 2020, 86, 10–18. [Google Scholar] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I.; AzharI, N.H.; Kabbashi, N.A. Metabolic profiling of flavonoids, saponins, alkaloids, and terpenoids in the extract from Vernonia cinerea leaf using LC-Q-TOF-MS. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 722–731. [Google Scholar] [CrossRef]
- Saxena, M.; Saxena, J.; Nema, R.; Singh, D.; Gupta, A. Phytochemistry of medicinal plants. J. Pharmacogn. Phytochem. 2013, 1, 168–182. [Google Scholar]
- Osbourn, A. Saponins and plant defence—A soap story. Trends Plant Sci. 1996, 1, 4–9. [Google Scholar] [CrossRef]
- Qasim, M.; Islam, W.; Ashraf, H.J.; Ali, I.; Wang, L. Saponins in Insect Pest Control. Co Evol. Second. Metab. 2020, 897–924. [Google Scholar] [CrossRef]
- Voutquenne, L. Saponins and hemolytic activity. Saponins and glycosides from five species of Sapindaceae. Ann. Pharm. Fr. 2001, 59, 407–414. [Google Scholar] [PubMed]
- Glénsk, M.; Włodarczyk, M.; Bassarello, C.; PIzza, C.; Stefanowicz, P.; Świtalska, M. A major saponin from leaves extract of Acer velutinum. Z. Nat. B 2009, 64, 1081–1086. [Google Scholar] [CrossRef]
- Kurimoto, S.I.; Sasaki, Y.F.; Suyama, Y.; Tanaka, N.; Kashiwada, Y.; Nakamura, T. Acylated triterpene saponins from the stem bark of cernikoense (Aceraceae). Chem. Pharm. Bull. 2016, 64, 924–929. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.T.; Chen, S.T.; Guo, C.; Jiao, M.J.; Cui, W.J.; Wang, S.H.; Deng, Z.; Chen, C.; Chen, S.; Zhang, J. Triterpenoid Saponins from the seeds of Aesculus chinensis and their cytotoxicities. Nat. Prod. Bioprospect. 2018, 8, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Karatoprak, G.Ş. Horse Chestnut. In Nonvitamin and Nonmineral Nutritional Supplements; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Sparg, S.; Light, M.; van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004, 94, 219–243. [Google Scholar] [CrossRef]
- Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Bio Med. Atenei Parm. 2020, 91, 157–160. [Google Scholar]
- ncov2019.live. World COVID-19 Stats. 2020. Available online: https://ncov2019.live/data (accessed on 28 December 2020).
- UNICEF; WHO. 2 in 5 Schools around the World Lack Basic Handwashing Facilities Prior to 2019 COVID-19 Pandemic. 2020. Available online: https://www.unicef.org/press-releases/2-5-schools-around-world-lacked-basic-handwashing-facilities-prior-covid-19-pandemic (accessed on 28 December 2020).
- Whinnery, J.; Penakalapati, G.; Steinacher, R.; Wilson, N.; Null, C.; Pickering, A.J. Handwashing with a water-efficient tap and low-cost foaming soap: The povu Poa “Cool Foam” system in Kenya. Glob. Health Sci. Pract. 2016, 4, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Bodiba, D.; Szuman, K.M.; Lall, N. The role of medicinal plants in oral care. In Medicinal Plants for Holistic Health and Well-Being; Academic Press: Cambridge, MA, USA, 2018; pp. 183–212. [Google Scholar]
- Muhammad, S.; Lawal, M.T. Oral hygiene and the use of plants. Sci. Res. Essays 2010, 5, 1788–1795. [Google Scholar]
- Peace with the Wild. Available online: https://www.peacewiththewild.co.uk/product/plant-based-natural-shampoo-powder/ (accessed on 16 January 2021).
- United Nations. Available online: https://www.unwater.org/water-facts/handhygiene/ (accessed on 21 January 2021).
