Drupe Characters, Fatty Acids, Polyphenolic and Aromatic Profile of Olive Oil Obtained from “Oliva Bianca”, Minor Autochthonous Cultivar of Campania
Abstract
:1. Introduction
2. Results
2.1. Physical and Chemical Characters of Drupes
2.2. Quality Indices of Olive Oil and Phenolic Compounds
2.3. Fatty Acid Profile
2.4. Aromatic Profile
3. Discussion
3.1. Physical and Chemical Characters of Drupes
3.2. Quality Indices of Olive Oil and Phenolic Compounds
3.3. Fatty Acid Profile
3.4. Aromatic Profile
4. Materials and Methods
4.1. Plant Material
4.2. Physical and Chemical Characters of Drupes
4.3. Olive Oil Extraction
4.4. Quality Indices of Olive Oil
4.5. Fatty Acid Profile
4.6. Phenolic Compounds
4.6.1. Chemicals
4.6.2. Extraction of Phenolics from the Olive Oil
4.6.3. Ultra High-Performance Liquid Chromatograph-Mass Spectrometry Analysis
4.7. Aromatic Profile
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reeve, E. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe, and the Nile Valley, 2nd ed.; Zohary, D., Hopf, M., Eds.; Clarendon Press: Oxford, UK, 1994; 279p, ISBN 019 854896 6. [Google Scholar]
- Besnard, G.; Baradat, P.; Bervillé, A. Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theor. Appl. Genet. 2001, 102, 251–258. [Google Scholar] [CrossRef]
- Angiolillo, A.; Reale, S.; Pilla, F.; Baldoni, L. Molecular Analysis of Olive Cultivars in the Molise Region of Italy. Genet. Resour. Crop Evol. 2006, 53, 289–295. [Google Scholar] [CrossRef]
- Marra, F.P.; Caruso, T.; Costa, F.; Di Vaio, C.; Mafrica, R.; Marchese, A. Genetic relationships, structure and parentage simulation among the olive tree (Olea europaea L. subsp. europaea) cultivated in Southern Italy revealed by SSR markers. Tree Genet. Genomes 2013, 9, 961–973. [Google Scholar] [CrossRef]
- Belaj, A.; Trujillo, I.; de la Rosa, R.; Rallo, L.; Giménez, M.J. Polymorphism and Discrimination Capacity of Randomly Amplified Polymorphic Markers in an Olive Germplasm Bank. J. Am. Soc. Hortic. Sci. 2001, 126, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Sarri, V.; Baldoni, L.; Porceddu, A.; Cultrera, N.G.M.; Contento, A.; Frediani, M.; Belaj, A.; Trujillo, I.; Cionini, P.G. Microsatellite markers are powerful tools for discriminating among olive cultivars and assigning them to geographically defined populations. Genome 2006, 49, 1606–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Vaio, C.; Nocerino, S.; Paduano, A.; Sacchi, R. Characterization and Evaluation of Olive Germplasm in Southern Italy: Olive Germplasm in Southern Italy. J. Sci. Food Agric. 2013, 93, 2458–2462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briante, R.; Febbraio, F.; Nucci, R. Antioxidant Properties of Low Molecular Weight Phenols Present in the Mediterranean Diet. J. Agric. Food Chem. 2003, 51, 6975–6981. [Google Scholar] [CrossRef]
- Stark, A.; Zecharia, M. Olive oil in the prevention of breast and colon carcinogenesis. In Olives and Olive Oil in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2021; pp. 337–345. [Google Scholar]
- Scarmeas, N.; Stern, Y.; Tang, M.-X.; Mayeux, R.; Luchsinger, J.A. Mediterranean diet and risk for Alzheimer’s disease. Ann. Neurol. 2006, 59, 912–921. [Google Scholar] [CrossRef] [Green Version]
