Transport Proteins Enabling Plant Photorespiratory Metabolism
Abstract
:1. Introduction—The Photorespiratory Metabolism
2. Metabolite Channeling in Photorespiratory Metabolism
2.1. Transport Processes at Chloroplasts
2.2. Transport Processes at Peroxisomes
2.3. Transport Processes at Mitochondria
3. Significance of Transport Steps in Synthetic Bypasses to PR
4. Excursion: Metabolite Channeling in C4 Photosynthesis
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bracher, A.; Whitney, S.M.; Hartl, F.U.; Hayer-Hartl, M. Biogenesis and Metabolic Maintenance of Rubisco. Annu. Rev. Plant Biol. 2017, 68, 29–60. [Google Scholar] [CrossRef]
- Bowes, G.; Ogren, W.L.; Hageman, R.H. Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem. Biophys. Res. Commun. 1971, 45, 716–722. [Google Scholar] [CrossRef]
- Kelly, G.J.; Latzko, E. Inhibition of spinach-leaf phosphofructokinase by 2-phosphoglycollate. FEBS Lett. 1976, 68, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Flügel, F.; Timm, S.; Arrivault, S.; Florian, A.; Stitt, M.; Fernie, A.R.; Bauwe, H. The photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch accumulation in Arabidopsis. Plant Cell 2017, 29, 2537–2551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, L.E. Chloroplast and Cytoplasmic enzymes. II Pea leaf triose Phosphate Isomerases. Biochim. Biophys. Acta 1971, 22, 237–244. [Google Scholar] [CrossRef]
- Eisenhut, M.; Ruth, W.; Haimovich, M.; Bauwe, H.; Kaplan, A.; Hagemann, M. The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc. Natl. Acad. Sci. USA 2008, 105, 17199–17204. [Google Scholar] [CrossRef] [Green Version]
- Hagemann, M.; Fernie, A.R.; Espie, G.S.; Kern, R.; Eisenhut, M.; Reumann, S.; Bauwe, H.; Weber, A.P.M. Evolution of the biochemistry of the photorespiratory C2 cycle. Plant Biol. 2013, 15, 639–647. [Google Scholar] [CrossRef]
- Hagemann, M.; Bauwe, H. Photorespiration and the potential to improve photosynthesis. Curr. Opin. Chem. Biol. 2016, 35, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Timm, S.; Bauwe, H. The variety of photorespiratory phenotypes - employing the current status for future research directions on photorespiration. Plant Biol. 2013, 15, 737–747. [Google Scholar] [CrossRef]
- Bauwe, H.; Hagemann, M.; Fernie, A.R. Photorespiration: Players, partners and origin. Trends Plant Sci. 2010, 15, 330–336. [Google Scholar] [CrossRef]
- Kozaki, A.; Takeba, G. Photorespiration protects C3 plants from photooxidation. Nature 1996, 384, 557–560. [Google Scholar] [CrossRef]
- Eisenhut, M.; Hocken, N.; Weber, A.P.M. Plastidial metabolite transporters integrate photorespiration with carbon, nitrogen, and sulfur metabolism. Cell Calcium 2015, 58, 98–104. [Google Scholar] [CrossRef]
- Charton, L.; Plett, A.; Linka, N. Plant peroxisomal solute transporter proteins. J. Integr. Plant Biol. 2019, 61, 817–835. [Google Scholar] [CrossRef] [Green Version]
