Role of Two Plant Growth-Promoting Bacteria in Remediating Cadmium-Contaminated Soil Combined with Miscanthus floridulus (Lab.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Bacterial Isolation
2.2. PGP Traits Tests
2.3. Decreasing pH and Cd Tolerance of PGPB
2.4. PGPB Identification
2.5. Pot Experiments
2.6. Cd Uptake of M. floridulus
2.7. Statistical Analysis
3. Results
3.1. PGP Traits of Bacteria
3.2. Cd Tolerance and pH Variation
3.3. Characteristics and Identification of Selected PGPB
3.3.1. Morphological Identifications and Phylogenetic Analysis
3.3.2. Effects of Different Cd Concentrations on PGPB Growth
3.4. M. floridulus Growth
3.5. Cd Content in M. floridulus and Soil
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef]
- Wang, M.; Chen, W.; Peng, C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China. Chemosphere 2016, 144, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Hu, X.F.; Wu, X.H.; Ying, S.; Jiang, Y.; Yan, X.J. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China. Environ. Monit. Assess. 2013, 185, 9843–9856. [Google Scholar] [CrossRef]
- Salt, D.E.; Blaylock, M.; Kumar, N.; Dushenkov, V.; Ensley, B.D.; Chet, I.; Raskin, I. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 1995, 13, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Ebbs, S.D.; Lasat, M.M.; Brady, D.J.; Cornish, J.; Gordon, R.; Kochian, L.V. Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual. 1997, 26. [Google Scholar] [CrossRef]
- Limmer, M.; Burken, J. Phytovolatilization of Organic Contaminants. Environ. Sci. Technol. 2016, 50, 6632. [Google Scholar] [CrossRef]
- Hussain, I.; Puschenreiter, M.; Gerhard, S.; Schöftner, P.; Yousaf, S.; Wang, A.; Syed, J.H.; Reichenauer, T.G. Rhizoremediation of petroleum hydrocarbon-contaminated soils: Improvement opportunities and field applications. Environ. Exp. Bot. 2018, 147, 202–219. [Google Scholar] [CrossRef]
- Newman, L.A.; Reynolds, C.M. Phytodegradation of organic compounds. Curr. Opin. Biotechnol. 2004, 15, 225–230. [Google Scholar] [CrossRef]
- Gao, J.; Garrison, A.W.; Hoehamer, C.; Mazur, C.S.; Wolfe, N.L. Uptake and Phytotransformation of Organophosphorus Pesticides by Axenically Cultivated Aquatic Plants. J. Agric. Food Chem. 2001, 48, 6114–6120. [Google Scholar] [CrossRef]
- Liu, S.; Yang, B.; Liang, Y.; Xiao, Y.; Fang, J. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environ. Sci. Pollut. Res. 2020, 27, 16069–16085. [Google Scholar] [CrossRef]
- Koopmans, G.F.; Römkens, P.F.M.; Fokkema, M.J.; Song, J.; Luo, Y.M.; Japenga, J.; Zhao, F.J. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ. Pollut. 2008, 156, 905–914. [Google Scholar] [CrossRef]
- Mahmood-Ul-Hassan, M.; Suthar, V.; Ahmad, R.; Yousra, M. Heavy metal phytoextraction—natural and EDTA-assisted remediation of contaminated calcareous soils by sorghum and oat. Environ. Monit. Assess. 2017, 189, 591. [Google Scholar] [CrossRef] [PubMed]
- Mnasri, M.; Janoušková, M.; Rydlová, J.; Abdelly, C.; Ghnaya, T. Comparison of arbuscular mycorrhizal fungal effects on the heavy metal uptake of a host and a non-host plant species in contact with extraradical mycelial network. Chemosphere 2017, 171, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tie, B.; Li, Y.; Lei, M.; Wei, X. Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains. Ecotoxicol. Environ. Saf. 2018, 163, 223–229. [Google Scholar] [CrossRef] [PubMed]