- Kregiel, D.; Berlowska, J.; Witonska, I.; Antolak, H.; Proestos, C.; Babic, M.; Babic, L.; Zhang, B. Saponin-based, biological-active surfactants from plants. Appl. Charact. Surfactants 2017, 6, 184–205. [Google Scholar]
- Hostettmann, K.; Marston, A. Saponins; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Desai, S.D.; Desai, D.G.; Kaur, H. Saponins and their biological activities. Pharma Times 2009, 41, 13–16. [Google Scholar]
- El Aziz, M.; Ashour, A.; Melad, A. A review on saponins from medicinal plants: Chemistry, isolation, and determination. J. Nanomed. Res. 2019, 8, 6–12. [Google Scholar]
- Abed El Aziz, M.M.; Ashour, A.S.; Madbouly, H.A.; Melad, A.S.; El Kerikshi, K. Investigations on green preparation of heavy metal saponin complexes. J. Water Environ. Nanotechnol. 2017, 2, 103–111. [Google Scholar]
- Khan, A.M.; Qureshi, R.A.; Ullah, F.; Gilani, S.A.; Nosheen, A.; Sahreen, S.; Laghari, M.K.; Laghari, M.Y.; Hussain, I.; Murad, W. Phytochemical analysis of selected medicinal plants of Margalla Hills and surroundings. J. Med. Plants Res. 2011, 5, 6055–6060. [Google Scholar]
- Mudimba, T.N.; Nguta, J.M. Traditional uses, phytochemistry and pharmaco-logical activity of Carpobrotus edulis: A global perspective. J. Phytopharm. 2019, 8, 111–116. [Google Scholar] [CrossRef]
- Omoruyi, B.E.; Bradley, G.; Afolayan, A.J. Antioxidant and phytochemical properties of Carpobrotus edulis (L.) bolus leaf used for the management of common infections in HIV/AIDS patients in Eastern Cape Province. BMC Complementary Altern. Med. 2012, 12, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Okoye, E. Qualitative and quantitative phytochemical analysis and antimicrobial screening of solvent extracts of Amaranthus hybridus (stem and leaves). Chem. Res. J. 2018, 3, 9–13. [Google Scholar]
- Soni, A.; Sosa, S. Phytochemical analysis and free radical scavenging potential of herbal and medicinal plant extracts. J. Pharmacogn. Phytochem. 2013, 2, 22–29. [Google Scholar]
- Falusi, V.; Adesina, I.; Aladejimokun, A.; Elehinafe, T. Phytochemical Screening and Antibacterial Activity of Methanolic Extracts of Ripe and Unripe Peels of Mango (Mangifera indica L.). J. Appl. Life Sci. Int. 2017, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Madhu, M.; Sailaja, V.; Satyadev, T.; Satyanarayana, M. Quantitative phytochemical analysis of selected medicinal plant species by using various organic solvents. J. Pharmacogn. Phytochem. 2016, 5, 25–29. [Google Scholar]
- Nkwocha, C.C.; Nworah, F.N.; Okagu Innocent, U.; Nwagwe, O.R. Proximate and Phytochemical Analysis of Monodora myristica (African Nutmeg) from Nsukka, Enugu State, Nigeria. J. Food Nutr. Res. 2018, 6, 597–601. [Google Scholar]
- Shinkafi, S. Phytochemical Analysis and Chromatographic Studies of Pergularia tomentosa L. and Mitracarpus scaber Zucc. Microbiol. Res. J. Int. 2014, 4, 550–559. [Google Scholar] [CrossRef]
- Arowosegbe, S.; Wintola, O.A.; Afolayan, A.J. Phytochemical constituents and allelopathic effect of Aloe ferox Mill. root extract on tomato. J. Med. Plants Res. 2012, 6, 2094–2099. [Google Scholar] [CrossRef]
- Ajuru, M.G.; Williams, L.F.; Ajuru, G. Qualitative and quantitative phytochemical screening of some plants used in ethnomedicine in the Niger Delta Region of Nigeria. J. Food Nutr. Sci. 2017, 5, 198–205. [Google Scholar]
- Aska, A.; Kubmarawa, D.; Nkafamiya, I.; Shagal, H.; Oladosu, P. Quantitative phytochemical analysis and Anti-tuberculosis activity of some selected medicinal plants in some Northern parts of Bauchi state, Nigeria. IOSR 2019, 12, 15–22. [Google Scholar]
- Ezeonu, C.S.; Ejikeme, C.M. Qualitative and quantitative determination of phytochemical contents of indigenous Nigerian softwoods. New J. Sci. 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ugye, J.; Egwaikhide, P.; Ama, S.; Imarenezor, K.; Abhulimen, W. Phytoconstituents screening and bioactivity of Jatropha curcas Linn (Physic leaf) and Sarcocephalus latifolius (African peach) leaves extracts. FUW Trends Sci. Technol. J. 2018, 3, 1024–1028. [Google Scholar]
- Uwem, U.M.; Babafemi, A.A.; Sunday, D.M. Proximate Composition, Phytoconstituents and Mineral Contents of Soybean (Glycine Max) Flour Grown and Processed in Northern Nigeria. Adv. Appl. Sci. 2017, 2, 48. [Google Scholar] [CrossRef] [Green Version]
- Mbaebie, B.; Edeoga, H.; Afolayan, A. Phytochemical analysis and antioxidants activities of aqueous stem bark extract of Schotia latifolia Jacq. Asian Pac. J. Trop. Biomed. 2012, 2, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Ogunwa, T.; Adeyelu, T.; Fasimoye, R.; Oyewale, M.; Ademoye, T.; Ilesanmi, O.; Awe, O.; Ajiboye, S.; Oloye, O.; Sholanke, D. Phytochemical evaluation and in vitro antioxidant status of Clerodendrum volubile (an indigenous medicinal plant). Pak. J. Pharm. Res. 2016, 2, 77–88. [Google Scholar] [CrossRef]
- Rai, V.; Pai, V.R.; Kedilaya, P.; Hegde, S. Preliminary phytochemical screening of members of Lamiaceae family: Leucas linifolia, Coleus aromaticus and Pogestemon patchouli. Int. J. Pharm. Sci. Rev. Res. 2013, 21, 131–137. [Google Scholar]