- Eisenhut, M.; Roell, M.S.; Weber, A.P.M. Mechanistic understanding of photorespiration paves the way to a new green revolution. New Phytol. 2019, 223, 1762–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, A.J. Photorespiration and nitrate assimilation: A major intersection between plant carbon and nitrogen. Photosynth. Res. 2015, 123, 117–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuilov, S.; Brilhaus, D.; Rademacher, N.; Flachbart, S.; Arab, L.; Alfarraj, S.; Kuhnert, F.; Kopriva, S.; Weber, A.P.M.; Mettler-Altmann, T.; et al. The photorespiratory BOU gene mutation alters sulfur assimilation and its crosstalk with carbon and nitrogen metabolism in Arabidopsis thaliana. Front. Plant Sci. 2018, 871, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Hodges, M.; Dellero, Y.; Keech, O.; Betti, M.; Raghavendra, A.S.; Sage, R.; Zhu, X.G.; Allen, D.K.; Weber, A.P.M. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. J. Exp. Bot. 2016, 67, 3015–3026. [Google Scholar] [CrossRef] [PubMed]
- Pick, T.R.; Bräutigam, A.; Schulz, M.A.; Obata, T.; Fernie, A.R.; Weber, A.P.M. PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. Proc. Natl. Acad. Sci. USA 2013, 110, 3185–3190. [Google Scholar] [CrossRef] [Green Version]
- South, P.F.; Walker, B.J.; Cavanagh, A.P.; Rolland, V.; Badger, M.; Ort, D.R. Bile Acid Sodium Symporter BASS6 Can Transport Glycolate and Is Involved in Photorespiratory Metabolism in Arabidopsis thaliana. Plant Cell 2017, 29, 808–823. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, M.; Taniguchi, Y.; Kawasaki, M.; Takeda, S.; Kato, T.; Tabata, S.; Miyake, H.; Sugiyama, T. Identifying and Characterizing Plastidic 2-Oxoglutarate/Malate and Dicarboxylate Transporters in Arabidopsis thaliana. Plant Cell Physiol. 2002, 43, 706–717. [Google Scholar] [CrossRef] [Green Version]
- Renné, P.; Dreßen, U.; Hebbeker, U.; Hille, D.; Flügge, U.I.; Westhoff, P.; Weber, A.P.M. The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2. Plant J. 2003, 35, 316–331. [Google Scholar] [CrossRef] [PubMed]
- Eisenhut, M.; Planchais, S.; Cabassa, C.; Guivarc’H, A.; Justin, A.M.; Taconnat, L.; Renou, J.P.; Linka, M.; Gagneul, D.; Timm, S.; et al. Arabidopsis A BOUT de SOUFFLE is a putative mitochondrial transporter involved in photorespiratory metabolism and is required for meristem growth at ambient CO2 levels. Plant J. 2013, 73, 836–849. [Google Scholar] [CrossRef] [Green Version]
- Porcelli, V.; Vozza, A.; Calcagnile, V.; Gorgoglione, R.; Arrigoni, R.; Fontanesi, F.; Marobbio, C.M.T.; Castegna, A.; Palmieri, F.; Palmieri, L. Molecular identification and functional characterization of a novel glutamate transporter in yeast and plant mitochondria. Biochim. Biophys. Acta Bioenergy 2018, 1859, 1249–1258. [Google Scholar] [CrossRef]
- Sweetlove, L.J.; Lytovchenko, A.; Morgan, M.; Nunes-Nesi, A.; Taylor, N.L.; Baxter, C.J.; Eickmeier, I.; Fernie, A.R. Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc. Natl. Acad. Sci. USA 2006, 103, 19587–19592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monné, M.; Daddabbo, L.; Gagneul, D.; Obata, T.; Hielscher, B.; Palmieri, L.; Miniero, D.V.; Fernie, A.R.; Weber, A.P.M.; Palmieri, F. Uncoupling proteins 1 and 2 (UCP1 and UCP2) from Arabidopsis thaliana are mitochondrial transporters of aspartate, glutamate, and dicarboxylates. J. Biol. Chem. 2018, 293, 4213–4227. [Google Scholar] [CrossRef] [Green Version]
- Heldt, H.W.; Rapley, L. Unspecific permeation and specific uptake of substances in spinach chloroplasts. FEBS Lett. 1970, 7, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Heldt, H.W.; Sauer, F. The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim. Biophys. Acta Bioenergy 1971, 234, 83–91. [Google Scholar] [CrossRef]
