Phenotypic Diversity and Productivity of Medicago sativa Subspecies from Drought-Prone Environments in Mediterranean Type Climates
Abstract
:1. Introduction
2. Results
2.1. Plant Survival, Canopy Traits and Forage Yield
2.2. Morphological Traits
2.3. Forage Yield in Drought-Prone Environments in Chile and Australia
3. Discussion
3.1. Phenotypic Diversity
3.2. Forage Yield and Accession by Environment Interaction (AxE)
4. Materials and Methods
4.1. Plant Material
4.2. Experimental Sites and Plants Establishment
4.3. Phenotypic Characterization
4.4. Plant Survival and Forage Yield
4.5. Morphological Traits
4.6. Canopy Characterization
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Jara-Rojas, R.; Molina-Montenegro, M.A. Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs). Sustainability 2019, 11, 276. [Google Scholar] [CrossRef] [Green Version]
- Montecinos, A.; Aceituno, P. Seasonality of the ENSO-Related Rainfall Variability in Central Chile and Associated Circulation Anomalies. J. Clim. 2003, 16, 281–296. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The Central Chile Mega Drought (2010–2018): A climate dynamics perspective. Int. J. Clim. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Moore, A.D.; Ghahramani, A. Climate change and broadacre livestock production across southern Australia. 1. Impacts of climate change on pasture and livestock productivity, and on sustainable levels of profitability. Glob. Chang. Biol. 2013, 19, 1440–1455. [Google Scholar] [CrossRef]
- Dear, B.S.; Moore, G.A.; Hughes, S.J. Adaptation and potential contribution of temperate perennial legumes to the southern Australian wheatbelt: A review. Aust. J. Exp. Agric. 2003, 43, 1–18. [Google Scholar] [CrossRef]
- Porqueddu, C.; Ates, S.; Louhaichi, M.; Kyriazopoulos, A.P.; Moreno, G.; del Pozo, A.; Ovalle, C.; Ewing, M.A.; Nichols, P.G.H. Grasslands in ‘Old World’ and ‘New World’ Mediterranean-climate zones: Past trends, current status and future research priorities. Grass Forage Sci. 2016, 71, 1–35. [Google Scholar] [CrossRef]
- Del Pozo, A.; Ovalle, C.; Espinoza, S.; Barahona, V.; Gerding, M.; Humphries, A. Water relations and use-efficiency, plant survival and productivity of nine alfalfa (Medicago sativa L.) cultivars in dryland Mediterranean conditions. Eur. J. Agron. 2017, 84, 16–22. [Google Scholar] [CrossRef]
- Muller, M.-H.; Poncet, C.; Prosperi, J.M.; Santoni, S.; Ronfort, J. Domestication history in the Medicago sativa species complex: Inferences from nuclear sequence polymorphism. Mol. Ecol. 2006, 15, 1589–1602. [Google Scholar] [CrossRef]
- Humphries, A.; Ovalle, C.; Hughes, S.; del Pozo, A.; Inostroza, L.; Barahona, V.; Yu, L.; Yerzhanova, S.; Rowe, T.; Hill, J.; et al. Characterization, preliminary evaluation and pre-breeding of diverse alfalfa crop wild relatives originating from drought-stressed environments. Crop Sci. 2020, 61, 69–88. [Google Scholar] [CrossRef]
- İlhan, D.; Li, X.; Brummer, E.C.; Şakiroğlu, M. Genetic Diversity and Population Structure of Tetraploid Accessions of the Medicago sativa–falcata Complex. Crop Sci. 2016, 56, 1146–1156. [Google Scholar] [CrossRef]
- Sakiroglu, M.; Moore, K.J.; Brummer, E.C. Variation in Biomass Yield, Cell Wall Components, and Agronomic Traits in a Broad Range of Diploid Alfalfa Accessions. Crop Sci. 2011, 51, 1956–1964. [Google Scholar] [CrossRef] [Green Version]