- Ladan, Z.; Amupitan, J.; Oyewale, O.; Ayo, R.; Temple, E.; Ladan, E. Phytochemical screening of the leaf extracts of Hyptis spicigera plant. Afr. J. Pure Appl. Chem. 2014, 8, 83–88. [Google Scholar]
- Kunatsa, Y.; Chidewe, C.; Zvidzai, C.J. Phytochemical and anti-nutrient composite from selected marginalized Zimbabwean edible insects and vegetables. J. Agric. Food Res. 2020, 2, 100027. [Google Scholar] [CrossRef]
- Abbhi, V.; Joseph, L.; George, M. Phytochemical analysis of fruit extract of Myrsine africana. Int. J. Pharm. Pharm. Sci. 2011, 3, 427–430. [Google Scholar]
- Oboh, G. Effect of blanching on the antioxidant properties of some tropical green leafy vegetables. LWT Food Sci. Technol. 2005, 38, 513–517. [Google Scholar] [CrossRef]
- Karou, S.D.; Tchacondo, T.; Ilboudo, D.P.; Simpore, J. Sub-Saharan Rubiaceae: A review of their traditional uses, phytochemistry and biological activities. Pak. J. Biol. Sci. PJBS 2011, 14, 149–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleem, A.; Nasir, S.; Rasool, N.; Bokhari, T.H.; Rizwan, K.; Shahid, M.; Abbas, M.; Zubair, M. In vitro antimicrobial and haemolytic studies of Kalanchoe pinnata and Callistemon viminalis. Int. J. Chem. Biochem. Sci. 2015, 7, 29–34. [Google Scholar]
- Sbrana, C.; Avio, L.; Giovannetti, M. Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. Electrophoresis 2014, 35, 1535–1546. [Google Scholar] [CrossRef]
- Sani, I.; Abdulhamid, A.; Bello, F. Eucalyptus camaldulensis: Phytochemical composition of ethanolic and aqueous extracts of the leaves, stem-bark, root, fruits and seeds. J. Sci. Innov. Res. 2014, 3, 523–526. [Google Scholar]
- Okafor, I.; Ezejindu, D. Phytochemical studies on Portulaca oleracea (purslane) plant. Glob. J. Biol. Agric. Health Sci. 2014, 3, 132–136. [Google Scholar]
- Bajad, P.; Pardeshi, A. Qualitative and Quantitative Analysis of Saponin as Bioactive Agent of Sapindus Emarginatus. 2016. Available online: https://pdfs.semanticscholar.org/ab2d/fa9e3bc27fb8f30d529aed33ea93bb5d7678.pdf (accessed on 28 December 2020).
- Majaw, S.; Moirangthem, J. Qualitative and quantitative Analysis of Clerodendron colebrookianum walp. leaves and Zingiber cassumunar Roxb. Rhizomes. Ethnobot. Leafl. 2009, 2009, 3. [Google Scholar]
- Majinda, R.R. Extraction and isolation of saponins. In Natural Products Isolation; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Güçlü-üstündağ, Ö.; Balsevich, J.; Mazza, G. Pressurized low polarity water extraction of saponins from cow cockle seed. J. Food Eng. 2007, 80, 619–630. [Google Scholar] [CrossRef]
- Barve, K.; Laddha, K.; Jayakumar, B. Extraction of saponins from Safed Muslim. Pharmacogn. J. 2010, 2, 561–564. [Google Scholar] [CrossRef]
- Tan, S.P.; Vuong, Q.V.; Stathopoulos, C.E.; Parks, S.E.; Roach, P.D. Optimized aqueous extraction of saponins from bitter melon for production of a saponin-enriched bitter melon powder. J. Food Sci. 2011, 79, E1372–E1381. [Google Scholar] [CrossRef]
- Elhag, H.E.E.A.; Naila, A.; Ajit, A.; Aziz, B.A.; Sulaiman, A.Z. Sequential extraction of saponins from Eurycoma longifolia roots by water extraction and ultrasound-assisted extraction. Mater. Today Proc. 2018, 5, 21672–21681. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Dong, X.; Yang, J.; Hu, Y.H.; Peng, L.Q.; Zheng, H.; Cao, J. Vesicle based ultrasonic-assisted extraction of saponins in Panax notoginseng. Food Chem. 2020, 303, 125394. [Google Scholar] [CrossRef]
- Tian, Y.Q.; Zhao, H.T.; Zhang, X.L.; Zhang, W.T.; Liu, X.C.; Gao, S.H. Comparison of different extraction techniques and optimization of the microwave-assisted extraction of saponins from Aralia elata (Miq.) Seem fruits and rachises. Chem. Pap. 2020, 74, 3077–3087. [Google Scholar] [CrossRef]
- Sarvin, B.; Stekolshchikova, E.; Rodin, I.; Stavrianidi, A.; Shpigun, O. Optimization and comparison of different techniques for complete extraction of saponins from T. terrestris. J. Appl. Res. Med. Aromat. Plants 2018, 8, 75–82. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Vuong, Q.V.; Bowyer, M.C.; van Altena, I.A.; Scarlett, C.J. Microwave-assisted extraction for saponins and antioxidant capacity from Xao tam phan (Paramignya trimera) root. J. Food Process. Preserv. 2017, 41, e12851. [Google Scholar] [CrossRef]
- Flora of Zimbabwe. Dicerocaryum zanguebarium (Decne.) Abels. 2010. Available online: https://www.zimbabweflora.co.zw/speciesdata/species.php?species_id=152600 (accessed on 4 March 2021).
- PlantZAfrica. Pouzolzia Mixta Sohms. 2013. Available online: http://pza.sanbi.org/pouzolzia-mixta (accessed on 14 November 2020.).
- Chinsembu, K.C. Ethnobotanical study of plants used in the management of HIV/AIDS-related diseases in Livingstone, Southern Province, Zambia. Evid. Based Complementary Altern. Med. 2016, 2016, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flora of Zimbabwe. Deinbollia xanthocarpa (Klotzsch) Radlk. 2018. Available online: https://www.zimbabweflora.co.zw/speciesdata/species.php?species_id=137400 (accessed on 14 November 2020).
- Flora of Mozambique. Deinbollia oblongifolia (E. Mey) Radlk. Available online: https://www.mozambiqueflora.com/speciesdata/species.php?species_id=182200 (accessed on 4 March 2021).
