Ontogenetic Changes in the Chemical Profiles of Piper Species
Abstract
:1. Introduction
2. Results
2.1. Phenylpropanoids as a Common Feature in Seedlings of Piper Species
2.2. Changes in the Secondary Metabolite Profiles during Ontogeny
2.2.1. Piper solmsianum
2.2.2. Piper regnellii
2.2.3. Piper caldense
2.3. Piper Species Producing Amides
2.4. P. permucronatum Yunck. and P. richardiaefolium Kunth
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction and HPLC-DAD Analysis
4.3. HRESIMS
4.4. GC-MS Analysis
4.5. H NMR Spectroscopic Analysis
4.6. Multivariate Analysis
4.7. Isolation of Compounds from Piper hemmendorffii
4.8. Isolation of Compounds from Piper permucronatum
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jaramillo, M.A.; Manos, P.S.; Zimmer, E.A. Phylogenetic relationships of the perianthless Piperales: Reconstructing the evolution of floral development. Int. J. Plant Sci. 2004, 165, 403–416. [Google Scholar] [CrossRef]
- Parmar, V.S.; Jain, S.C.; Bisht, K.S.; Jain, R.; Taneja, P.; Jha, A.; Tyagi, O.D.; Prasad, A.K.; Wengel, J.; Olsen, C.E.; et al. Phytochemistry of the genus Piper. Phytochemistry 1997, 46, 597–673. [Google Scholar] [CrossRef]
- Scott, I.M.; Jensen, H.R.; Philogène, B.J.R.; Arnason, J.T. A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochem. Rev. 2008, 7, 65–75. [Google Scholar] [CrossRef]
- Dyer, L.A.; Philbin, C.S.; Ochsenrider, K.M.; Richards, L.A.; Massad, T.J.; Smilanich, A.M.; Forister, M.L.; Parchman, T.L.; Galland, L.M.; Hurtado, P.J.; et al. Modern approaches to study plant–insect interactions in chemical ecology. Nat. Rev. Chem. 2018, 2, 50–64. [Google Scholar] [CrossRef]
- Massad, T.J.; de Moraes, M.; Philbin, C.; Oliveira, C.; Torrejon, G.; Yamaguchi, L.; Jeffrey, C.S.; Dyer, L.A.; Richards, L.A.; Kato, M.J. Similarity in volatile communities leads to increased herbivory and greater tropical forest diversity. Ecology 2017, 98, 1750–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, L.A.; Dyer, L.A.; Forister, M.L.; Smilanich, A.M.; Dodson, C.D.; Leonard, M.D.; Jeffrey, C.S. Phytochemical diversity drives plant-insect community diversity. Proc. Nat. Acad. Sci. USA 2015, 112, 10973–10978. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, K. Black Pepper and its pungent principle-piperine: A review of diverse physiological effects. Crit. Rev. Food Sci. 2007, 47, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Navickiene, H.M.D.; Alecio, A.C.; Kato, M.J.; Bolzani, V.D.; Young, M.C.M.; Cavalheiro, A.J.; Furlan, M. Antifungal amides from Piper hispidum and Piper tuberculatum. Phytochemistry 2000, 55, 621–626. [Google Scholar] [CrossRef]
- Marques, J.V.; Kitamura, R.O.S.; Lago, J.H.G.; Young, M.C.M.; Guimaraes, E.F.; Kato, M.J. Antifungal Amides from Piper scutifolium and Piper hoffmanseggianum. J. Nat. Prod. 2007, 70, 2036–2039. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.C.C.; Latorre, L.R.; Sartorelli, P.; Kato, M.J. Phenylpropanoids and tetrahydrofuran lignans from Piper solmsianum. Phytochemistry 2000, 55, 843–846. [Google Scholar] [CrossRef]
- Benevides, P.J.C.; Sartorelli, P.; Kato, M.J. Phenylpropanoids and neolignans from Piper regnellii. Phytochemistry 1999, 52, 339–343. [Google Scholar] [CrossRef]