- Bassham, J.A.; Kirk, M.; Jensen, R.G. Photosynthesis by isolated chloroplasts I. Diffusion of labeled photosynthetic intermediates between isolated chloroplasts and suspending medium. Biochim. Biophys. Acta Bioenergy 1968, 153, 211–218. [Google Scholar] [CrossRef]
- Heber, U.; Kirk, M.R.; Gimmler, H.; Schäfer, G. Uptake and reduction of glycerate by isolated chloroplasts. Planta 1974, 120, 31–46. [Google Scholar] [CrossRef]
- Robinson, S.P. Transport of Glycerate across the Envelope Membrane of Isolated Spinach Chloroplasts. Plant Physiol. 1982, 70, 1032–1038. [Google Scholar] [CrossRef] [Green Version]
- Howitz, K.T.; McCarty, R.E. Evidence for a glycolate transporter in the envelope of pea chloroplasts. FEBS Lett. 1983, 154, 339–342. [Google Scholar] [CrossRef] [Green Version]
- Howitz, K.T.; McCarty, R.E. Kinetic characteristics of the chloroplast envelope glycolate transporter. Biochemistry 1985, 24, 2645–2652. [Google Scholar] [CrossRef]
- Takahashi, S.; Bauwe, H.; Badger, M. Impairment of the Photorespiratory Pathway Accelerates Photoinhibition of Photosystem II by Suppression of Repair But Not Acceleration of Damage Processes in Arabidopsis. Plant Physiol. 2007, 144, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Somerville, S.C.; Ogren, W.L. An Arabidopsis thaliana mutant defective in chloroplast dicarboxylate transport. Proc. Natl. Acad. Sci. USA 1983, 80, 1290–1294. [Google Scholar] [CrossRef] [Green Version]
- Somerville, S.C.; Somerville, C.R. A mutant of Arabidopsis deficient in chloroplast dicarboxylate transport is missing an envelope protein. Plant Sci. Lett. 1985, 37, 217–220. [Google Scholar] [CrossRef]
- Woo, K.C.; Flügge, U.I.; Heldt, H.W. A Two-Translocator Model for the Transport of 2-Oxoglutarate and Glutamate in Chloroplasts during Ammonia Assimilation in the Light. Plant Physiol. 1987, 84, 624–632. [Google Scholar] [CrossRef]
- Flügge, I.U.; Woo, K.C.C.; Heldt, H.C.W. Characteristics of 2-oxoglutarate and glutamate transport in spinach chloroplasts. Planta 1988, 174, 534–541. [Google Scholar] [CrossRef]
- Weber, A.; Menzlaff, E.; Arbinger, B.; Gutensohn, M.; Eckerskorn, C.; Fluegge, U.-I. The 2-oxoglutarate/malate translocator of chloroplast envelope membranes: Molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein in yeast cells. Biochemistry 1995, 34, 2621–2627. [Google Scholar] [CrossRef]
- Weber, A.; Flügge, U. Interaction of cytosolic and plastidic nitrogen metabolism in plants. J. Exp. Bot. 2002, 53, 865–874. [Google Scholar] [CrossRef] [Green Version]
- Schneidereit, J.; Häusler, R.; Fiene, G.; Kaiser, W.; Weber, A. Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiT1 at the interface between carbon and nitrogen metabolism. Plant J. 2006, 45, 206–224. [Google Scholar] [CrossRef]
- Tolbert, N.E.; Yamazaki, R.K. Leaf Peroxisomes and their Relation to Photorespiration and Photosynthesis. Ann. N. Y. Acad. Sci. 1969, 168, 325–341. [Google Scholar] [CrossRef]
- Yamazaki, R.K.; Tolbert, N.E. Enzymic characterization of leaf peroxisomes. J. Biol. Chem. 1970, 245, 5137–5144. [Google Scholar] [CrossRef]
- Liang, Z.; Yu, C.; Huang, A.H.C. Conversion of glycerate to serine in intact spinach leaf peroxisomes. Arch. Biochem. Biophys. 1984, 233, 393–401. [Google Scholar] [CrossRef]