- Flora of Mozambique. Albizia versicolor Welw. Ex Oliv. 2019. Available online: https://www.mozambiqueflora.com/speciesdata/species.php?species_id=125730 (accessed on 14 November 2020).
- Long, C. Swaziland’s Flora- siSwati Names and Uses. 2005. Available online: http://www.sntc.org.sz/backup/flora/clfamilies.asp?fid=70 (accessed on 28 December 2020).
- Ndhlovu, P.; Mooki, O.; Mbeng, W.O.; Aremu, A. Plant species used for cosmetic and cosmeceutical purposes by the Vhavenda women in Vhembe District municipality, Limpopo, South Africa. South Afr. J. Bot. 2019, 122, 422–431. [Google Scholar] [CrossRef]
- Sedaghathoor, S.; Kojeidi, M.I.; Poormassalegoo, A. Study on the effect of brassinolide and salicylic acid on vegetative and physiological traits of Aloe maculata All. in different substrates in a pot experiment. J. Appl. Res. Med. Aromat. Plants 2017, 6, 111–118. [Google Scholar] [CrossRef]
- Jia, Z.; Koike, K.; Nikaido, T. Major triterpenoid saponins from Saponaria officinalis. J. Nat. Prod. 1998, 61, 1368–1373. [Google Scholar] [CrossRef]
- Mitich, L.W. Bouncingbet–The soap weed. Weed Technol. 1990, 4, 221–223. [Google Scholar] [CrossRef]
- Herbal Academy. Natural Soapwort Shampoo and Body Wash. 2015. Available online: https://theherbalacademy.com/natural-soapwort-shampoo-and-body-wash/ (accessed on 4 January 2021).
- Rakesh, M.R.; Ashok, K.; Kumar, S.A.; Amitabh, T. Formulation of herbal shampoos from Asparagus racemosus, Acacia concinna, Sapindus mukorossi. Int. J. Pharm Sci. Rev. Res. 2010, 4, 39–44. [Google Scholar]
- Gaikwad, D.; Undale, K.; Kalel, R.; Patil, D. Acacia concinna pods: A natural and new bioreductant for palladium nanoparticles and its application to Suzuki–Miyaura coupling. J. Iran. Chem. Soc. 2019, 16, 2135–2141. [Google Scholar] [CrossRef]
- Mehta, P.; Bhatt, K. Traditional Soap and Detergent Yielding Plants of Uttaranchal. 2007. Available online: http://nopr.niscair.res.in/handle/123456789/920 (accessed on 2 January 2021).
- Odiyo, J.; Bassey, O.; Ochieng, A.; Chimuka, L. Coagulation efficiency of Dicerocaryum eriocarpum (DE) plant. Water SA 2017, 43, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Van Setten, D.C.; van de Werken, G. Molecular structures of saponins from Quillaja saponaria Molina. In Saponins Used in Traditional and Modern Medicine; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Joubert, C. Wild discoveries. Veld Flora 1993, 79, 118–120. [Google Scholar]
- Van Aarde, A.M.; Smit, A.S.; Claassens, R. Soil characteristics of rehabilitating and unmined coastal dunes at Richards Bay, KwaZulu-Natal, South Africa. Restor. Ecol. 1998, 6, 102–110. [Google Scholar] [CrossRef]
- Megersa, M.; Asfaw, Z.; Kelbessa, E.; Beyene, A.; Woldeab, B. An ethnobotanical study of medicinal plants in Wayu Tuka district, east Welega zone of oromia regional state, West Ethiopia. J. Ethnobiol. Ethnomed. 2013, 9, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masupa, T. Pouzolzia Mixta, Sanbi. 2013. Available online: https://link.springer.com/chapter/10.1007/978-1-4899-1367-8_17 (accessed on 23 December 2020).
- Meybeck, A.; Bonte, F.; Dumas, M. Cosmetic or Dermatological Composition Containing at Least One Saponin of the Ginsenoside Type, and Its Applications, Especially for Treating the Hair. U.S. Patent No. 5,663,160, 2 September 1997. [Google Scholar]
- Waller, G.R.; Yamasaki, K. Saponins Used in Food and Agriculture; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kim, H.S.; Kim, D.H.; Kim, B.K.; Yoon, S.K.; Kim, M.H.; Lee, J.Y.; Kim, H.O.; Park, Y.M. Effects of topically applied Korean red ginseng and its genuine constituents on atopic dermatitis-like skin lesions in NC/Nga mice. Int. Immunopharmacol. 2011, 11, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Bonte, F.; Meybeck, A.; Massiot, G. Use of Medicago Saponins for The Preparation of Cosmetic or Pharmaceutical Compositions, Especially Dermatological Compositions, Promoting Renewal of the Epidermis, Stimulating Hair Regrowth or Delaying Hair Loss. U.S. Patent No. 5,723,149, 3 March 1998. [Google Scholar]
- Meng, L.; Guo, Q.; Liu, Y.; Chen, M.; Li, Y.; Jiang, J.; Shi, J. Indole alkaloid sulfonic acids from an aqueous extract of Isatis indigotica roots and their antiviral activity. Acta Pharm. Sin. B 2017, 7, 334–341. [Google Scholar] [CrossRef]