- Basbag, M.; Aydin, A.; Sakiroglu, M. Evaluating Agronomic Performance and Investigating Molecular Structure of Drought and Heat Tolerant Wild Alfalfa (Medicago sativa L.) Collection from the Southeastern Turkey. Biochem. Genet. 2017, 55, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Şakiroğlu, M.; İlhan, D. Medicago sativa species complex: Re-visiting the century old problem in the light of molecular tools. Crop Sci. 2020, 61, 827–838. [Google Scholar] [CrossRef]
- Ray, I.M.; Segovia-Lerma, A.; Murray, L.W. Diallel analysis of carbon isotope discrimination and its association with forage yield among nine historically recognized alfalfa germplasms. Crop Sci. 2004, 44, 1970–1975. [Google Scholar] [CrossRef]
- Hanson, A.; Xu, L.; Boe, A.; Johnson, P.S.; Gates, R.N.; Wu, Y. Identification and characterization of drought tolerant alfalfa (Medicago sativa subsp. falcata) germplasm. Proc. S. D. Acad. Sci. 2016, 94, 263–272. [Google Scholar]
- Bingham, E.; Armour, D.; Irwin, J. The Hybridization Barrier between Herbaceous Medicago sativa and Woody M. arborea Is Weakened by Selection of Seed Parents. Plants 2013, 2, 343–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tani, E.; Chronopoulou, E.G.; Labrou, N.E.; Sarri, E.; Goufa, Μ.; Vaharidi, X.; Tornesaki, A.; Psychogiou, M.; Bebeli, P.J.; Abraham, Ε.M. Growth, Physiological, Biochemical, and Transcriptional Responses to Drought Stress in Seedlings of Medicago sativa L., Medicago arborea L. and Their Hybrid (Alborea). Agronomy 2019, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Byrne, P.F.; Volk, G.M.; Gardner, C.; Gore, M.A.; Simon, P.W.; Smith, S. Sustaining the Future of Plant Breeding: The Critical Role of the USDA-ARS National Plant Germplasm System. Crop Sci. 2018, 58, 451–468. [Google Scholar] [CrossRef] [Green Version]
- Dempewolf, H.; Baute, G.; Anderson, J.; Kilian, B.; Smith, C.; Guarino, L. Past and Future Use of Wild Relatives in Crop Breeding. Crop Sci. 2017, 57, 1070–1082. [Google Scholar] [CrossRef]
- Sakiroglu, M.; Charles Brummer, E. Presence of phylogeographic structure among wild diploid alfalfa accessions (Medicago sativa L. subsp. microcarpa Urb.) with evidence of the center of origin. Genet. Resour. Crop Evol. 2013, 60, 23–31. [Google Scholar] [CrossRef]
- Zhang, T.; Kesoju, S.; Greene, S.L.; Fransen, S.; Hu, J.; Yu, L.-X. Genetic diversity and phenotypic variation for drought resistance in alfalfa (Medicago sativa L.) germplasm collected for drought tolerance. Genet. Resour. Crop Evol. 2018, 65, 471–484. [Google Scholar] [CrossRef]
- Qiang, H.; Chen, Z.; Zhang, Z.; Wang, X.; Gao, H.; Wang, Z. Molecular Diversity and Population Structure of a Worldwide Collection of Cultivated Tetraploid Alfalfa (Medicago sativa subsp. sativa L.) Germplasm as Revealed by Microsatellite Markers. PLoS ONE 2015, 10, e0124592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Şakiroğlu, M.; Doyle, J.J.; Charles Brummer, E. Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers. Appl. Genet. 2010, 121, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shi, Y.; Cheng, N.; Du, H.; Fan, W.; Wang, C. De Novo Characterization of Fall Dormant and Nondormant Alfalfa (Medicago sativa L.) Leaf Transcriptome and Identification of Candidate Genes Related to Fall Dormancy. PLoS ONE 2015, 10, e0122170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariss, J.J.; Vandemark, G.J. Assessment of Genetic Diversity among Nondormant and Semidormant Alfalfa Populations Using Sequence-Related Amplified Polymorphisms. Crop Sci. 2007, 47, 2274–2284. [Google Scholar] [CrossRef]