- El-Meihy, R.M.; Abou-Aly, H.E.; Youssef, A.M.; Tewfike, T.A.; El-Alkshar, E.A. Efficiency of Heavy Metals-Tolerant Plant Growth Promoting Bacteria for Alleviating Heavy Metals Toxicity on Sorghum. Environ. Exp. Bot. 2019, 162, 295–301. [Google Scholar] [CrossRef]
- Chen, Y.T.; Wang, Y.; Yeh, K.C. Role of root exudates in metal acquisition and tolerance. Curr. Opin. Plant Biol. 2017, 39, 66–72. [Google Scholar] [CrossRef]
- Afegbua, S.L.; Batty, L.C. Effect of plant growth promoting bacterium; Pseudomonas putida UW4 inoculation on phytoremediation efficacy of monoculture and mixed culture of selected plant species for PAH and lead spiked soils. Int. J. Phytoremediat. 2019, 21, 200–208. [Google Scholar] [CrossRef]
- Heaton, E.A.; Dohleman, F.G.; Long, S.P. Meeting US biofuel goals with less land: The potential of Miscanthus. Glob. Chang. Biol. 2008, 14, 2000–2014. [Google Scholar] [CrossRef]
- Brosse, N.; Dufour, A.; Meng, X.; Sun, Q.; Ragauskas, A. Miscanthus: A fast-growing crop for biofuels and chemicals production. BiofuelsBioprod. Biorefining 2012, 6, 580–598. [Google Scholar] [CrossRef]
- Antonkiewicz, J.; Koodziej, B.; Bielińska, E.; Popawska, A. The possibility of using sewage sludge for energy crop cultivation exemplified by reed canary grass and giant miscanthus. Soil Sci. Annu. 2019, 70, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.M.; Chen, X.Y.; Zeng, S.C. Heavy metal tolerance of Miscanthus plants and their phytoremediation potential in abandoned mine land. Chin. J. Appl. Ecol. 2017, 28, 1397–1406. [Google Scholar] [CrossRef]
- Min, J.G.; Lee, J.H.; Kim, J.K.; Moon, H.S. Vegetation Structure of Some Abandoned Coal Mine Lands in Mungyeong Area. J. Korean Soc. For. Sci. 2006, 95, 23–31. [Google Scholar]
- Guo, H.; Feng, X.; Hong, C.; Chen, H.; Zeng, F.; Zheng, B.; Jiang, D. Malate secretion from the root system is an important reason for higher resistance of Miscanthus sacchariflorus to cadmium. Physiol. Plant. 2017, 159, 340–353. [Google Scholar] [CrossRef]
- Nsanganwimana, F.; Pourrut, B.; Mench, M.; Douay, F. Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J. Environ. Manag. 2014, 143, 123–134. [Google Scholar] [CrossRef]
- Babu, A.G.; Shea, P.J.; Sudhakar, D.; Jung, I.B.; Oh, B.T. Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J. Environ. Manag. 2015, 151, 160–166. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, S.; Huang, Y.; Zhou, S. The Tolerance and Accumulation of Miscanthus Sacchariflorus (maxim.) Benth., an Energy Plant Species, to Cadmium. Int. J. Phytoremediat. 2014, 17, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, B.; Boléo, S.; Sidella, S.; Costa, J.; Duarte, M.P.; Mendes, B.; Cosentino, S.L.; Fernando, A.L. Phytoremediation of Heavy Metal-Contaminated Soils Using the Perennial Energy Crops Miscanthus spp. and Arundo donax L. Bioenergy Res. 2015, 8, 1500–1511. [Google Scholar] [CrossRef]
- Khan, A.L.; Bilal, S.; Halo, B.A.; Al-Harrasi, A.; Khan, A.R.; Waqas, M.; Al-Thani, G.S.; Al-Amri, I.; Al-Rawahi, A.; Lee, I.J. Bacillus amyloliquefaciens BSL16 improves phytoremediation potential of Solanum lycopersicum during copper stress. J. Plant Interact. 2017, 12, 550–559. [Google Scholar] [CrossRef] [Green Version]
- Kamran, M.A.; Syed, J.H.; Eqani, S.; Munis, M.; Chaudhary, H.J. Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa. Environ. Sci. Pollut. Res. 2015, 22, 9275–9283. [Google Scholar] [CrossRef]