- Cutignano, A.; Bifulco, G.; Bruno, I.; Casapullo, A.; Gomez-Paloma, L.; Riccio, R. Dragmacidin F: A new antiviral bromoindole alkaloid from the mediterranean sponge Halicortex sp. Tetrahedron 2000, 56, 3743–3748. [Google Scholar] [CrossRef]
- Mohamed, S.; Hassan, E.; Ibrahim, N. Cytotoxic and antiviral activities of aporphine alkaloids of Magnolia grandiflora L. Nat. Prod. Res. 2010, 24, 1395–1402. [Google Scholar] [CrossRef]
- Quintana, V.; Selisko, B.; Brunetti, J.; Eydoux, C.; Guillemot, J.; Canard, B.; Damonte, E.; Julander, J.; Castilla, V. Antiviral activity of the natural alkaloid anisomycin against dengue and Zika viruses. Antivir. Res. 2020, 176, 104749. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, M.; Liu, H.; Wei, K.; He, M.; Li, X.; Hu, D.; Yang, S.; Zheng, Y. Antiviral activity of aconite alkaloids from Aconitum carmichaelii Debx. Nat. Prod. Res. 2019, 33, 1486–1490. [Google Scholar] [CrossRef]
- Yendo, A.C.A.; de Costa, F.; Cibulski, S.P.; Teixeira, T.F.; Colling, L.C.; Mastrogiovanni, M.; Soulé, S.; Roehe, P.M.; Gosmann, G.; Ferreira, F.A. A rabies vaccine adjuvanted with saponins from leaves of the soap tree (Quillaja brasiliensis) induces specific immune responses and protects against lethal challenge. Vaccine 2016, 34, 2305–2311. [Google Scholar] [CrossRef]
- Hayashi, K.; Sagesaka, Y.M.; Suzuki, T.; Suzuki, Y. Inactivation of human type A and B influenza viruses by tea-seed saponins. Biosci. Biotechnol. Biochem. 2000, 64, 184–186. [Google Scholar] [CrossRef]
- Lee, J.; Lim, S.; Kang, S.M.; Min, S.; Son, K.; Lee, H.S.; Park, E.M.; Ngo, H.T.; Tran, H.T.; Lim, Y.S. Saponin inhibits hepatitis C virus propagation by up-regulating suppressor of cytokine signaling 2. PLoS ONE 2012, 7, e39366. [Google Scholar] [CrossRef] [Green Version]
- Tam, K.I.; Roner, M.R. Characterization of in vivo anti-rotavirus activities of saponin extracts from Quillaja saponaria Molina. Antivir. Res. 2011, 90, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Sindambiwe, J.; Calomme, M.; Geerts, S.; Pieters, L.; Vlietinck, A.; Vanden Berghe, D. Evaluation of biological activities of triterpenoid saponins from Maesa lanceolata. J. Nat. Prod. 1998, 61, 585–590. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Cai, G.M.; Hong, X.; Shan, L.M.; Xiao, X.H. Anti-hepatitis B virus activities of triterpenoid saponin compound from potentilla anserine L. Phytomedicine 2008, 15, 253–258. [Google Scholar] [CrossRef]
- Oyekunle, M.; Aiyelaagbe, O.; Fafunso, M. Evaluation of the antimicrobial activity of saponins extract of Sorghum bicolor L. Moench. Afr. J. Biotechnol. 2006, 5, 2405–2407. [Google Scholar]
- Dong, S.; Yang, X.; Zhao, L.; Zhang, F.; Hou, Z.; Xue, P. Antibacterial activity and mechanism of action saponins from Chenopodium quinoa Willd. husks against foodborne pathogenic bacteria. Ind. Crop. Prod. 2020, 149, 112350. [Google Scholar] [CrossRef]
- Sonfack, G.; Fossi, T.C.; Simo, I.K.; Bitchagno, G.T.M.; Nganou, B.K.; Çelik, İ.; Tene, M.; Funda Görkem, S.; Opatz, T.; Penlap Beng, V. Saponin with antibacterial activity from the roots of Albizia adianthifolia. Nat. Prod. Res. 2019, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Avato, P.; Bucci, R.; Tava, A.; Vitali, C.; Rosato, A.; Bialy, Z.; Jurzysta, M. Antimicrobial activity of saponins from Medicago sp.: Structure-activity relationship. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2006, 20, 454–457. [Google Scholar]
- Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 2016, 3, 237–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanjuán, R.; Domingo-Calap, P. Mechanisms of viral mutation. Cell. Mol. Life Sci. 2016, 73, 4433–4448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.I. Antibiotic resistance and regulation of the Gram-negative bacterial outer membrane barrier by host innate immune molecules. Am. Soc. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Faizal, A.; Geelen, D. Saponins and their role in biological processes in plants. Phytochem. Rev. 2013, 12, 877–893. [Google Scholar] [CrossRef]
- Lalitha, T.; Venkataraman, L. Antifungal activity and mode of action of saponins from Madhuca butyracea Macb. Indian J. Exp. Biol. 1991, 29, 558–562. [Google Scholar]
- Johnson, J.; Iwang, E.; Hemen, J.; Odey, M.; Efiong, E.; Eteng, O. Evaluation of anti-nutrient contents of watermelon Citrullus lanatus. Ann. Biol. Res. 2012, 3, 5145–5150. [Google Scholar]