- Cunningham, S.M.; Gana, J.A.; Volenec, J.J.; Teuber, L.R. Winter Hardiness, Root Physiology, and Gene Expression in Successive Fall Dormancy Selections from ‘Mesilla’ and ‘CUF 101’ Alfalfa. Crop Sci. 2001, 41, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
- Riday, H.; Brummer, E.C. Heterosis in a Broad Range of Alfalfa Germplasm. Crop Sci. 2005, 45, 8–17. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Barrett, B.; Brummer, E.C.; Julier, B.; Marshall, A.H. Achievements and Challenges in Improving Temperate Perennial Forage Legumes. Crit. Rev. Plant Sci. 2015, 34, 327–380. [Google Scholar] [CrossRef]
- Inostroza, L.; Acuña, H.; Méndez, J. Multi-physiological-trait selection indices to identify Lotus tenuis genotypes with high dry matter production under drought conditions. Crop Pasture Sci. 2015, 66, 90–99. [Google Scholar] [CrossRef]
- Inostroza, L.; Acuña, H. Water use efficiency and associated physiological traits of nine naturalized white clover populations in Chile. Plant Breed. 2010, 129, 700–706. [Google Scholar] [CrossRef]
- Inostroza, L.; Ortega-Klose, F.; Vásquez, C.; Wilckens, R. Changes in Root Architecture and Aboveground Traits of Red Clover Cultivars Driven by Breeding to Improve Persistence. Agronomy 2020, 10, 1896. [Google Scholar] [CrossRef]
- Inostroza, L.; Acuña, H.; Méndez, J.; Bhakta, M.; Gezan, S.A. Using genome conservation between Lotus japonicus and agronomically important Lotus species for discovering drought tolerance QTLs. Euphytica 2019, 215, 153. [Google Scholar] [CrossRef]
- Acuña, H.; Inostroza, L.; Sánchez, M.P.; Tapia, G. Drought-tolerant naturalized populations of Lotus tenuis for constrained environments. Acta Agric. Scand. Sect. B Soil Plant Sci. 2010, 60, 174–181. [Google Scholar] [CrossRef]
- Inostroza, L.; Acuña, H.; Tapia, G. Relationships between phenotypic variation in osmotic adjustment, water-use efficiency, and drought tolerance of seven cultivars of Lotus corniculatus L. Chil. J. Agric. Res. 2015, 75, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Erice, G.; Louahlia, S.; Irigoyen, J.J.; Sanchez-Diaz, M.; Avice, J.-C. Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery. J. Plant Physiol. 2010, 167, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Biazzi, E.; Nazzicari, N.; Pecetti, L.; Brummer, E.C.; Palmonari, A.; Tava, A.; Annicchiarico, P. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits. PLoS ONE 2017, 12, e0169234. [Google Scholar] [CrossRef]
- Annicchiarico, P. Alfalfa forage yield and leaf/stem ratio: Narrow-sense heritability, genetic correlation, and parent selection procedures. Euphytica 2015, 205, 409–420. [Google Scholar] [CrossRef]
- Grev, A.M.; Wells, M.S.; Catalano, D.N.; Martinson, K.L.; Jungers, J.M.; Sheaffer, C.C. Stem and leaf forage nutritive value and morphology of reduced lignin alfalfa. Agron. J. 2020, 112, 406–417. [Google Scholar] [CrossRef]
- Annicchiarico, P. Breeding gain from exploitation of regional adaptation: An Alfalfa case study. Crop Sci. 2020. [Google Scholar] [CrossRef]