- Penrose, D.M.; Glick, B.R. Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Can. J. Microbiol. 2001, 47, 368–372. [Google Scholar] [CrossRef]
- Schywn, B.; Nielands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Long, X.; Chen, X.; Chen, Y.; Woon-Chung, W.J.; Wei, Z.; Wu, Q. Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil. World J. Microbiol. Biotechnol. 2011, 27, 1197–1207. [Google Scholar] [CrossRef]
- Shekhar, N.C. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef]
- Parmar, P.; Sindhu, S.S. The novel and efficient method for isolating potassium solubilizing bacteria from rhizosphere soil. Geomicrobiol. J. 2018, 36, 130–136. [Google Scholar] [CrossRef]
- Patten, C.L.; Glick, B.R. Role of Pseudomonas putida Indoleacetic Acid in Development of the Host Plant Root System. Appl. Environ. Microbiol. 2002, 68, 3795–3801. [Google Scholar] [CrossRef] [Green Version]
- Penrose, D.M.; Glick, B.R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 2010, 118, 10–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, N.; Budhathoki, U. Protein Determination Through Bradford’s Method of Nepalese Mushroom. Sci. World 2010, 5, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Hassan, W.; Bano, R.; Bashir, F.; David, J. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Environ. Sci. Pollut. Res. Int. 2014, 21, 10983–10996. [Google Scholar] [CrossRef] [PubMed]
- Ghavami, N.; Alikhani, H.A.; Pourbabaei, A.A.; Besharati, H. Effects of Two New Siderophore Producing Rhizobacteria on Growth and Iron Content of Maize and Canola Plants. J. Plant Nutr. 2016, 40, 736–746. [Google Scholar] [CrossRef]
- Ponmurugan, K.; Sankaranarayanan, A.; Al-Dharbi, N.A. Biological Activities of Plant Growth Promoting Azotobacter sp Isolated from Vegetable Crops Rhizosphere Soils. J. Pure Appl. Microbiol. 2012, 6, 1689–1698. [Google Scholar]
- Wang, Y.; Yang, C.D.; Yao, Y.L.; Wang, Y.Q.; Zhang, Z.F.; Xue, L.; Protection, C.; University, G.A. The diversity and potential function of endophytic bacteria isolated from Kobreasia capillifolia at alpine grasslands on the Tibetan Plateau, China. J. Integr. Agric. 2016, 15, 2153–2162. [Google Scholar] [CrossRef]
- Rojjanateeranaj, P.; Sangthong, C.; Prapagdee, B. Enhanced cadmium phytoremediation of Glycine max L. through bioaugmentation of cadmium-resistant bacteria assisted by biostimulation. Chemosphere 2017, 185, 764. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Nie, Z.; He, L.; Wang, Q.; Sheng, X. Isolation of As-tolerant bacteria and their potentials of reducing As and Cd accumulation of edible tissues of vegetables in metal(loid)-contaminated soils. Sci. Total Environ. 2016, 579, 179–189. [Google Scholar] [CrossRef]
- He, X.; Xu, M.; Wei, Q.; Tang, M.; Xia, Y. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. Ecotoxicol. Environ. Saf. 2020, 205, 111333. [Google Scholar] [CrossRef]
- N’Dayegamiye, A.; Tran, T.S. Effects of green manures on soil organic matter and wheat yields and N nutrition. Can. J. Soil Sci. 2001, 81, 371–382. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Chao, Y.; Wang, S.; Tang, Y.T.; Qiu, R.L. Metal-tolerant Enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination. Plant Soil 2017, 413, 1–14. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, Q.; Chen, X.; Dong, F.; Ali, I. Speciation Distribution of Heavy Metals in Uranium Mining Impacted Soils and Impact on Bacterial Community Revealed by High-Throughput Sequencing. Front. Microbiol. 2019, 10, 1867. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Lin, H.; Dong, Y.; Li, B.; Wang, L. Identification and characterization of plant growth–promoting endophyte RE02 from Trifolium repens L. in mining smelter. Environ. Sci. Pollut. Res. 2019, 26, 17236–17247. [Google Scholar] [CrossRef]