- Amoros, M.; Fauconnier, B.; Girre, R. In vitro antiviral activity of a saponin from Anagallis arvensis, Primulaceae, against herpes simplex virus and poliovirus. Antivir. Res. 1987, 8, 13–25. [Google Scholar] [CrossRef]
- Simões, C.; Amoros, M.; Girre, L. Mechanism of antiviral activity of triterpenoid saponins. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 1999, 13, 323–328. [Google Scholar] [CrossRef]
- Thanigaiarassu, R.; Krishnan, K.; Khanna, V. Antibacterial activity of saponin isolated from the leaves of Solanum trilobatum Linn. J. Pharm. Res. 2009, 2, 273–276. [Google Scholar]
- Inalegwu, B.; Sodipo, O. Antimicrobial and foam forming activities of extracts and purified saponins of leaves of Tephrosia vogelii. Eur. J. Exp. Biol. 2015, 5, 49–53. [Google Scholar]
- Khanna, V.G.; Kannabiran, K. Antimicrobial activity of saponin fraction from the roots of Hemidesmus indicus. Res. J. Med. Plant 2008, 2, 39–42. [Google Scholar]
- Nicol, R.; Traquair, J.; Bernards, M. Ginsenosides as host resistance factors in American ginseng (Panax quinquefolius). Can. J. Bot. 2002, 80, 557–562. [Google Scholar] [CrossRef]
- Zimmer, D.; Pedersen, M.; Mcguire, C. A bioassay for Alfalfa Saponins using the fungus, Trichoderma viride pers. ex Fr. 1. Crop Sci. 1967, 7, 223–224. [Google Scholar] [CrossRef]
- Sautour, M.; Miyamoto, T.; Lacaille-Dubois, M.A. Steroidal saponins from Smilax medica and their antifungal activity. J. Nat. Prod. 2005, 68, 1489–1493. [Google Scholar] [CrossRef]
- Tsuzuki, J.K.; Svidzinski, T.I.; Shinobu, C.S.; Silva, L.F.; Rodrigues-Filho, E.; Cortez, D.A.; Ferreira, I.C. Antifungal activity of the extracts and saponins from Sapindus saponaria L. An. Acad. Bras. Cienc. 2007, 79, 577–583. [Google Scholar] [CrossRef]
- Escalante, A.M.; Santecchia, C.B.; López, S.N.; Gattuso, M.A.; Ravelo, A.G.; Delle, M.F.; Sierra, M.G.; Zacchino, S.A. Isolation of antifungal saponins from Phytolacca tetramera, an Argentinean species in critic risk. J. Ethnopharmacol. 2002, 82, 29–34. [Google Scholar] [CrossRef]
- Chapagain, B.P.; Wiesman, Z.; Tsror, L. In vitro study of the antifungal activity of saponin-rich extracts against prevalent phytopathogenic fungi. Ind. Crop. Prod. 2007, 26, 109–115. [Google Scholar] [CrossRef]
- Shi, J.; Arunasalam, K.; Yeung, D.; Kakuda, Y.; Mittal, G.; Jiang, Y. Saponins from edible legumes: Chemistry, processing, and health benefits. J. Med. Food 2004, 7, 67–78. [Google Scholar] [CrossRef]
- Phrompittayarat, W.; Wittaya-areekul, S.; Jetiyanon, K.; Putalun, W.; Tanaka, H.; Ingkaninan, K. Stability studies of saponins in Bacopa monnieri dried ethanolic extracts. Planta Med. 2008, 74, 1756. [Google Scholar] [CrossRef]
- Davis, J.B.; Kay, D.E.; Clark, V. Plants Tolerant of Arid, or Semi-Arid, Conditions with Non-Food Constituents of Potential Use. 1983. Available online: https://www.cabdirect.org/cabdirect/abstract/19846750440 (accessed on 4 January 2021).
- Zimmerman, C.A. Growth characteristics of weediness in Portulaca oleracea L. Ecology 1976, 57, 964–974. [Google Scholar] [CrossRef]
Plant Name and Family | Common Name(s) | Geographical Location | Plant Part Used | Approximate Saponin Amounts (mg/g) | Type of Extract | References |
---|---|---|---|---|---|---|
Adoxaceae | ||||||
Viburnum cotinifolium D. Don | Smoke-tree leaved virbunum | Atlas Mountains (Northwest Africa) | Leaves | 45.30 | Aqueous ethanol | [25] |
Aizoaceae | ||||||
Carpobrotus edulis (L.) N. E. Br. | Sour fig, ice plant | South Africa | Leaves, stems | 45.00 | Ethanol | [26,27] |
Amaranthaceae | ||||||
Amaranthus hybridus L. | Pigweed | Southern Africa | Stem, leaves | 184.00 | Not stated | [28] |
Spinacia oleracea L. | Spinach | Lesotho, Highveld of Southern Africa | Leaves | 52.70 | Methanol | [29] |
Anacardiceaceae | ||||||
Mangifera indica L. | Mango | Southern Africa | Ripe peels | 214.15 | Methanol | [30] |
Unripe peels | 159.50 | |||||
Annonaceae | ||||||
Annona squamosa L. | Sugar apple | Madagascar, Malawi, Mozambique | Fruit | 63.88 | Aqueous | [31] |
Monodora myristica (Gaertn) Dunal | African nutmeg | Western and Eastern Africa | Seeds | 120.40 | Not stated | [32] |
Apiaceae | ||||||
Foeniculum vulgare Mill | Fennel | South Africa, Zimbabwe, Ethiopia, Eastern Africa | Leaves | 47.68 | Aqueous | [31] |
Apocynaceae | ||||||
Pergularia tomentosa L. | Horn of Africa | Leaves | 44.40 | Chloroform fraction | [33] | |
Asphodelaceae | ||||||