- Malik, W.; Boote, K.J.; Hoogenboom, G.; Cavero, J.; Dechmi, F. Adapting the CROPGRO Model to Simulate Alfalfa Growth and Yield. Agron. J. 2018, 110, 1777–1790. [Google Scholar] [CrossRef] [Green Version]
- Mickky, B.M.; Abbas, M.A.; El-Shhaby, O.A. Alterations in photosynthetic capacity and morpho-histological features of leaf in alfalfa plants subjected to water deficit-stress in different soil types. Indian J. Plant Physiol. 2018, 23, 426–443. [Google Scholar] [CrossRef]
- Li, Y.; Su, D. Alfalfa Water Use and Yield under Different Sprinkler Irrigation Regimes in North Arid Regions of China. Sustainability 2017, 9, 1380. [Google Scholar] [CrossRef] [Green Version]
- Richards, R.A.; Rebetzke, G.J.; Condon, A.G.; van Herwaarden, A.F. Breeding Opportunities for Increasing the Efficiency of Water Use and Crop Yield in Temperate Cereals. Crop Sci. 2002, 42, 111–121. [Google Scholar] [CrossRef]
- Condon, A.G.; Richards, R.A.; Rebetzke, G.J.; Farquhar, G.D. Breeding for high water-use efficiency. J. Exp. Bot. 2004, 55, 2447–2460. [Google Scholar] [CrossRef] [Green Version]
- Julier, B.; Huyghe, C.; Ecalle, C. Within- and Among-Cultivar Genetic Variation in Alfalfa: Forage Quality, Morphology, and Yield. Crop Sci. 2000, 40, 365–369. [Google Scholar] [CrossRef] [Green Version]
- Ray, I.M.; Townsend, M.S.; Muncy, C.M. Heritabilities and Interrelationships of Water-Use Efficiency and Agronomic Traits in Irrigated Alfalfa. Crop Sci. 1999, 39, 1088–1092. [Google Scholar] [CrossRef]
- Guines, F.; Julier, B.; Ecalle, C.; Huyghe, C. Genetic control of quality traits of lucerne (Medicago sativa L.). Aust. J. Agric. Res. 2002, 53, 401–407. [Google Scholar] [CrossRef]
- Grace, P.R.; Oades, J.M.; Keith, H.; Hancock, T.W. Trends in wheat yields and soil organic carbon in the Permanent Rotation Trial at the Waite Agricultural Research Institute, South Australia. Aust. J. Exp. Agric. 1995, 35, 857–864. [Google Scholar] [CrossRef]
- Butler, D. asreml: Fits the Linear Mixed Model; R Package Version 4.1.0.130; VSNI: Brisbane, Australia, 2020. [Google Scholar]
- Sripathi, R.; Conaghan, P.; Grogan, D.; Casler, M.D. Spatial Variability Effects on Precision and Power of Forage Yield Estimation. Crop Sci. 2017, 57, 1383–1393. [Google Scholar] [CrossRef]
- Andrade, M.H.M.L.; Fernandes Filho, C.C.; Fernandes, M.O.; Bastos, A.J.R.; Guedes, M.L.; de Marçal, T.S.; Gonçalves, F.M.A.; Pinto, C.A.B.P.; Zotarelli, L. Accounting for spatial trends to increase the selection efficiency in potato breeding. Crop Sci. 2020, 60, 2354–2372. [Google Scholar] [CrossRef]
- Piepho, H.-P.; Williams, E.R. Augmented Row–Column Designs for a Small Number of Checks. Agron. J. 2016, 108, 2256–2262. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses; R Package Version 1.0.7.; 2020; Available online: https://cran.r-project.org/web/packages/factoextra/index.html (accessed on 21 April 2021).
- Galili, T.; O’Callaghan, A.; Sidi, J.; Sievert, C. heatmaply: An R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 2018, 34, 1600–1602. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.L. GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. Crop Sci. 2007, 47, 643–653. [Google Scholar] [CrossRef]
- Dumble, S. GGEBiplots: GGE Biplots with “ggplot2”; R Package Version 0.1.1. 2017. Available online: https://cran.r-project.org/web/packages/GGEBiplots/index.html (accessed on 21 April 2021).