- Chauret, D.C.; Bernard, C.B.; Arnason, J.T.; Durst, T.; Krishnamurty, H.G.; SanchezVindas, P.; Moreno, N.; SanRoman, L.; Poveda, L. Insecticidal neolignans from Piper decurrens. J. Nat. Prod. 1996, 59, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Orjala, J.; Erdelmeier, C.A.J.; Wright, A.D.; Rali, T.; Sticher, O. Two chromenes and a prenylated benzoic-acid derivaive from Piper aduncum. Phytochemistry 1993, 34, 813–818. [Google Scholar] [CrossRef]
- Baldoqui, D.C.; Kato, M.J.; Cavalheiro, A.J.; Bolzani, V.D.; Young, M.C.M.; Furlan, M. A chromene and prenylated benzoic acid from Piper aduncum. Phytochemistry 1999, 51, 899–902. [Google Scholar] [CrossRef]
- Lago, J.H.G.; Ramos, C.S.; Casanova, D.C.C.; Morandim, A.D.; Bergamo, D.C.B.; Cavalheiro, A.J.; Bolzani, V.D.; Furlan, M.; Guimaraes, E.F.; Young, M.C.M.; et al. Benzoic acid derivatives from Piper species and their fungitoxic activity against Cladosporium cladosporioides and C. sphaerospermum. J. Nat. Prod. 2004, 67, 1783–1788. [Google Scholar] [CrossRef] [PubMed]
- Lago, J.H.G.; Chen, A.; Young, M.C.M.; Guimarães, E.F.; de Oliveira, A.; Kato, M.J. Prenylated benzoic acid derivatives from Piper aduncum L. and P. hostmannianum C. DC. (Piperaceae). Phytochemistry Lett. 2009, 2, 96–98. [Google Scholar] [CrossRef]
- Friedrich, U.; Siems, K.; Solis, P.N.; Gupta, M.P.; Jenett-Siems, K. New prenylated benzoic acid derivatives of Piper hispidum. Pharmazie 2005, 60, 455–457. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.S.; Vanin, S.A.; Kato, M.J. Sequestration of prenylated benzoic acid and chromenes by Naupactus bipes (Coleoptera: Curculionidae) feeding on Piper gaudichaudianum (Piperaceae). Chemoecology 2009, 19, 73–80. [Google Scholar] [CrossRef]
- Bernard, C.B.; Krishnamurty, H.G.; Chauret, D.; Durst, T.; Philogene, B.J.R.; Sanchezvindas, P.; Hasbun, C.; Poveda, L.; Sanroman, L.; Arnason, J.T. Insecticidal defenses of Piperaceae from the neotropics. J. Chem. Ecol. 1995, 21, 801–814. [Google Scholar] [CrossRef]
- Dyer, L.A.; Dodson, C.D.; Stireman, J.O.; Tobler, M.A.; Smilanich, A.M.; Fincher, R.M.; Letourneau, D.K. Synergistic effects of three Piper amides on generalist and specialist herbivores. J. Chem. Ecol. 2003, 29, 2499–2514. [Google Scholar] [CrossRef]
- Lopez, A.; Ming, D.S.; Towers, G.H.N. Antifungal activity of benzoic acid derivatives from Piper lanceaefolium. J. Nat. Prod. 2002, 65, 62–64. [Google Scholar] [CrossRef] [PubMed]
- Regasini, L.O.; Cotinguiba, F.; Morandim, A.D.; Kato, M.J.; Scorzoni, L.; Mendes-Giannini, M.J.; Bolzani, V.D.; Furlan, M. Antimicrobial activity of Piper arboreum and Piper tuberculatum (Piperaceae) against opportunistic yeasts. Afr. J. Biotechnol. 2009, 8, 2866–2870. [Google Scholar]
- Gaia, A.M.; Yamaguchi, L.F.; Jeffrey, C.S.; Kato, M.J. Age-dependent changes from allylphenol to prenylated benzoic acid production in Piper gaudichaudianum Kunth. Phytochemistry 2014, 106, 86–93. [Google Scholar] [CrossRef]
- Massad, T.J. Ontogenetic differences of herbivory on woody and herbaceous plants: A meta-analysis demonstrating unique effects of herbivory on the young and the old, the slow and the fast. Oecologia 2013, 172, 1–10. [Google Scholar] [CrossRef]