Aloe ferox Mill | Bitter aloe, red aloe, Cape aloe | South Africa, Lesotho, Southern Africa | Roots | 41.20 | Aqueous | [34] |
Asteraceae | ||||||
Ageratum conyzoides L. | Billy-goat weed | Southern and Western Africa | Leaves | 65.10 | 20% aqueous ethanol | [35] |
Taraxacum officinale F.H. Wigg | Dandelion | Southern and Northern Africa | Leaves | 50.60 | Aqueous ethanol | [25] |
Caesalpiniaceae | ||||||
Piliostigma reticulatum (GC) Hochst | Camel’s foot | Throughout Africa | Leaves | 615.00 | Methanolic | [36] |
Combretaceae | ||||||
Anogeissus leiocarpus (DC.) Guill. and Perr. | African birch, Bambara | Eastern and Western Africa | Softwood | 125.00 | Not stated | [37] |
Ericaceae | ||||||
Vaccinium macrocarpon Aiton | Large cranberry | Eastern and Southern Africa | Seeds | 98.47 | Acetone | [31] |
Euporbiaceae | ||||||
Jatropha curcas L. | Physic nut | Throughout Africa | Leaves | 800.00 | Ethyl acetate fraction | [38] |
Euphorbiaceae | ||||||
Euphorbia hirta L. | Spurge, asthma plant | Southern and Tropical Africa | Whole plant | 400.90 | Methanolic | [36] |
Fabaceae | ||||||
Afzelia bella Harm | Afzelia | Central and Tropical Africa | Softwood | 58.00 | Not stated | [37] |
Dichrostachys cinerea (L.) Wight & Arn | Sickle bush | Throughout Africa | Softwood | 98.00 | Not stated | [37] |
Erythrina senegalensis DC | Coral tree, coral flower | Western Africa | Stem | 344.40 | Methanolic | [36] |
Glycine max (L.) Merr | Soybean, soya bean | Sub-Saharan Africa | Seeds | 184.00 | Not stated | [39] |
Trigonella foenum-graecum L. | Greek hay, Greek clover | Northern Africa | Seeds | 506.90 | Methanolic | [29] |
Schotia latifolia Jacq | Boer-bean | Southern Africa | Stem bark | 68.00 | Aqueous | [40] |
Humiriaceae | ||||||
Sacoglottis gabonensis (Baill.) Urb. | Bitter bark tree | Tropical Africa | Softwood | 66.00 | Not stated | [37] |
Lamiaceae | ||||||
Clerodendrum volubile P Baeuv | Magic leaf | Western and Southern Africa | Leaves | 136.70 | Aqueous | [41] |
Coleus aromaticus Benth | Indian borage | Southern and Eastern Africa | Leaves | 62.30 | Not stated | [42] |
Gmelina arborea Roxb | White teak | Tropical Africa | Leaves | 57.30 | Methanolic | [29] |
Hyptis spicigera Lam | Black sesame | Western, Central and Southern Africa | Leaves | 62.30 | Not stated | [43] |
Leucas linifolia (Roth) Spreng | Dronpushpi | Africa | Leaves | 48.20 | Not stated | [42] |
Pogostemon patchouli (Blanco) Benth | Patchouli | Throughout Africa | Leaves | 142.30 | Not stated | [42] |
Malvaceae | ||||||
Corchorus olitorius L. | Jute mallow, Jew’s mallow, bush okra | Tropical Africa, Southern Africa | Leaves | 43.00 | Methanolic | [44] |
Hibiscus articulatus Hochst, exA. Rich | Comfort root | Throughout Africa | Leaves | 75.00 | Methanolic | [44] |
Menispermaceae | ||||||
Cissampelos mucronata A. Rich. | Hairy heartleaf | Tropical Africa and Southern Africa | Roots | 446.70 | Methanolic | [36] |
Moringaceae | ||||||
Moringa oleifera Lam | Drumstick tree, horse radish tree | Eastern and Southern Africa | Softwoods | 42.00 | Not stated | [37] |
Myrsinaceae | ||||||
Myrsine africana L. | African boxwood, Cape myrtle | Southern Africa | Fruits | 175.00 | 20% aqueous ethanol | [45] |
Myrtaceae | [46] | |||||
Eucalyptus camaldulensis Dehnh | Red gum, river red gum | Throughout Africa | Bark | 199.00 | Aqueous | |
Roots | 341.00 | Aqueous | ||||
261.00 | Ethanolic | |||||
Leaves | 97.00 | Aqueous | ||||
125.00 | Ethanolic | |||||
Fruits | 171.00 | Aqueous | ||||
82.00 | Ethanolic | |||||
Olacaceae | ||||||
Ximenia americana L. | Tallow wood, hog plum, sea lemon | Western and Southern Africa | Stem | 508.60 | Methanolic | [36] |
Pedaliaceae | ||||||
Dicerocaryum zanguebarium (Lourr.) Merrill | Boot protectors, devil’s thorn | Southern Africa | Leaves | 50.00 | Methanolic | [44] |
Portulacaceae | ||||||
Portulaca oleracea L. | Purslane | Tropical and Southern Africa | Aerial parts | 320.00 | Aqueous | [47] |
Rubiaceae | ||||||
Mitracarpus scaber Zucc | Mutton grass | Angola, Northern | Leaves | 43.20 | Chloroform fraction | [33] |
Zambia, Malawi | ||||||
Sarcocephalus latifolius (Smith) | African peach | Tropical Africa | Leaves | 481.80 | Not stated | [38] |
Sapindaceae | ||||||
Sapindus emarginatus Vahl | Notched leaf soap nut | Eastern tropics of Africa | Fruit | 151.60 | Aqueous | [48] |
180.40 | Methanol | [48] | ||||
Sapindus Saponaria var. drummondii (Hook. & Arn.) L.D. Benson | Soap berry | Tropical and Southern Africa | 212.50 | Ethanol | [48] | |
