Genome-Wide Association Analysis for Stem Cross Section Properties, Height and Heading Date in a Collection of Spanish Durum Wheat Landraces
Abstract
:1. Introduction
2. Results and Discussion
2.1. Genotyping
2.2. Phenotypic Assessment, Marker-Trait Associations and Linkage Disequilibrium
3. Materials and Methods
3.1. Plant Material, Field Testing and Statistical Analyses
3.2. Field Design and Statistical Analysis
3.3. DNA Isolation, Genotyping and Marker-Trait Associations
3.4. Linkage Disequilibrium (LD) Decay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanksley, S.D.; McCouch, S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 277, 1063–1066. [Google Scholar] [CrossRef] [Green Version]
- Passioura, J.B. Translational research in agriculture. Can we do it better? Crop Pasture Sci. 2020, 71, 517–528. [Google Scholar] [CrossRef]
- Sall, A.T.; Chiari, T.; Legesse, W.; Seid-Ahmed, K.; Ortiz, R.; van Ginkel, M.; Bassi, F.M. Durum wheat (Triticum durum Desf.): Origin, cultivation and potential expansion in Sub-Saharan Africa. Agronomy 2019, 9, 263. [Google Scholar] [CrossRef] [Green Version]
- Mazzucotelli, E.; Sciara, G.; Mastrangelo, A.M.; Desiderio, F.; Xu, S.S.; Faris, J.; Hayden, M.J.; Tricker, P.J.; Ozkan, H.; Echenique, V.; et al. The global durum wheat panel (GDP): An international platform to identify and exchange beneficial alleles. Front. Plant Sci. 2020, 11, 2036. [Google Scholar] [CrossRef]
- Steffenson, B.J.; Olivera, P.; Roy, J.K.; Jin, Y.; Smith, K.P.; Muehlbauer, G.J. A walk on the wild side: Mining wild wheat and barley collections for rust resistance genes. Aust. J. Agric. Res. 2007, 58, 532. [Google Scholar] [CrossRef]
- Uauy, C.; Distelfeld, A.; Fahima, T.; Blechl, A.; Dubcovsky, J. A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 2006, 314, 1298. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.; Sánchez-Monge, E. Cytology and morphology of the amphiploid Hordeum chilense × Triticum turgidum conv durum. Euphytica 1982, 31, 261–267. [Google Scholar] [CrossRef]
- Kabbaj, H.; Sall, A.T.; Al-Abdallat, A.; Geleta, M.; Amri, A.; Filali-Maltouf, A.; Belkadi, B.; Ortiz, R.; Bassi, F.M. Genetic diversity within a global panel of durum wheat (Triticum durum) landraces and modern germplasm reveals the history of alleles exchange. Front. Plant Sci. 2017, 8, 1277. [Google Scholar] [CrossRef] [Green Version]
- Yahiaoui, S.; Cuesta-Marcos, A.; Gracia, M.P.; Medina, B.; Lasa, J.M.; Casas, A.M.; Ciudad, F.J.; Montoya, J.L.; Moralejo, M.; Molina-Cano, J.L.; et al. Spanish barley landraces outperform modern cultivars at low-productivity sites. Plant Breed. 2014, 133, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Boudiar, R.; Casas, A.M.; Cantalapiedra, C.P.; Gracia, M.P.; Igartua, E. Identification of quantitative trait loci for agronomic traits contributed by a barley (Hordeum vulgare) Mediterranean landrace. Crop Pasture Sci. 2016, 67, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, M.; Giraldo, P.; González, J.M. Phenotypic variation in root architecture traits and their relationship with eco-geographical and agronomic features in a core collection of tetraploid wheat landraces (Triticum turgidum L.). Euphytica 2018, 214, 54. [Google Scholar] [CrossRef]
- Ruiz, M.; Giraldo, P.; Royo, C.; Villegas, D.; Aranzana, M.J.; Carrillo, J.M. Diversity and genetic structure of a collection of Spanish durum wheat landraces. Crop Sci. 2012, 52, 2262–2275. [Google Scholar] [CrossRef] [Green Version]
- Pascual, L.; Ruiz, M.; López-Fernández, M.; Pérez-Penã, H.; Benavente, E.; Vázquez, J.F.; Sansaloni, C.; Giraldo, P. Genomic analysis of Spanish wheat landraces reveals their variability and potential for breeding. BMC Genom. 2020, 21. [Google Scholar] [CrossRef] [Green Version]
- Requena-Ramírez, M.D.; Hornero-Méndez, D.; Rodríguez-Suárez, C.; Atienza, S.G. Durum wheat (Triticum durum L.) landraces reveal potential for the improvement of grain carotenoid esterification in breeding programs. Foods 2021, 10, 757. [Google Scholar] [CrossRef]
- Cook, J.P.; Blake, N.K.; Heo, H.Y.; Martin, J.M.; Weaver, D.K.; Talbert, L.E. Phenotypic and haplotype diversity among tetraploid and hexaploid wheat accessions with potentially novel insect resistance genes for wheat stem sawfly. Plant Genome 2017, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Hoelmer, K.A.; Chen, H.; Liu, A.; Shanower, T.G. A Review of wheat stem sawfly (Hymenoptera: Cephidae) Research in China 1. J. Agric. Urban Entomol. 2005, 21, 249–256. [Google Scholar]