- Bryant, J.P.; Reichardt, P.B.; Clausen, T.P.; Provenza, F.D.; Kuropat, P.J. Woody plant-mammal interactions. In Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd ed.; Rosenthal, G.A., Berenbaum, M.R., Eds.; Academic Press: Cambridge, MA, USA, 1992; pp. 343–370. [Google Scholar]
- Ochoa-López, S.; Damián, X.; Rebollo, R.; Fornoni, J.; Domínguez, C.A.; Boege, K. Ontogenetic changes in the targets of natural selection in three plant defenses. New Phytol. 2020, 226, 1480–1491. [Google Scholar] [CrossRef] [PubMed]
- Boege, K.; Marquis, R.J. Facing herbivory as you grow up: The ontogeny of resistance in plants. Trends Ecol. Evol. 2005, 20, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Barton, K.E.; Koricheva, J. The ontogeny of plant defense and herbivory: Characterizing general patterns using meta-analysis. Am. Nat. 2010, 175, 481–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langenheim, J.H.; Convis, C.L.; Macedo, C.A.; Stubblebine, W.H. Hymenaea and Copaifera leaf sesquiterpenes in relation to lepidopteran herbivory in southeastern Brazil. Biochem. Syst. Ecol. 1986, 14, 41–49. [Google Scholar] [CrossRef]
- Sánchez-Hidalgo, M.E.; Martínez-Ramos, M.; Espinosa-García, F.J. Chemical differentiation between leaves of seedlings and spatially close adult trees from the tropical rain-forest species Nectandra ambigens (Lauraceae): An alternative test of the Janzen–Connell model. Funct. Ecol. 1999, 13, 725–732. [Google Scholar] [CrossRef]
- Janzen, D.H. Herbivores and the number of tree species in tropical forests. Am. Nat. 1970, 104, 501–528. [Google Scholar] [CrossRef]
- Connell, J.H. On the Role of Natural Enemies in Preventing Competitive Exclusion in Some Marine Animals and in Rain Forest Trees; Den Boer, P.J., Gradwell, G.R., Eds.; Dynamics of Populations; Centre for Agricultural Publishing and Documentation: Wageningen, The Netherlands, 1971; pp. 298–312. [Google Scholar]
- Carson, W.; Anderson, J.T.; Leigh, E.G.; Schnitzer, S.A. Challenges Associated with Testing and Falsifying the Janzen-Connell Hypothesis: A Review and Critique. In Tropical Forest Community Ecology; Carson, W.P., Schnitzer, S.A., Eds.; Blackwell Publishing: Malden, MA, USA, 2008; pp. 210–241. [Google Scholar]
- Alvarez-Loayza, P.; Terborgh, J. Fates of seedling carpets in an Amazonian floodplain forest: Intra-cohort competition or attack by enemies? J. Ecol. 2011, 99, 1045–1054. [Google Scholar] [CrossRef]
- Kursar, T.A.; Dexter, K.G.; Lokvam, J.; Pennington, R.T.; Richardson, J.E.; Weber, M.G.; Murakami, E.T.; Drake, C.; McGregor, R.; Coley, P.D. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc. Nat. Acad. Sci. USA 2009, 106, 18073–18078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endara, M.-J.; Soule, A.J.; Forrister, D.L.; Dexter, K.G.; Pennington, R.T.; Nicholls, J.A.; Loiseau, O.; Kursar, T.A.; Coley, P.D. The role of plant secondary metabolites in shaping regional and local plant community assembly. J. Ecol. 2011, 1–12. [Google Scholar] [CrossRef]
- Scodro, R.B.D.; Espelho, S.C.; Pires, C.T.A.; Garcia, V.A.D.; Cardozo, L.; Cortez, L.E.R.; Pilau, E.J.; Ferracioli, K.R.C.; Siqueira, V.L.D.; Cardoso, R.F.; et al. A new benzoic acid derivative from Piper diospyrifolium and its anti-Mycobacterium tuberculosis activity. Phytochem. Lett. 2015, 11, 18–23. [Google Scholar] [CrossRef]