157.32 | Aqueous | [31] | ||||
Scrophulariaceae | ||||||
Butyrospermum paradoxum (Gaertn, f.) Hepper | Shea butter | Sub-Saharan Africa | Leaves | 838.90 | Methanolic | [36] |
Striga hermonthica (Del.) Benth. | Purple witchweed, giant witchweed | Sub-Saharan Africa | Aerial parts | 307.90 | Methanolic | [36] |
Sterculiaceae | ||||||
Waltheria indica L. | Sleepy morning | Southern and Tropical Africa | Leaves | 653.10 | Methanolic | [36] |
Verbanaceae | ||||||
Clerodendrum colebrookianium Walp | East Indian glory bower | South Africa | Leaves | 88.00 | Aqueous ethanol | [49] |
Lantana camara L. | Tick berry, wild sage, red sage | Eastern and Southern Africa | Leaves | 121.00 | Not stated | [50] |
Zingiberaceae | ||||||
Kaempferia galanga L. | Aromatic ginger, sand ginger | South Africa, Africa | Softwood | 62.00 | Not stated | [37] |
Zingiber cassumunar Roxb | Cassumunar ginger | South Africa, Africa | Rhizome | 69.03 | Aqueous ethanol | [49] |
Zygophyllaceae | ||||||
Peganum harmala L. | Wild rue | Southern Africa | Not stated | 48.00 | Aqueous ethanol | [25] |
Family and Scientific Name | English Common Name | Plant Part | Preparation and Use(s) | References |
---|---|---|---|---|
Aloaceae | [71] | |||
Aloe maculata All | Soap Aloe | Leaves | The sap from the leaves is used as a soap for bathing and washing hair. | |
Aloe Saponaria Mill | Soap Aloe | Leaves | The sap is used as soap for bathing. | |
Caryophyllaceae | ||||
Saponaria officinalis L. | Soapwort | Leaves | The leaves of the plant are added to pre-boiled water and left to simmer for about 5 min. | [72,73,74] |
Fabaceae | ||||
Acacia concinna Linn | Soap pod tree | Pods, bark | Roots that are boiled with water are used as soap. The dried and crushed bark forms a powder which is used as soap. | [75,76] |
Albizia versicolor Welw. Ex Oliv | Large-leaved false thorn | Root, bark | [69] | |
Malvaceae | ||||
Sida rhombifolia L (Bhuinli) | Mallows. fanpetals | Tender shoot bark | The tender shoot bark is rubbed on the skin or hair to produce lather during bathing and shampooing. | [77] |
Pedaliaceae | ||||
Dicerocaryum eriocarpum (Decne.) Abels. | Devil’s thorn, boot protectors | Flowers | The flowers are soaked in water to produce soapy water. | [78] |
Sesamum angolense Welw | Leaves | An infusion of the leaves is used as soap for bathing and shampooing. | [66] | |
Quillajaceae | ||||
Quillaja saponaria Mollina | Soap bark | Bark | The inner bark is reduced to powder and used as a soap. | [79] |
Rhamnaceae | ||||
Noltea africana L. | Soap dogwood, soap bush | Leaves, twigs | The leaves and twigs are rubbed in water to produce foam and the water is used for washing. | [80] |
Helinus integrifolius (Lam) Kuntze | Soap creeper | Whole plant | The plant is infused in cold water, and a stick is used to agitate the water to produce lather. | [70] |
Sapindaceae | ||||
Sapindus mukorossi Gaertn | Soap nut, soap berry, wash nut | Fruit | The lather from the fruit is used as a soap for bathing and shampooing. | [79] |
Deinbollia oblongifolia (E. Mey. Ex Arn) Radlk | Dune soap berry | Seeds | The seeds are lathered in water to produce soap. | [81] |
Tiliaceae | ||||
Grewia ferruginea Hochst ex. A. Rich | - | Leaves | The ash from the burnt leaves is used as soap. | [82] |
Urticaceae | ||||
Pouzolzia mixta Sohms | Soap nettle | Leaves | The fresh leaves are crushed and agitated in water to form a soap, which is used for bathing and washing. | [83] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunatsa, Y.; Katerere, D.R. Checklist of African Soapy Saponin—Rich Plants for Possible Use in Communities’ Response to Global Pandemics. Plants 2021, 10, 842. https://doi.org/10.3390/plants10050842
Kunatsa Y, Katerere DR. Checklist of African Soapy Saponin—Rich Plants for Possible Use in Communities’ Response to Global Pandemics. Plants. 2021; 10(5):842. https://doi.org/10.3390/plants10050842
Chicago/Turabian StyleKunatsa, Yvonne, and David R. Katerere. 2021. "Checklist of African Soapy Saponin—Rich Plants for Possible Use in Communities’ Response to Global Pandemics" Plants 10, no. 5: 842. https://doi.org/10.3390/plants10050842
APA StyleKunatsa, Y., & Katerere, D. R. (2021). Checklist of African Soapy Saponin—Rich Plants for Possible Use in Communities’ Response to Global Pandemics. Plants, 10(5), 842. https://doi.org/10.3390/plants10050842