- Esser, C.; Kuhn, A.; Groth, G.; Lercher, M.J.; Maurino, V.G. Plant and animal glycolate oxidases have a common eukaryotic ancestor and convergently duplicated to evolve long-chain 2-hydroxy acid oxidases. Mol. Biol. Evol. 2014, 31, 1089–1101. [Google Scholar] [CrossRef] [Green Version]
- Liepman, A.H.; Olsen, L.J. Peroxisomal alanine: Glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Plant J. 2001, 25, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, D.; Miwa, T.; Seki, M.; Kobayashi, M.; Kato, T.; Tabata, S.; Shinozaki, K.; Ohsumi, C. Identification of photorespiratory glutamate:glyoxylate aminotransferase (GGAT) gene in Arabidopsis. Plant J. 2003, 33, 975–987. [Google Scholar] [CrossRef] [PubMed]
- Léon, S.; Goodman, J.M.; Subramani, S. Uniqueness of the mechanism of protein import into the peroxisome matrix: Transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors. Biochim. Biophys. Acta Mol. Cell Res. 2006, 1763, 1552–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernhardt, K.; Wilkinson, S.; Weber, A.P.M.; Linka, N. A peroxisomal carrier delivers NAD+ and contributes to optimal fatty acid degradation during storage oil mobilization. Plant J. 2012, 69, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Linka, N.; Theodoulou, F.L. Metabolite transporters of the plant peroxisomal membrane: Known and unknown. Subcell. Biochem. 2013, 69, 169–194. [Google Scholar] [PubMed]
- Kisaki, T.; Tolbert, N.E. Glycolate and Glyoxylate Metabolism by Isolated Peroxisomes or Chloroplasts. Plant Physiol. 1969, 44, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-C.; Huang, A.H.C. Metabolism of Glycolate in Isolated Spinach Leaf Peroxisomes: Kinetics of Glyoxylate, Oxalate, Carbon Dioxide, and Glycine Formation. Plant Physiol. 1981, 67, 1003–1006. [Google Scholar] [CrossRef] [Green Version]
- Heupel, R.; Markgraf, T.; Robinson, D.G.; Heldt, H.W. Compartmentation Studies on Spinach Leaf Peroxisomes. Plant Physiol. 1991, 96, 971–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reumann, S.; Maier, E.; Benz, R.; Heldt, H.W. The membrane of leaf peroxisomes contains a porin-like channel. J. Biol. Chem. 1995, 270, 17559–17565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reumann, S.; Maier, E.; Heldt, H.W.; Benz, R. Permeability properties of the porin of spinach leaf peroxisomes. Eur. J. Biochem. 1998, 251, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Reumann, S. The structural properties of plant peroxisomes and their metabolic significance. Biol. Chem. 2000, 381, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Reumann, S.; Weber, A.P.M. Plant peroxisomes respire in the light: Some gaps of the photorespiratory C2 cycle have become filled—Others remain. Biochim. Biophys. Acta Mol. Cell Res. 2006, 1763, 1496–1510. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Wei, Q.; Huang, H.; Xia, J. Amino Acid Transporters in Plant Cells: A Brief Review. Plants 2020, 9, 967. [Google Scholar] [CrossRef] [PubMed]
- Agrimi, G.; Russo, A.; Pierri, C.L.; Palmieri, F. The peroxisomal NAD+ carrier of Arabidopsis thaliana transports coenzyme A and its derivatives. J. Bioenergy Biomembr. 2012, 44, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tietz, S.; Cruz, J.A.; Strand, D.D.; Xu, Y.; Chen, J.; Kramer, D.M.; Hu, J. Photometric screens identified Arabidopsis peroxisome proteins that impact photosynthesis under dynamic light conditions. Plant J. 2019, 97, 460–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zalman, L.S.; Nikaido, H.; Kagawa, Y. Mitochondrial outer membrane contains a protein producing nonspecific diffusion channels. J. Biol. Chem. 1980, 255, 1771–1774. [Google Scholar] [CrossRef]