- Freitas, G.C.; Kitamura, R.O.S.; Lago, J.H.G.; Young, M.C.M.; Guimarães, E.F.; Kato, M.J. Caldensinic acid, a prenylated benzoic acid from Piper caldense. Phytochem. Lett. 2009, 2, 119–122. [Google Scholar] [CrossRef]
- Kamiensk, F.X.; Casida, J.E. Importance of demethylenation in metabolism in-vivo and in-vitro of methylenedioxyphenyl synergists and related compounds in mammals. Biochem. Pharmacol. 1970, 19, 91–112. [Google Scholar] [CrossRef]
- Kumar, S.N.; Aravind, S.R.; Sreelekha, T.T.; Jacob, J.; Kumar, B.S.D. Asarones from Acorus calamus in combination with azoles and amphotericin B: A novel synergistic combination to compete against human pathogenic Candida species in vitro. Appl. Biochem. Biotechnol. 2015, 175, 3683–3695. [Google Scholar] [CrossRef]
- Martins, R.C.C.; Lago, J.H.G.; Albuquerque, S.; Kato, M.J. Trypanocidal tetrahydrofuran lignans from inflorescences of Piper solmsianum. Phytochemistry 2003, 64, 667–670. [Google Scholar] [CrossRef]
- Santos, B.V.D.; da-Cunha, E.V.L.; Chaves, M.C.D.; Gray, A.I. Phenylalkanoids from Piper marginatum. Phytochemistry 1998, 49, 1381–1384. [Google Scholar] [CrossRef]
- Silva, R.V.; Navickiene, H.M.D.; Kato, M.J.; Bolzani, V.D.S.; Meda, C.I.; Young, M.C.M.; Furlan, M. Antifungal amides from Piper arboreum and Piper tuberculatum. Phytochemistry 2002, 59, 521–527. [Google Scholar] [CrossRef]
- Yamaguchi, L.F.; Freitas, G.C.; Yoshida, N.C.; Silva, R.A.; Gaia, A.M.; Silva, A.M.; Scotti, M.T.; Emerenciano, V.D.; Guimaraes, E.F.; Floh, E.I.S.; et al. Chemometric analysis of ESIMS and NMR data from Piper species. J. Braz. Chem. Soc. 2011, 22, 2371–2382. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, H.; Seeram, N.P.; Nair, M.G.; Reynolds, W.F.; McLean, S. Amides of Piper amalago var. nigrinodum. J. Indian Chem. Soc. 1999, 76, 713–717. [Google Scholar]
- Ee, G.C.L.; Lim, C.M.; Lim, C.K.; Rahmani, M.; Shaari, K.; Bong, C.F.J. Alkaloids from Piper sarmentosum and Piper nigrum. Nat. Prod. Res. 2009, 23, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Perry, N.B.; Foster, L.M. Antiviral and antifungal flavonoids, plus a triterpene, from Hebe cupressoides. Planta Med. 1994, 60, 491–492. [Google Scholar] [CrossRef]
- Liu, H.P.; Chao, Z.M.; Tan, Z.G.; Wu, X.Y.; Wang, C.; Sun, W. Isolation, crystal structure, and anti-inflammatory activity of sakuranetin from Populus tomentosa. Jiegou Huaxue 2013, 32, 173–178. [Google Scholar]
- Elfahmi, R.K.; Batterman, S.; Bos, R.; Kayser, O.; Woerdenbag, H.J.; Quax, W. Lignan profile of Piper cubeba, an Indonesian medicinal plant. Biochem. Syst. Ecol. 2007, 35, 397–402. [Google Scholar] [CrossRef]
- Okunishi, T.; Umezawa, T.; Shimada, M. Enantiomeric compositions and biosynthesis of Wikstroemia sikokiana lignans. J. Wood Sci. 2000, 46, 234–242. [Google Scholar] [CrossRef]
- Ternes, W.; Krause, E.L. Characterization and determination of piperine and piperine isomers in eggs. Anal. Bioanal. Chem. 2002, 374, 155–160. [Google Scholar] [CrossRef]
- Leitão da-Cunha, E.V.; De Oliveira Chaves, M.C. Two amides from Piper tuberculatum fruits. Fitoterapia 2001, 72, 197–199. [Google Scholar] [CrossRef]
- Vinciguerra, V.; Luna, M.; Bistoni, A.; Zollo, F. Variation in the composition of the heartwood flavonoids of Prunus avium by on-column capillary gas chromatography. Phytochem. Anal. 2003, 14, 371–377. [Google Scholar] [CrossRef]