- Ma, Y.; Prasad, M.N.; Rajkumar, M.; Freitas, H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 2011, 29, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, M.; Ae, N.; Prasad, M.; Freitas, H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 2010, 28, 142–149. [Google Scholar] [CrossRef]
- Mitra, S.; Pramanik, K.; Ghosh, P.K.; Soren, T.; Sarkar, A.; Dey, R.S.; Pandey, S.; Maiti, T.K. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress. Microbiol. Res. 2018, 210, 12–25. [Google Scholar] [CrossRef]
- Pramanik, K.; Mitra, S.; Sarkar, A.; Soren, T.; Maiti, T.K. Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environ. Sci. Pollut. Res. 2017, 24, 24419–24437. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ma, L.; Zhou, Q.; Chen, B.; Feng, Y. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. Chemosphere 2019, 234, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Wernitznig, S.; Adlassnig, W.; Sprocati, A.R.; Turnau, K.; Neagoe, A.; Alisi, C.; Sassmann, S.; Nicoara, A.; Pinto, V.; Cremisini, C.; et al. Plant growth promotion by inoculation with selected bacterial strains versus mineral soil supplements. Environ. Sci. Pollut. Res. 2014, 21, 6877–6887. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Xing, Y.; Liu, S.; Huang, Q.; Chen, W. Role of novel bacterial Raoultella sp. strain X13 in plant growth promotion and cadmium bioremediation in soil. Appl. Microbiol. Biotechnol. 2019, 103, 3887–3897. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Heng, S.; Munis, M.F.H.; Fahad, S.; Yang, X. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environ. Exp. Bot. 2015, 117, 28–40. [Google Scholar] [CrossRef]
- Skowrońska, M.; Bielińska, E.J.; Szymański, K.; Futa, B.; Antonkiewicz, J.; Kołodziej, B. An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil—ScienceDirect. Catena 2020, 189, 104484. [Google Scholar] [CrossRef]
- Nayak, A.K.; Panda, S.S.; Basu, A.; Dhal, N.K. Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. Int. J. Phytoremediat. 2018, 20, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Varga, T.; Hixson, K.K.; Ahkami, A.H.; Sher, A.W.; Doty, S.L. Endophyte-Promoted Phosphorus Solubilization in Populus. Front. Plant Sci. 2020, 11, 1585. [Google Scholar] [CrossRef]
- Dell’Amico, E.; Ca Valca, L.; Andreoni, V. Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol. Biochem. 2008, 40, 74–84. [Google Scholar] [CrossRef]
- Mesa, J.; Mateos-Naranjo, E.; Caviedes, M.A.; Redondo-Gómez, S.; Pajuelo, E.; Rodríguez-Llorente, I.D. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils. Front. Microbiol. 2015, 6, 1450. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Luo, S.; Li, X.; Wan, Y.; Chen, J.; Liu, C. Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol. Biochem. 2014, 68, 300–308. [Google Scholar] [CrossRef]
- Onsiri, S.; Arinthip, T.; Wunrada, S. Enhancement of the efficiency of Cd phytoextraction using bacterial endophytes isolated from Chromolaena odorata, a Cd hyperaccumulator. Int. J. Phytoremediat. 2018, 20, 1096–1105. [Google Scholar] [CrossRef]