- Møller, I.M.; Rao, R.S.P.; Jiang, Y.; Thelen, J.J.; Xu, D. Proteomic and Bioinformatic Profiling of Transporters in Higher Plant Mitochondria. Biomolecules 2020, 10, 1190. [Google Scholar] [CrossRef]
- Day, D.A.; Wiskich, J.T. Glycine transport by pea leaf mitochondria. FEBS Lett. 1980, 112, 191–194. [Google Scholar] [CrossRef] [Green Version]
- Proudlove, M.O.; Moore, A.L. Movement of amino acids into isolated plant mitochondria. FEBS Lett. 1982, 147, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Claybrook, D.L.; Huang, A.H.C. Transport of glycine, serine, and proline into spinach leaf mitochondria. Arch. Biochem. Biophys. 1983, 227, 180–187. [Google Scholar] [CrossRef]
- Linka, M.; Weber, A.P.M. Shuffling ammonia between mitochondria and plastids during photorespiration. Trends Plant Sci. 2005, 10, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Taira, M.; Valtersson, U.; Burkhardt, B.; Ludwig, R.A. Arabidopsis thaliana GLN2-Encoded Glutamine Synthetase Is Dual Targeted to Leaf Mitochondria and Chloroplasts. Plant Cell 2004, 16, 2048–2058. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, P.; Rugen, N.; Carrie, C.; Elsässer, M.; Finkemeier, I.; Giese, J.; Hildebrandt, T.M.; Kühn, K.; Maurino, V.G.; Ruberti, C.; et al. Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. Plant J. 2020, 101, 420–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenhut, M.; Pick, T.R.; Bordych, C.; Weber, A.P.M. Towards closing the remaining gaps in photorespiration—The essential but unexplored role of transport proteins. Plant Biol. 2013, 15, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Parsons, H.T.; Christiansen, K.; Knierim, B.; Carroll, A.; Ito, J.; Batth, T.S.; Smith-Moritz, A.M.; Morrison, S.; McInerney, P.; Hadi, M.Z.; et al. Isolation and Proteomic Characterization of the Arabidopsis Golgi Defines Functional and Novel Components Involved in Plant Cell Wall Biosynthesis. Plant Physiol. 2012, 159, 12–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernie, A.R.; Cavalcanti, J.H.F.; Nunes-Nesi, A. Metabolic Roles of Plant Mitochondrial Carriers. Biomolecules 2020, 10, 1013. [Google Scholar] [CrossRef] [PubMed]
- Nunes-Nesi, A.; Cavalcanti, J.H.F.; Fernie, A.R. Characterization of In Vivo Function(s) of Members of the Plant Mitochondrial Carrier Family. Biomolecules 2020, 10, 1226. [Google Scholar] [CrossRef]
- Palmieri, L.; Picault, N.; Arrigoni, R.; Besin, E.; Palmieri, F.; Hodges, M. Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: Organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Biochem. J. 2008, 410, 621–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, A.D.; Gregory, J.F. Folate Biosynthesis, Turnover, and Transport in Plants. Annu. Rev. Plant Biol. 2011, 62, 105–125. [Google Scholar] [CrossRef] [PubMed]
- Timm, S.; Hagemann, M. Photorespiration-how is it regulated and how does it regulate overall plant metabolism? J. Exp. Bot. 2020, 71, 3955–3965. [Google Scholar] [CrossRef] [PubMed]