- Braga, C.; Vecchia, C.L.; Franceschi, S.; Negri, E.; Parpinel, M.; Decarli, A.; Giacosa, A.; Trichopoulos, D. Olive oil, other seasoning fats, and the risk of colorectal carcinoma. Cancer 1998, 82, 448–453. [Google Scholar] [CrossRef]
- La Lastra, C.; Barranco, M.D.; Motilva, V.; Herrerias, J.M. Mediterrranean diet and health biological importance of olive oil. Curr. Pharm. Des. 2001, 7, 933–950. [Google Scholar] [CrossRef] [Green Version]
- Di Vaio, C.; Nocerino, S.; Paduano, A.; Sacchi, R. Influence of same environmental factors on drupe maturation and olive oil composition. J. Sci. Food Agric. 2013, 93, 1134–1139. [Google Scholar] [CrossRef]
- Kiritsakis, A.K. Flavor components of olive oil-A review. J. Am. Oil Chem. Soc. 1998, 75, 673–681. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, S.C.; Shoemaker, C.F. Volatile constituents in sensory defective virgin olive oils: Volatile constituents in sensory defective olive oils. Flavour Fragr. J. 2016, 31, 22–30. [Google Scholar] [CrossRef]
- Melucci, D.; Bendini, A.; Tesini, F.; Barbieri, S.; Zappi, A.; Vichi, S.; Conte, L.; Gallina Toschi, T. Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chem. 2016, 204, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Üçüncüoğlu, D.; Sivri-Özay, D. Geographical origin impact on volatile composition and some quality parameters of virgin olive oils extracted from the “Ayvalık” variety. Heliyon 2020, 6, e04919. [Google Scholar] [CrossRef]
- Genovese, A.; Caporaso, N.; Leone, T.; Paduano, A.; Mena, C.; Perez-Jimenez, M.A.; Sacchi, R. Use of odorant series for extra virgin olive oil aroma characterisation: Aroma of extra virgin olive oil by odorant series. J. Sci. Food Agric. 2019, 99, 1215–1224. [Google Scholar] [CrossRef]
- Morales, M.T.; Luna, G.; Aparicio, R. Sensory and chemical evaluation of winey-vinegary defect in virgin olive oils. Eur. Food Res. Technol. 2000, 211, 222–228. [Google Scholar] [CrossRef]
- Giunti, G.; Campolo, O.; Laudani, F.; Algeri, G.M.; Palmeri, V. Olive fruit volatiles route intraspecific interactions and chemotaxis in Bactrocera oleae (Rossi) (Diptera: Tephritidae) females. Sci. Rep. 2020, 10, 1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprile, A.; Negro, C.; Sabella, E.; Luvisi, A.; Nicolì, F.; Nutricati, E.; Vergine, M.; Miceli, A.; Blando, F.; De Bellis, L. Antioxidant Activity and Anthocyanin Contents in Olives (cv Cellina di Nardò) during Ripening and after Fermentation. Antioxidants 2019, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Cicerale, S.; Lucas, L.; Keast, R. Biological Activities of Phenolic Compounds Present in Virgin Olive Oil. Int. J. Mol. Sci. 2010, 11, 458–479. [Google Scholar] [CrossRef] [Green Version]
- Haris Omar, S. Oleuropein in Olive and its Pharmacological Effects. Sci. Pharm. 2010, 78, 133–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dini, I.; Graziani, G.; Fedele, F.L.; Sicari, A.; Vinale, F.; Castaldo, L.; Ritieni, A. Effects of Trichoderma Biostimulation on the Phenolic Profile of Extra-Virgin Olive Oil and Olive Oil By-Products. Antioxidants 2020, 9, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Servili, M.; Esposto, S.; Lodolini, E.; Selvaggini, R.; Taticchi, A.; Urbani, S.; Montedoro, G.; Serravalle, M.; Gucci, R. Irrigation Effects on Quality, Phenolic Composition, and Selected Volatiles of Virgin Olive Oils Cv. Leccino. J. Agric. Food Chem. 2007, 55, 6609–6618. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Gucci, R.; Urbani, S.; Esposto, S.; Taticchi, A.; Di Maio, I.; Selvaggini, R.; Servili, M. Effect of different irrigation volumes during fruit development on quality of virgin olive oil of cv. Frantoio. Agric. Water Manag. 2014, 134, 94–103. [Google Scholar] [CrossRef]