Taxon | NDVI | Plant Height (cm) | FIPAR | Forage Yield (Mg ha−1) | Plant Survival (%) | ||||
---|---|---|---|---|---|---|---|---|---|
2018/19 | 2019/20 | 2018/19 | 2019/20 | 2018/19 | 2019/20 | 2018/19 | 2019/20 | ||
M.s. hybr. (alborea) (* n = 2) | 0.62 ± 0.11 | 0.80 ± 0.07 | 52.9 ± 0.1 | 43.3 ± 6.8 | 0.88 ± 0.01 | 0.87 ± 0.04 | 8.88 ± 0.1 | 11.65 ± 2.8 | 84.2 ± 12.8 |
M.s. caerulea (n = 2) | 0.35 ± 0.05 | 0.32 ± 0.01 | 9.3 ± 4.2 | 8.3 ± 5.4 | 0.035 ± 0.01 | 0.13 ± 0.09 | 4.10 ± 0.04 | 1.25 ± 0.2 | 79.3 ± 9.2 |
M.s. sativa (n = 50) | 0.59 ± 0.12 | 0.79 ± 0.08 | 39.8 ± 10.8 | 36.3 ± 10.3 | 0.69 ± 0.21 | 0.79 ± 0.18 | 6.67 ± 1.8 | 8.83 ± 2.6 | 85.2 ± 5.9 |
M.s. varia (n = 14) | 0.56 ± 0.10 | 0.76 ± 0.10 | 37.6 ± 9.5 | 34.0 ± 10.3 | 0.68 ± 0.17 | 0.72 ± 0.23 | 7.15 ± 0.9 | 8.75 ± 2.2 | 87.4 ± 4.5 |
H2 | 0.85 ± 0.02 | 0.67 ± 0.08 | 0.65 ± 0.07 | 0.53 ± 0.09 | 0.10 ± 0.01 |
Taxon | ShootDM (g) | StemDM (g) | LeavesDM (g) | LSratio (g g−1) | SLA (g cm−2) | StemL (cm) | StemD (mm) | LeafSize (cm2) |
---|---|---|---|---|---|---|---|---|
M.s. hybr. (alborea) (* n = 2) | 3.70 ± 0.57 | 1.78 ± 0.25 | 1.93 ± 0.32 | 1.12 ± 0.06 | 319.7 ± 70.8 | 50.4 ± 5.7 | 3.05 ± 0.10 | 96.07 ± 9.8 |
M.s. caerulea (n = 2) | 1.23 ± 0.60 | 0.45 ± 0.28 | 0.78± 0.32 | 2.31 ± 0.81 | 86.3 ± 16.9 | 25.1 ± 3.2 | 1.69 ± 0.21 | 10.81 ± 6.8 |
M.s. sativa (n = 50) | 3.06 ± 0.86 | 1.35 ± 0.51 | 1.69 ± 0.39 | 1.40 ± 0.43 | 242.5 ± 50.5 | 42.3 ± 7.9 | 2.71 ± 0.39 | 67.62 ± 22.8 |
M.s. varia (n = 14) | 3.18 ± 0.71 | 1.36 ± 0.47 | 1.82 ± 0.30 | 1.58 ± 0.58 | 269.4 ± 64.9 | 43.1 ± 7.0 | 2.63 ± 0.31 | 79.10 ± 25.4 |
H2 | 0.28 ± 0.10 | 0.47 ± 0.12 | 0.10 ± 0.01 | 0.30 ± 0.01 | 0.23 ± 0.07 | 0.62 ± 0.07 | 0.52 ± 0.06 | 0.26 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inostroza, L.; Espinoza, S.; Barahona, V.; Gerding, M.; Humphries, A.; del Pozo, A.; Ovalle, C. Phenotypic Diversity and Productivity of Medicago sativa Subspecies from Drought-Prone Environments in Mediterranean Type Climates. Plants 2021, 10, 862. https://doi.org/10.3390/plants10050862
Inostroza L, Espinoza S, Barahona V, Gerding M, Humphries A, del Pozo A, Ovalle C. Phenotypic Diversity and Productivity of Medicago sativa Subspecies from Drought-Prone Environments in Mediterranean Type Climates. Plants. 2021; 10(5):862. https://doi.org/10.3390/plants10050862
Chicago/Turabian StyleInostroza, Luis, Soledad Espinoza, Viviana Barahona, Macarena Gerding, Alan Humphries, Alejandro del Pozo, and Carlos Ovalle. 2021. "Phenotypic Diversity and Productivity of Medicago sativa Subspecies from Drought-Prone Environments in Mediterranean Type Climates" Plants 10, no. 5: 862. https://doi.org/10.3390/plants10050862
APA StyleInostroza, L., Espinoza, S., Barahona, V., Gerding, M., Humphries, A., del Pozo, A., & Ovalle, C. (2021). Phenotypic Diversity and Productivity of Medicago sativa Subspecies from Drought-Prone Environments in Mediterranean Type Climates. Plants, 10(5), 862. https://doi.org/10.3390/plants10050862