- Salazar, L.C.; Ortiz-Reyes, A.; Rosero, D.M.; Lobo-Echeverri, T. Dillapiole in Piper holtonii as an inhibitor of the symbiotic fungus Leucoagaricus gongylophorus of leaf-cutting ants. J. Chem. Ecol. 2020, 46, 668–674. [Google Scholar] [CrossRef]
- Vizcaíno-Páez, S.; Pineda, R.; García, C.; Gil, J.; Durango, D. Metabolism and antifungal activity of safrole, dillapiole, and derivatives against Botryodiplodia theobromae and Colletotrichum acutatum. Bol. Latinoam. Caribe Plantas Med. Aromát. 2016, 15, 1–17. [Google Scholar]
- Souto, R.N.P.; Harada, A.Y.; Andrade, E.H.A.; Maia, J.G.S. Insecticidal activity of Piper essential oils from the Amazon against the fire ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae). Neotrop. Entomol. 2012, 41, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.N.; Liu, F.F.; Jacob, M.R.; Li, X.C.; Zhu, H.T.; Wang, D.; Cheng, R.R.; Yang, C.R.; Xu, M.; Zhang, Y.J. Antifungal amide alkaloids from the aerial parts of Piper flaviflorum and Piper sarmentosum. Planta Med. 2017, 83, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, J.V.; de Oliveira, A.; Raggi, L.; Young, M.C.M.; Kato, M.J. Antifungal activity of natural and synthetic amides from Piper species. J. Braz. Chem. Soc. 2010, 21, 1807–1813. [Google Scholar] [CrossRef] [Green Version]
- Debonsi, H.M.; Miranda, J.E.; Murata, A.T.; de Bortoli, S.A.; Kato, M.J.; Bolzani, V.S.; Furlan, M. Isobutyl amides-Potent compounds for controlling Diatraea saccharalis. Pest Manag. Sci. 2009, 65, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, B.S.; Gulzar, T.; Begum, S.; Afshan, F.; Sultana, R. A new natural product and insecticidal amides from seeds of Piper nigrum Linn. Nat. Prod. Res. 2008, 22, 1107–1111. [Google Scholar] [CrossRef]
- Batista-Pereira, L.G.; Castral, T.C.; da Silva, M.T.M.; Amaral, B.R.; Fernandes, J.B.; Vieira, P.C.; da Silva, M.; Correa, A.G. Insecticidal activity of synthetic amides on Spodoptera frugiperda. Z. Naturforsch. C. J. Biosci. 2006, 61, 196–202. [Google Scholar] [CrossRef]
- Fernandes, A.; Prado, A.L.; Barata, L.E.S.; Paulo, M.Q.; Azevedo, N.R.; Ferri, P.H. A method to separate lignoids from Virola leaves. Phytochem. Anal. 1997, 8, 18–21. [Google Scholar] [CrossRef]
- Pelletier, S.W.; Chokshi, H.P.; Desai, H.K. Separation of diterpenoid alkaloid mixtures using vacuum liquid-chromatography. J. Nat. Prod. 1986, 49, 892–900. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaia, A.M.; Yamaguchi, L.F.; Guerrero-Perilla, C.; Kato, M.J. Ontogenetic Changes in the Chemical Profiles of Piper Species. Plants 2021, 10, 1085. https://doi.org/10.3390/plants10061085
Gaia AM, Yamaguchi LF, Guerrero-Perilla C, Kato MJ. Ontogenetic Changes in the Chemical Profiles of Piper Species. Plants. 2021; 10(6):1085. https://doi.org/10.3390/plants10061085
Chicago/Turabian StyleGaia, Anderson Melo, Lydia Fumiko Yamaguchi, Camilo Guerrero-Perilla, and Massuo Jorge Kato. 2021. "Ontogenetic Changes in the Chemical Profiles of Piper Species" Plants 10, no. 6: 1085. https://doi.org/10.3390/plants10061085
APA StyleGaia, A. M., Yamaguchi, L. F., Guerrero-Perilla, C., & Kato, M. J. (2021). Ontogenetic Changes in the Chemical Profiles of Piper Species. Plants, 10(6), 1085. https://doi.org/10.3390/plants10061085