- Deiana, P.; Santona, M.; Dettori, S.; Molinu, M.G.; Dore, A.; Culeddu, N.; Azara, E.; Naziri, E.; Tsimidou, M.Z. Can All the Sardinian Varieties Support the PDO “Sardegna” Virgin Olive Oil? Eur. J. Lipid Sci. Technol. 2019, 121, 1800135. [Google Scholar] [CrossRef]
- Espínola, F.; Vidal, A.M.; Espínola, J.M.; Moya, M. Processing Effect and Characterization of Olive Oils from Spanish Wild Olive Trees (Olea europaea var. sylvestris). Molecules 2021, 26, 1304. [Google Scholar] [CrossRef]
- Sánchez de Medina, V.; Miho, H.; Melliou, E.; Magiatis, P.; Priego-Capote, F.; Luque de Castro, M.D. Quantitative method for determination of oleocanthal and oleacein in virgin olive oils by liquid chromatography–tandem mass spectrometry. Talanta 2017, 162, 24–31. [Google Scholar] [CrossRef]
- Conte, P.; Squeo, G.; Difonzo, G.; Caponio, F.; Fadda, C.; Del Caro, A.; Urgeghe, P.P.; Montanari, L.; Montinaro, A.; Piga, A. Change in quality during ripening of olive fruits and related oils extracted from three minor autochthonous Sardinian cultivars. Emir. J. Food Agric. 2019. [Google Scholar] [CrossRef]
- Oğraş, Ş.Ş.; Kaban, G.; Kaya, M. The Effects of Geographic Region, Cultivar and Harvest Year on Fatty Acid Composition of Olive Oil. J. Oleo Sci. 2016, 65, 889–895. [Google Scholar] [CrossRef] [Green Version]
- Navajas-Porras, B.; Pérez-Burillo, S.; Morales-Pérez, J.; Rufián-Henares, J.A.; Pastoriza, S. Relationship of quality parameters, antioxidant capacity and total phenolic content of EVOO with ripening state and olive variety. Food Chem. 2020, 325, 126926. [Google Scholar] [CrossRef]
- Ambrosino, M.L.; Conte, F.; Paduano, A.; Sansone, L.; Terminiello, R.; Sacchi, R. Gli Oli di Oliva Monovarietali in Campania; Department of Food Science-Faculty of Agriculture, University of Naples Federico II: Naples, Italy, 2003. [Google Scholar]
- Yun, J.-M.; Surh, J.-H. Fatty Acid Composition as a Predictor for the Oxidation Stability of Korean Vegetable Oils with or without Induced Oxidative Stress. Prev. Nutr. Food Sci. 2012, 17, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Pinelli, P.; Galardi, C.; Mulinacci, N.; Vincieri, F.F.; Cimato, A.; Romani, A. Minor polar compound and fatty acid analyses in monocultivar virgin olive oils from Tuscany. Food Chem. 2003, 80, 331–336. [Google Scholar] [CrossRef]
- International conference on the healthy effect of virgin olive oil. Eur. J. Clin. Investig. 2005, 35, 421–424. [CrossRef]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Caponio, F.; Summo, C.; Paradiso, V.M.; Pasqualone, A. Influence of decanter working parameters on the extra virgin olive oil quality: Decanter working parameters and virgin olive oil quality. Eur. J. Lipid Sci. Technol. 2014, 116, 1626–1633. [Google Scholar] [CrossRef]
- Cevik, S.; Ozkan, G.; Kıralan, M. Optimization of Malaxation Process using Major Aroma Compounds in Virgin Olive Oil. Braz. Arch. Biol. Technol. 2016, 59. [Google Scholar] [CrossRef] [Green Version]