- Kebeish, R.; Niessen, M.; Thiruveedhi, K.; Bari, R.; Hirsch, H.-J.; Rosenkranz, R.; Stäbler, N.; Schönfeld, B.; Kreuzaler, F.; Peterhänsel, C. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat. Biotechnol. 2007, 25, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Maier, A.; Fahnenstich, H.; von Caemmerer, S.; Engqvist, M.K.; Weber, A.P.M.; Flügge, U.-I.; Maurino, V.G. Transgenic Introduction of a Glycolate Oxidative Cycle into A. thaliana Chloroplasts Leads to Growth Improvement. Front. Plant Sci. 2012, 3, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- South, P.F.; Cavanagh, A.P.; Liu, H.W.; Ort, D.R. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 2019, 363, eaat9077. [Google Scholar] [CrossRef] [Green Version]
- Eisenhut, M.; Weber, A.P.M. Improving crop yield. Science 2019, 363, 32–33. [Google Scholar] [CrossRef]
- Trudeau, D.L.; Edlich-Muth, C.; Zarzycki, J.; Scheffen, M.; Goldsmith, M.; Khersonsky, O.; Avizemer, Z.; Fleishman, S.J.; Cotton, C.A.R.; Erb, T.J.; et al. Design and in vitro realization of carbon-conserving photorespiration. Proc. Natl. Acad. Sci. USA 2018, 115, E11455–E11464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, B.J.; Vanloocke, A.; Bernacchi, C.J.; Ort, D.R. The Costs of Photorespiration to Food Production Now and in the Future. Annu. Rev. Plant Biol. 2016, 67, 107–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borland, A.M.; Hartwell, J.; Weston, D.J.; Schlauch, K.A.; Tschaplinski, T.J.; Tuskan, G.A.; Yang, X.; Cushman, J.C. Engineering crassulacean acid metabolism to improve water-use efficiency. Trends Plant Sci. 2014, 19, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.G.; Long, S.P.; Ort, D.R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 2010, 61, 235–261. [Google Scholar] [CrossRef] [Green Version]
- Zelitch, I.; Schultes, N.P.; Peterson, R.B.; Brown, P.; Brutnell, T.P. High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol. 2009, 149, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Weber, A.P.M.; von Caemmerer, S. Plastid transport and metabolism of C3 and C4 plants-comparative analysis and possible biotechnological exploitation. Curr. Opin. Plant Biol. 2010, 13, 256–264. [Google Scholar] [CrossRef]
- Sage, R.F.; Khoshravesh, R.; Sage, T.L. From proto-Kranz to C4 Kranz: Building the bridge to C4 photosynthesis. J. Exp. Bot. 2014, 65, 3341–3356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawsthorne, S.; Hylton, C.M.; Smith, A.M.; Woolhouse, H.W. Planta and C3-C4 intermediate species of Moricandia. Planta 1988, 173, 298–308. [Google Scholar] [CrossRef]
- Schulze, S.; Mallmann, J.; Burscheidt, J.; Koczor, M.; Streubel, M.; Bauwe, H.; Gowik, U.; Westhoff, P. Evolution of C4 photosynthesis in the genus Flaveria: Establishment of a photorespiratory CO2 pump. Plant Cell 2013, 25, 2522–2535. [Google Scholar] [CrossRef] [Green Version]
- Schlüter, U.; Bräutigam, A.; Gowik, U.; Melzer, M.; Christin, P.A.; Kurz, S.; Mettler-Altmann, T.; Weber, A.P.M. Photosynthesis in C3-C4 intermediate Moricandia species. J. Exp. Bot. 2017, 68, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Mallmann, J.; Heckmann, D.; Bräutigam, A.; Lercher, M.J.; Weber, A.P.M.; Westhoff, P.; Gowik, U. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. Elife 2014, 2014, 1–23. [Google Scholar] [CrossRef]