- Cook, J.P.; Wichman, D.M.; Martin, J.M.; Bruckner, P.L.; Talbert, L.E. Identification of microsatellite markers associated with a stem solidness locus in wheat. Crop Sci. 2004, 44, 1397–1402. [Google Scholar] [CrossRef]
- Houshmand, S.; Knox, R.E.; Clarke, F.R.; Clarke, J.M. Microsatellite markers flanking a stem solidness gene on chromosome 3BL in durum wheat. Mol. Breed. 2007, 20, 261–270. [Google Scholar] [CrossRef]
- Bainsla, N.K.; Yadav, R.; Singh, G.P.; Sharma, R.K. Additive genetic behavior of stem solidness in wheat (Triticum aestivum L.). Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Varella, A.C.; Zhang, H.; Weaver, D.K.; Cook, J.P.; Hofland, M.L.; Lamb, P.; Chao, S.; Martin, J.M.; Blake, N.K.; Talbert, L.E. A novel QTL in durum wheat for resistance to the wheat stem sawfly associated with early expression of stem solidness. Genes Genomes Genet. 2019, 9, 1999–2006. [Google Scholar] [CrossRef] [Green Version]
- Acreche, M.M.; Slafer, G.A. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crop. Res. 2011, 122, 40–48. [Google Scholar] [CrossRef]
- Miller, C.N.; Harper, A.L.; Trick, M.; Werner, P.; Waldron, K.; Bancroft, I. Elucidation of the genetic basis of variation for stem strength characteristics in bread wheat by Associative Transcriptomics. BMC Genom. 2016, 17, 500. [Google Scholar] [CrossRef] [Green Version]
- Khobra, R.; Sareen, S.; Meena, B.K.; Kumar, A.; Tiwari, V.; Singh, G.P. Exploring the traits for lodging tolerance in wheat genotypes: A review. Physiol. Mol. Biol. Plants 2019, 25, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, M.; Harris, N.S.; Twardziok, S.O.; Pasam, R.K.; Gundlach, H.; Spannagl, M.; Ormanbekova, D.; Lux, T.; Prade, V.M.; Milner, S.G.; et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 2019, 51, 885–895. [Google Scholar] [CrossRef] [Green Version]
- InterOmics. Available online: https://www.interomics.eu/durum-wheat-genome (accessed on 14 April 2021).
- Tao, Y.; Zhao, X.; Mace, E.; Henry, R.; Jordan, D. Exploring and exploiting pan-genomics for crop improvement. Mol. Plant 2019, 12, 156–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, S.P.; Contreras-Moreira, B.; Woods, D.P.; Des Marais, D.L.; Burgess, D.; Shu, S.; Stritt, C.; Roulin, A.C.; Schackwitz, W.; Tyler, L.; et al. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Statist. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Maccaferri, M.; Sanguineti, M.C.; Demontis, A.; El-Ahmed, A.; Garcia del Moral, L.; Maalouf, F.; Nachit, M.; Nserallah, N.; Ouabbou, H.; Rhouma, S.; et al. Association mapping in durum wheat grown across a broad range of water regimes. J. Exp. Bot. 2011, 62, 409–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mengistu, D.K.; Kidane, Y.G.; Catellani, M.; Frascaroli, E.; Fadda, C.; Pè, M.E.; Dell’Acqua, M. High-density molecular characterization and association mapping in Ethiopian durum wheat landraces reveals high diversity and potential for wheat breeding. Plant Biotechnol. J. 2016, 14, 1800–1812. [Google Scholar] [CrossRef] [Green Version]
- Milner, S.G.; Maccaferri, M.; Huang, B.E.; Mantovani, P.; Massi, A.; Frascaroli, E.; Tuberosa, R.; Salvi, S. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). Plant Biotechnol. J. 2016, 14, 735–748. [Google Scholar] [CrossRef] [Green Version]
- Roncallo, P.F.; Akkiraju, P.C.; Cervigni, G.L.; Echenique, V.C. QTL mapping and analysis of epistatic interactions for grain yield and yield-related traits in Triticum turgidum L. var. durum. Euphytica 2017, 213, 277. [Google Scholar] [CrossRef]
- Giraldo, P.; Royo, C.; González, M.; Carrillo, J.M.; Ruiz, M. Genetic diversity and association mapping for agromorphological and grain quality traits of a structured collection of durum wheat landraces including subsp. durum, turgidum and diccocon. PLoS ONE 2016, 11, e0166577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, P.; Wang, X.; Wang, X.; Zhou, F.; Xu, X.; Wu, B.; Yao, J.; Lv, D.; Yang, M.; Song, X.; et al. Application of 50K chip-based genetic map to QTL mapping of stem-related traits in wheat. Crop Pasture Sci. 2021, 72, 105. [Google Scholar] [CrossRef]
- GrainGenes: A database for Triticease and Avena. Available online: https://wheat.pw.usda.gov/jb (accessed on 21 April 2021).