- Lobo-Prieto, A.; Tena, N.; Aparicio-Ruiz, R.; Morales, M.T.; García-González, D.L. Tracking Sensory Characteristics of Virgin Olive Oils During Storage: Interpretation of Their Changes from a Multiparametric Perspective. Molecules 2020, 25, 1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- Reiners, J.; Grosch, W. Odorants of Virgin Olive Oils with Different Flavor Profiles. J. Agric. Food Chem. 1998, 46, 2754–2763. [Google Scholar] [CrossRef]
- Karagoz, S.G.; Yilmazer, M.; Ozkan, G.; Carbonell-Barrachina, Á.A.; Kiralan, M.; Ramadan, M.F. Effect of cultivar and harvest time on C6 and C5 volatile compounds of Turkish olive oils. Eur. Food Res. Technol. 2017, 243, 1193–1200. [Google Scholar] [CrossRef]
- Cecchi, T.; Alfei, B. Volatile profiles of Italian monovarietal extra virgin olive oils via HS-SPME–GC–MS: Newly identified compounds, flavors molecular markers, and terpenic profile. Food Chem. 2013, 141, 2025–2035. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, R.; Caporaso, N.; Paduano, A.; Genovese, A. Industrial-scale filtration affects volatile compounds in extra virgin olive oil cv. Ravece: Olive oil Ravece filtration and volatiles. Eur. J. Lipid Sci. Technol. 2015, 117, 2007–2014. [Google Scholar] [CrossRef]
- Campestre, C.; Angelini, G.; Gasbarri, C.; Angerosa, F. The Compounds Responsible for the Sensory Profile in Monovarietal Virgin Olive Oils. Molecules 2017, 22, 1833. [Google Scholar] [CrossRef] [PubMed]
- Uceda, M.; Frias, L. Harvest dates. Evolution of the fruit oil content, oil composition and oil quality. In Proceedings of the 2nd Seminario Oleícola Internacional, Córdoba, Spain, 6 October 1975; pp. 125–128. [Google Scholar]
- Jiménez-Cuesta, M.; Cuquerella, J.; Martinez-Javaga, J.M. Determination of a color index for citrus fruit degreening. In Proceedings of the International Society of Citriculture/International Citrus Congress, Tokyo, Japan, 9–12 November 1981. [Google Scholar]
- Romano, R.; Manzo, N.; Montefusco, I.; Romano, A.; Santini, A. Liquid carbon dioxide use in the extraction of extra virgin olive oil from olive paste. J. Food Res. 2014, 3, 119. [Google Scholar] [CrossRef] [Green Version]
- Menendez, J.; Lupu, R. Mediterranean Dietary Traditions for the Molecular Treatment of Human Cancer: Anti-Oncogenic Actions of the Main Olive Oils Monounsaturated Fatty Acid Oleic Acid (18:1n-9). Curr. Pharm. Biotechnol. 2006, 7, 495–502. [Google Scholar] [CrossRef] [PubMed]
Chemical-Physical Parameters Values | |
---|---|
Drupe weight (g) | 4.31 ± 0.90 |
Flesh weight (g) | 3.36 ± 0.80 |
Pit weight (g) | 0.95 ± 0.23 |
Flesh/pit ratio (Fw/Fw) | 3.68 ± 1.00 |
Polar diameter (mm) | 21.41 ± 1.75 |
Transversal diameter (mm) | 17.53 ± 1.29 |
Pulp firmness (kg/cm2) | 460.45 ± 84.98 |
Pigmentation Index (PI) | 2.41 ± 0.35 |
L* | 46.45 ± 12.2 |
a* | 6.34 ± 9.62 |
b* | 16.9 ± 15.56 |
IC | −32.86 ± 1072.93 |
Anthocyanins (mg/kg) | 116.10 ± 0.4 |
Carotenoids (mg/kg) | 2.10 ± 0.01 |
Chlorophyll a | 3.60 ± 0.03 |
Chlorophyll b | 2.10 ± 0.01 |
Total chlorophyll | 5.70 ± 0.01 |
Water content (%) | 62.97 ± 0.17 |
Oil content (% FW) | 18.63 ± 0.28 |
Oil Quality Index Values | |||
---|---|---|---|
Free acidity (% oleic acid per 100 g oil) | 0.51 ± 0,04 | ||
Number of peroxides (meq O2 per kg oil) | 4.92 ± 0.49 | ||
K270 | 0.09 ± 0.01 | ||
K232 | 1.64 ± 0.31 | ||
Delta K | <0.01 | ||
Panel test | ATTRIBUTES | SCORE | |