- Bellasio, C.; Farquhar, G.D. A leaf-level biochemical model simulating the introduction of C2 and C4 photosynthesis in C3 rice: Gains, losses and metabolite fluxes. New Phytol. 2019, 223, 150–166. [Google Scholar] [CrossRef]
- Blätke, M.A.; Bräutigam, A. Evolution of C4 photosynthesis predicted by constraint-based modelling. Elife 2019, 8, e49305. [Google Scholar] [CrossRef] [PubMed]
- Gowik, U.; Bräutigam, A.; Weber, K.L.; Weber, A.P.M.; Westhoff, P. Evolution of C4 photosynthesis in the genus Flaveria: How many and which genes does it take to make C4? Plant Cell 2011, 23, 2087–2105. [Google Scholar] [CrossRef] [Green Version]
- Döring, F.; Streubel, M.; Bräutigam, A.; Gowik, U. Most photorespiratory genes are preferentially expressed in the bundle sheath cells of the C4 grass Sorghum bicolor. J. Exp. Bot. 2016, 67, 3053–3064. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, Y.; Nagasaki, J.; Kawasaki, M.; Miyake, H.; Sugiyama, T.; Taniguchi, M. Differentiation of Dicarboxylate Transporters in Mesophyll and Bundle Sheath Chloroplasts of Maize. Plant Cell Physiol. 2004, 45, 187–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinoshita, H.; Nagasaki, J.; Yoshikawa, N.; Yamamoto, A.; Takito, S.; Kawasaki, M.; Sugiyama, T.; Miyake, H.; Weber, A.P.M.; Taniguchi, M. The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism. Plant J. 2011, 65, 15–26. [Google Scholar] [CrossRef] [PubMed]
- John, C.R.; Smith-Unna, R.D.; Woodfield, H.; Covshoff, S.; Hibberd, J.M. Evolutionary convergence of cell-specific gene expression in independent lineages of C4 grasses. Plant Physiol. 2014, 165, 62–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamani-Nour, S.; Lin, H.C.; Walker, B.J.; Mettler-Altmann, T.; Khoshravesh, R.; Karki, S.; Bagunu, E.; Sage, T.L.; Quick, W.P.; Weber, A.P.M. Overexpression of the chloroplastic 2-oxoglutarate/malate transporter disturbs carbon and nitrogen homeostasis in rice. J. Exp. Bot. 2021, 72, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Studer, A.J.; Schnable, J.C.; Kellogg, E.A.; Brutnell, T.P. Cross species selection scans identify components of C4 photosynthesis in the grasses. J. Exp. Bot. 2017, 68, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Weissmann, S.; Ma, F.; Furuyama, K.; Gierse, J.; Berg, H.; Shao, Y.; Taniguchi, M.; Allen, D.K.; Brutnell, T.P. Interactions of C4 subtype metabolic activities and transport in maize are revealed through the characterization of DCT2 mutants. Plant Cell 2015, 28, 466–484. [Google Scholar] [CrossRef] [Green Version]
- Weissmann, S.; Huang, P.; Wiechert, M.A.; Furuyama, K.; Brutnell, T.P.; Taniguchi, M.; Schnable, J.C.; Mockler, T.C. DCT4 —A New Member of the Dicarboxylate Transporter Family in C4 Grasses. Genome Biol. Evol. 2021, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Schlüter, U.; Denton, A.K.; Bräutigam, A. Understanding metabolite transport and metabolism in C4 plants through RNA-seq. Curr. Opin. Plant Biol. 2016, 31, 83–90. [Google Scholar] [CrossRef]
- Furumoto, T.; Yamaguchi, T.; Ohshima-Ichie, Y.; Nakamura, M.; Tsuchida-Iwata, Y.; Shimamura, M.; Ohnishi, J.; Hata, S.; Gowik, U.; Westhoff, P.; et al. A plastidial sodium-dependent pyruvate transporter. Nature 2011, 476, 472–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, N.; Ohnishi, J.I.; Kanai, R. Two different mechanisms for transport of pyruvate into mesophyll chloroplasts of C4 plants-a comparative study. Plant Cell Physiol. 1992, 33, 805–809. [Google Scholar]