- Mayer, K.F.X.; Martis, M.; Hedley, P.E.; Šimková, H.; Liu, H.; Morris, J.A.; Steuernagel, B.; Taudien, S.; Roessner, S.; Gundlach, H.; et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 2011, 23, 1249–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devos, K.M. Updating the “Crop Circle”. Curr. Opin. Plant Biol. 2005, 8, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Berry, P.M.; Sterling, M.; Spink, J.H.; Baker, C.J.; Sylvester-Bradley, R.; Mooney, S.J.; Tams, A.R.; Ennos, A.R. Understanding and Reducing Lodging in Cereals. Adv. Agron. 2004, 84, 217–271. [Google Scholar]
- Ruiz, M.; Giraldo, P.; Royo, C.; Carrillo, J.M. Creation and validation of the Spanish durum wheat core collection. Crop Sci. 2013, 53, 2530–2537. [Google Scholar] [CrossRef] [Green Version]
- The Spanish Inventory of Plant Genetic Resources. Available online: https://https://bancocrf.inia.es/en/ (accessed on 21 April 2021).
- Federer, W.T. Augmented designs. Hawaii. Plant. Rec. 1956, 55, 191–208. [Google Scholar] [CrossRef] [Green Version]
- Aravind, J.; Mukesh Sankar, S.; Wankhede, D.P.; Kaur, V. AugmentedRCBD: Analysis of Augmented Randomised Complete Block Designs. R Package Version 0.1.4. Available online: https://aravind-j.github.io/augmentedRCBD/ (accessed on 21 April 2021).
- Federer, W. Augmented designs with one-way elimination of heterogeneity. Biometrics 1961, 17, 447–473. [Google Scholar] [CrossRef]
- Piepho, H.P.; Möhring, J. Computing heritability and selection response from unbalanced plant breeding trials. Genetics 2007, 177, 1881–1888. [Google Scholar] [CrossRef] [Green Version]
- Murray, Y.H.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Hamazaki, K.; Iwata, H. Rainbow: Haplotype-based genome-wide association study using a novel SNP-set method. PLoS Comput. Biol. 2020, 16, e1007663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R_Studio_Team RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA; Available online: https://support.rstudio.com/hc/en-us/articles/206212048-Citing-RStudio (accessed on 2 October 2020).