NEGATIVE | Heating/sludge | 0 | |
Mold/moisture/ground | 0 | ||
Winey/acidic/acid/sour | 0 | ||
Frozen olives | 0 | ||
Rancid | 0 | ||
POSITIVE | Fruity | 5.2 | |
Bitter | 3.3 | ||
Spicy | 4.7 |
Compounds | mg/kg |
---|---|
Hydroxytyrosol | 11.98 ± 0.57 |
Tyrosol | 16.45 ± 0.05 |
Vanillic acid | 0.51 ± 0.03 |
p-coumaric acid | 1.09 ± 0.02 |
Ferulic acid | 0.07 ± 0.001 |
Luteolin rutinoside | 0.11 ± 0.01 |
Elenolic acid | 66.70 ± 1.03 |
Verbascoside | 0.002 ± 0.0001 |
Oleuropein | <LOD |
DHPEA-EDA | 33.43 ± 0.05 |
Ligstroside | 0.003 ± 0.0002 |
p-HPEA-EDA | 255.20 ± 7.15 |
Hydroxy Oleuropein aglycon | 2.35 ± 0.11 |
Luteolin | 17.25 ± 2.43 |
3,4-DHPEA-AC | 35.45 ± 1.81 |
DHPEA-EA | 85.93 ± 0.47 |
p-HPEA-EA | 122.43 ± 3.86 |
Total polyphenols | 648.95 ± 2.8 |
Fatty Acids | % | |
---|---|---|
Palmitic | C16 | 12.87 ± 0.21 |
Palmitoleic | C16:1 | 0.85 ± 0.03 |
Heptadecanoic | C17 | 0.06 ± 0.00 |
Stearic | C18 | 2.32 ± 0.03 |
Oleic | C18.1n9c | 74.82 ± 0.34 |
Linoleic | C18:2 Z 9, 12 | 7.88 ± 0.11 |
Arachidic | C20 | 0.37 ± 0.02 |
Linolenic | C18:3n3 | 0.74 ± 0.00 |
Cis-11,14-eicosadienoic | C20:2 | nd |
Behenic | C22 | 0.09 ± 0.01 |
Monounsaturated fatty acids (MUFA) | 75.68 ± 0.31 | |
Polyunsaturated fatty acids (PUFA) | 8.63 ± 0.11 | |
Saturated fatty acids (SFA) | 15.70 ± 0.19 | |
Oleic/linoleic | 9.49 ± 0.17 | |
MUFA/PUFA | 8.77 ± 0.15 | |
MUFA/SFA | 4.82 ± 0.08 |
Compounds | % COV |
---|---|
Ethanol | 2.93 ± 0.47 |
Ethyl acetate | 3.60 ± 0.37 |
1-penten-3-one | 2.52 ± 0.09 |
trans-2-hexenal | 72.30 ± 1.12 |
trans-2-hexen-1-ol | 7.75 ± 0.71 |
Hexanol | 3.34 ± 0.45 |
(t, t) 2,4 hexadienal | 0.61 ± 0.10 |
3-ethyl-1,5-octadiene | 1.83 ± 0.14 |
4,8-dimethyl-1,7-nonadiene | 0.58 ± 0.07 |
cis-3-Hexenyl acetate | 0.26 ± 0.02 |
β-ocimene | 1.59 ± 0.13 |
Methyl benzoate | 1.11 ± 0.17 |
Nonanal | 0.56 ± 0.01 |
1,7-octadien-3-one, 2 methyl-6-methylene | 0.69 ± 0.11 |
α-cubebene | 0.34 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Vaio, C.; Graziani, G.; Gaspari, A.; De Luca, L.; Aiello, A.; Cirillo, A.; Bruno, A.; Romano, R.; Ritieni, A. Drupe Characters, Fatty Acids, Polyphenolic and Aromatic Profile of Olive Oil Obtained from “Oliva Bianca”, Minor Autochthonous Cultivar of Campania. Plants 2021, 10, 1119. https://doi.org/10.3390/plants10061119
Di Vaio C, Graziani G, Gaspari A, De Luca L, Aiello A, Cirillo A, Bruno A, Romano R, Ritieni A. Drupe Characters, Fatty Acids, Polyphenolic and Aromatic Profile of Olive Oil Obtained from “Oliva Bianca”, Minor Autochthonous Cultivar of Campania. Plants. 2021; 10(6):1119. https://doi.org/10.3390/plants10061119
Chicago/Turabian StyleDi Vaio, Claudio, Giulia Graziani, Anna Gaspari, Lucia De Luca, Alessandra Aiello, Aurora Cirillo, Antonio Bruno, Raffaele Romano, and Alberto Ritieni. 2021. "Drupe Characters, Fatty Acids, Polyphenolic and Aromatic Profile of Olive Oil Obtained from “Oliva Bianca”, Minor Autochthonous Cultivar of Campania" Plants 10, no. 6: 1119. https://doi.org/10.3390/plants10061119
APA StyleDi Vaio, C., Graziani, G., Gaspari, A., De Luca, L., Aiello, A., Cirillo, A., Bruno, A., Romano, R., & Ritieni, A. (2021). Drupe Characters, Fatty Acids, Polyphenolic and Aromatic Profile of Olive Oil Obtained from “Oliva Bianca”, Minor Autochthonous Cultivar of Campania. Plants, 10(6), 1119. https://doi.org/10.3390/plants10061119