- Lyu, M.J.A.; Wang, Y.; Jiang, J.; Liu, X.; Chen, G.; Zhu, X.G. What Matters for C4 Transporters: Evolutionary Changes of Phosphoenolpyruvate Transporter for C4 Photosynthesis. Front. Plant Sci. 2020, 11, 935. [Google Scholar] [CrossRef]
- Rao, X.; Lu, N.; Li, G.; Nakashima, J.; Tang, Y.; Dixon, R.A. Comparative cell-specific transcriptomics reveals differentiation of C4 photosynthesis pathways in switchgrass and other C4 lineages. J. Exp. Bot. 2016, 67, 1649–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlüter, U.; Weber, A.P.M. The Road to C4 Photosynthesis: Evolution of a Complex Trait via Intermediary States. Plant Cell Physiol. 2016, 57, 881–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuler, M.L.; Mantegazza, O.; Weber, A.P.M. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age. Plant J. 2016, 87, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Bräutigam, A.; Kajala, K.; Wullenweber, J.; Sommer, M.; Gagneul, D.; Weber, K.L.; Carr, K.M.; Gowik, U.; Maß, J.; Lercher, M.J.; et al. An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol. 2011, 155, 142–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bräutigam, A.; Hoffmann-Benning, S.; Weber, A.P.M. Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. Plant Physiol. 2008, 148, 568–579. [Google Scholar] [CrossRef] [Green Version]
- Weber, A.P.M.; Bräutigam, A. The role of membrane transport in metabolic engineering of plant primary metabolism. Curr. Opin. Biotechnol. 2013, 24, 256–262. [Google Scholar] [CrossRef]
- Bordych, C.; Eisenhut, M.; Pick, T.R.; Kuelahoglu, C.; Weber, A.P.M. Co-expression analysis as tool for the discovery of transport proteins in photorespiration. Plant Biol. 2013, 15, 686–693. [Google Scholar] [CrossRef] [PubMed]
Transporter | Abbreviation | Substrate | Arabidopsis thaliana Identifier | References |
---|---|---|---|---|
plastidial glycolate/glycerate transporter | PLGG1 | glycerate/glycolate | At1g32080 | [18] |
bile acid sodium symporter 6 | BASS6 | glycolate | At4g22840 | [19] |
2-OG/malate translocator | DiT1/OMT1 | 2-OG/malate | At5g12860 | [20,21] |
glutamate/malate translocator | DiT2.1/DCT1 | glutamate/malate | At5g64290 | |
À BOUT DE SOUFFLE | BOU | glutamate | At5g46800 | [22,23] |
uncoupling protein 1 | UCP1 | aspartate/glutamate | At3g54110 | [24,25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuhnert, F.; Schlüter, U.; Linka, N.; Eisenhut, M. Transport Proteins Enabling Plant Photorespiratory Metabolism. Plants 2021, 10, 880. https://doi.org/10.3390/plants10050880
Kuhnert F, Schlüter U, Linka N, Eisenhut M. Transport Proteins Enabling Plant Photorespiratory Metabolism. Plants. 2021; 10(5):880. https://doi.org/10.3390/plants10050880
Chicago/Turabian StyleKuhnert, Franziska, Urte Schlüter, Nicole Linka, and Marion Eisenhut. 2021. "Transport Proteins Enabling Plant Photorespiratory Metabolism" Plants 10, no. 5: 880. https://doi.org/10.3390/plants10050880
APA StyleKuhnert, F., Schlüter, U., Linka, N., & Eisenhut, M. (2021). Transport Proteins Enabling Plant Photorespiratory Metabolism. Plants, 10(5), 880. https://doi.org/10.3390/plants10050880