- Turner, S. qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. J. Open Source Softw. 2018, 3, 731. [Google Scholar] [CrossRef] [Green Version]
Marker 1 | Trait | Chrm | Pos 2 | LOD | FDR 3 | R-Square | Effect 4 |
---|---|---|---|---|---|---|---|
DS.DW.2290879 | Stem area | 2B | 90.2 | 4.47 | 4.29 | 0.070 | 14.6 |
DS.DW.1064412 | Stem area | 2B | 443.1 | 5.08 | 4.29 | 0.066 | 14.5 |
DS.DW.1716898 | Stem area | 2B | 631.8 | 4.33 | 4.29 | 0.064 | 17.4 |
DS.DW.2299734 | Stem area | 2B | 631.8 | 5.47 | 4.29 | 0.074 | 19.6 |
DS.DW.1315604C | Stem area | 2B | 631.8 | 4.59 | 4.29 | 0.075 | 18.4 |
DS.DW.995800 | Stem area | 2B | 631.8 | 7.86 | 4.29 | 0.115 | 19.8 |
DS.DW.999492 | Stem area | 7A | 20.0 | 4.64 | 4.29 | 0.079 | 16.5 |
DS.DW.12773467 | Stem area | 7A | 714.7 | 4.59 | 4.29 | 0.055 | 14.2 |
DS.DW.2351188 | Culm wall thickness | 1A | 34.8 | 4.65 | 4.63 | 0.091 | 1.6 |
DS.DW.2374725 | Culm wall thickness | 1B | 52.5 | 4.75 | 4.63 | 0.089 | 1.7 |
DS.DW.995800 | Culm wall thickness | 2B | 631.8 | 5.37 | 4.63 | 0.091 | 2.3 |
DS.DW.1094684 | Culm wall thickness | 3A | 691.7 | 4.84 | 4.63 | 0.071 | 1.8 |
DS.DW.994979 | Height | 4A | 606.0 | 4.8 | 4.79 | 0.063 | 40.7 |
DS.DW.5564719 | Height | 5A | 500.0 | 5.17 | 4.79 | 0.060 | 41.3 |
DS.DW.1064412 | Pith area | 2B | 443.1 | 5.5 | 4.2 | 0.129 | 10.1 |
DS.DW.1716898 | Pith area | 2B | 631.8 | 4.34 | 4.2 | 0.084 | 11.4 |
DS.DW.2299734 | Pith area | 2B | 631.8 | 4.31 | 4.2 | 0.088 | 10.9 |
DS.DW.1315604 | Pith area | 2B | 631.8 | 5.36 | 4.2 | 0.128 | 12.4 |
DS.DW.995800 | Pith area | 2B | 631.8 | 4.35 | 4.2 | 0.082 | 10.5 |
DS.DW.2284385 | Pith area | 2B | 676.7 | 5.51 | 4.2 | 0.125 | 9.5 |
DS.DW.5566511 | Pith area | 3B | 659.3 | 4.56 | 4.2 | 0.100 | 9.7 |
DS.DW.3064906 | Pith area | 5B | 584.1 | 5.61 | 4.2 | 0.107 | 8.8 |
DS.DW.2307793 | Pith area | 6B | 55.8 | 4.49 | 4.2 | 0.095 | 6.3 |
DS.DW.999492 | Pith area | 7A | 20.0 | 5.99 | 4.2 | 0.138 | 11.9 |
DS.DW.2351188 | Pith diameter | 1A | 34.8 | 4.61 | 4.61 | 0.107 | 2.0 |
DS.DW.2290879 | Pith diameter | 2B | 90.2 | 4.83 | 4.61 | 0.085 | 2.5 |
DS.DW.1094684 | Pith diameter | 3A | 691.7 | 5.85 | 4.61 | 0.091 | 2.4 |
DS.DW.1240805 | Pith diameter | 4A | 633.7 | 6.05 | 4.61 | 0.088 | 3.1 |
DS.DW.3570185 | Heading date | 2B | 788.1 | 4.34 | ns | 0.045 | 136.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila, C.M.; Requena-Ramírez, M.D.; Rodríguez-Suárez, C.; Flores, F.; Sillero, J.C.; Atienza, S.G. Genome-Wide Association Analysis for Stem Cross Section Properties, Height and Heading Date in a Collection of Spanish Durum Wheat Landraces. Plants 2021, 10, 1123. https://doi.org/10.3390/plants10061123
Ávila CM, Requena-Ramírez MD, Rodríguez-Suárez C, Flores F, Sillero JC, Atienza SG. Genome-Wide Association Analysis for Stem Cross Section Properties, Height and Heading Date in a Collection of Spanish Durum Wheat Landraces. Plants. 2021; 10(6):1123. https://doi.org/10.3390/plants10061123
Chicago/Turabian StyleÁvila, Carmen M., María Dolores Requena-Ramírez, Cristina Rodríguez-Suárez, Fernando Flores, Josefina C. Sillero, and Sergio G. Atienza. 2021. "Genome-Wide Association Analysis for Stem Cross Section Properties, Height and Heading Date in a Collection of Spanish Durum Wheat Landraces" Plants 10, no. 6: 1123. https://doi.org/10.3390/plants10061123
APA StyleÁvila, C. M., Requena-Ramírez, M. D., Rodríguez-Suárez, C., Flores, F., Sillero, J. C., & Atienza, S. G. (2021). Genome-Wide Association Analysis for Stem Cross Section Properties, Height and Heading Date in a Collection of Spanish Durum Wheat Landraces. Plants, 10(6), 1123. https://doi.org/10.3390/plants10061123