- Chacko, M.; Ying-Ning, H.; Gicaraya, G.R.; Marina, M.G.; Mei-Chieh, C.; Huang, C.C.; Franck, C. A Rhizosphere-Associated Symbiont, Photobacterium spp. Strain MELD1, and Its Targeted Synergistic Activity for Phytoprotection against Mercury. PLoS ONE 2015, 10, e0121178. [Google Scholar] [CrossRef]
- Zainab, N.; Din, B.U.; Javed, M.T.; Afridi, M.S.; Mukhtar, T.; Kamran, M.A.; Qurat Ul, A.; Khan, A.A.; Ali, J.; Jatoi, W.N. Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiol. Biochem. 2020, 152, 90–99. [Google Scholar] [CrossRef]
- Itusha, A.; Osborne, W.J.; Vaithilingam, M. Enhanced uptake of Cd by biofilm forming Cd resistant plant growth promoting bacteria bioaugmented to the rhizosphere of Vetiveria zizanioides. Int. J. Phytoremediat 2019, 21, 487–495. [Google Scholar] [CrossRef]
- Pal, A.K.; Sengupta, C. Isolation of Cadmium and Lead Tolerant Plant Growth Promoting Rhizobacteria:Lysinibacillus variansandPseudomonas putidafrom Indian Agricultural Soil. Soil Sediment. Contam. Int. J. 2019, 28, 601–629. [Google Scholar] [CrossRef]
- Marwa, N.; Mishra, N.; Singh, N.; Mishra, A.; Saxena, G.; Pandey, V.; Singh, N. Effect of rhizospheric inoculation of isolated arsenic (As) tolerant strains on growth, As-uptake and bacterial communities in association with Adiantum capillus-veneris. Ecotoxicol. Environ. Saf. 2020, 196, 110498. [Google Scholar] [CrossRef]
Strain | N2 Fixation | P Solubilization | K Solubilization |
---|---|---|---|
ZS1 | 1.96 ± 0.15 bcd | 1.52 ± 0.14 c | 1.97 ± 0.38 a |
ZS3 | 2.00 ± 0.34 abc | 2.11 ± 0.19 abc | - |
ZS4 | 1.30 ± 0.05 d | 2.63 ± 0.20 abc | 1.96 ± 0.41 a |
MR2 | 1.86 ± 0.33 bcd | 1.68 ± 0.02 bc | 2.09 ± 0.27 a |
MR3 | 2.08 ± 0.07 ab | 3.17 ± 1.15 ab | - |
MS3 | 1.36 ± 0.12 cd | 3.39 ± 0.67 a | - |
PR4 | 1.44 ± 0.05 bcd | 3.35 ± 0.49 a | 1.78 ± 0.19 a |
PS3 | 2.66 ± 0.48 a | 2.24 ± 0.21 abc | - |
ZR1 | 1.62 ± 0.13 bcd | 2.67 ± 0.67 abc | 1.37 ± 0.17 a |
TS8 | - | 1.67 ± 0.29 bc | 2.33 ± 0.58 a |
Strain | MTC (Cd mM) |
---|---|
ZS1 | 0.71 |
ZS3 | 1.07 |
ZS4 | 1.07 |
MR2 | 1.07 |
MR3 | 0.71 |
MS3 | 1.07 |
PR4 | 0.71 |
PS3 | 0.71 |
ZR1 | 1.78 |
TS8 | 0.71 |
Treatments | BCF | TF |
---|---|---|
CK | 26.89 ± 6.85 a | 0.82 ± 0.33 b |
MR2 | 22.14 ± 0.54 a | 1.25 ± 0.03 a |
TS8 | 23.60 ± 4.23 a | 0.54 ± 0.20 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, H.; Chen, R.; Ma, Y.; Yang, B.; Chen, Z.; Liang, Y.; Fang, J.; Xiao, Y. Role of Two Plant Growth-Promoting Bacteria in Remediating Cadmium-Contaminated Soil Combined with Miscanthus floridulus (Lab.). Plants 2021, 10, 912. https://doi.org/10.3390/plants10050912
Liu S, Liu H, Chen R, Ma Y, Yang B, Chen Z, Liang Y, Fang J, Xiao Y. Role of Two Plant Growth-Promoting Bacteria in Remediating Cadmium-Contaminated Soil Combined with Miscanthus floridulus (Lab.). Plants. 2021; 10(5):912. https://doi.org/10.3390/plants10050912
Chicago/Turabian StyleLiu, Shuming, Hongmei Liu, Rui Chen, Yong Ma, Bo Yang, Zhiyong Chen, Yunshan Liang, Jun Fang, and Yunhua Xiao. 2021. "Role of Two Plant Growth-Promoting Bacteria in Remediating Cadmium-Contaminated Soil Combined with Miscanthus floridulus (Lab.)" Plants 10, no. 5: 912. https://doi.org/10.3390/plants10050912
APA StyleLiu, S., Liu, H., Chen, R., Ma, Y., Yang, B., Chen, Z., Liang, Y., Fang, J., & Xiao, Y. (2021). Role of Two Plant Growth-Promoting Bacteria in Remediating Cadmium-Contaminated Soil Combined with Miscanthus floridulus (Lab.). Plants, 10(5), 912. https://doi.org/10.3390/plants10050912