Modulation of Organogenesis and Somatic Embryogenesis by Ethylene: An Overview
Abstract
:1. Introduction
2. Ethylene: Biosynthesis and Signaling Pathway
3. Culture Vessels and Ethylene Accumulation
4. Chemical Modulation of Ethylene Responses
5. Genetic and Epigenetic Modulations of Ethylene Responses
6. Ethylene Integration in Hormone and Stress-Induced In Vitro Plant Regeneration
7. Influence of Ethylene Modulation in Regeneration Processes
7.1. Organogenesis
7.2. Somatic Embryogenesis
8. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, N.; Reddy, M.P. In vitro plant propagation: A review. J. For. Sci. 2011, 27, 61–72. [Google Scholar]
- Phillips, G.C.; Garda, M. Plant tissue culture media and practices: An overview. Cell. Dev. Biol. Plant 2019, 55, 242–257. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Ogawa, Y.; Iwase, A.; Sugimoto, K. Plant regeneration: Cellular origins and molecular mechanisms. Development 2016, 143, 1442–1451. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.; Bera, T. Somatic embryogenesis and organogenesis. In Modern Applications of Plant Biotechnology in Pharmaceutical Sciences; Bhatia, S., Sharma, K., Dahiya, R., Bera, T., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 209–230. [Google Scholar] [CrossRef]
- Biddington, N.L. The influence of ethylene in plant tissue culture. Plant Growth Regul. 1992, 11, 173–187. [Google Scholar] [CrossRef]
- Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M.I.R. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Front. Plant Sci. 2017, 8, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieberman, M.; Kunishi, A.; Mapson, L.W.; Wardale, D.A. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol. 1966, 41, 376–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.O.; Yang, S.F. Methionine metabolism in apple tissue: Implication of s-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol. 1977, 60, 892–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.O.; Yang, S.F. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA 1979, 76, 170–174. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.L.; Li, H.; Ecker, J.R. Ethylene biosynthesis and signaling networks. Plant Cell 2002, 14 (Suppl. 1), S131–S151. [Google Scholar] [CrossRef] [Green Version]
- Lacey, R.F.; Binder, B.M. How plants sense ethylene gas—The ethylene receptors. J. Inorg. Biochem. 2014, 133, 58–62. [Google Scholar] [CrossRef]
- Bleecker, A.B.; Estelle, M.A.; Somerville, C.; Kende, H. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 1988, 241, 1086–1089. [Google Scholar] [CrossRef]
- Chang, C.; Kwok, S.F.; Bleecker, A.B.; Meyerowitz, E.M. Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators. Science 1993, 262, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, F.I.; Esch, J.J.; Hall, A.E.; Binder, B.M.; Schaller, G.E.; Bleecker, A.B. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 1999, 283, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Binder, B.M. Ethylene signaling in plants. J. Biol. Chem. 2020, 295, 7710–7725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, C.; Chang, C. Mechanistic Insights in Ethylene Perception and Signal Transduction. Plant Physiol. 2015, 169, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, J.-J. Measurement of gas exchange rates in plant tissue culture vessels. Plant Cell Tiss. Organ Cult. 2002, 71, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Chen, C. Physical properties of culture vessels for plant tissue culture. Biosyst. Eng. 2005, 91, 501–511. [Google Scholar] [CrossRef]
- Cristescu, S.M.; Mandon, J.; Arslanov, D.; De Pessemier, J.; Hermans, C.; Harren, F.J. Current methods for detecting ethylene in plants. Ann. Bot. 2013, 111, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Huelin, F.E.; Kennett, B.H. Nature of the olefines produced by Apples. Nature 1959, 184, 996. [Google Scholar] [CrossRef]
- Jackson, M.B.; Abbott, A.J.; Belcher, A.R.; Hall, K.C.; Butler, R.; Cameron, J. Ventilation in plant tissue cultures and effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and explant development. Ann. Bot. 1991, 67, 229–237. [Google Scholar] [CrossRef]
- Schaller, G.E.; Binder, B.M. Inhibitors of ethylene biosynthesis and signaling. Methods Mol. Biol. 2017, 1573, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Amrhein, N.; Wenker, D. Novel inhibitors of ethylene production in higher plants. Plant Cell Physiol. 1979, 20, 1635–1642. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.-B.; Adams, D.O.; Yang, S.F. 1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis. Arch. Biochem. Biophys. 1979, 198, 280–286. [Google Scholar] [CrossRef]
- Yu, Y.-B.; Yang, S.F. Auxin-induced ethylene production and its inhibition by aminoethyoxyvinylglycine and cobalt ion. Plant Physiol. 1979, 64, 1074–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, R.A.; Charteris, A.; Fowler, L.J. The reaction of amino-oxyacetate with pyridoxal phosphate-dependent enzymes. Biochem. J. 1978, 171, 771–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soeno, K.; Goda, H.; Ishii, T.; Ogura, T.; Tachikawa, T.; Sasaki, E.; Yoshida, S.; Fujioka, S.; Asami, T.; Shimada, Y. Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant Cell Physiol. 2010, 51, 524–536. [Google Scholar] [CrossRef] [Green Version]
- Satoh, S.; Esashi, Y. α-Aminoisobutyric acid: A probable competitive inhibitor of conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene. Plant Cell Physiol. 1980, 21, 939–949. [Google Scholar] [CrossRef]
- Satoh, S.; Esashi, Y. α-Aminoisabutyric acid, propyl gallate and cobalt ion and the mode of inhibition of ethylene production by cotyledonary segments of cocklebur seeds. Physiol. Plant. 1983, 57, 521–526. [Google Scholar] [CrossRef]
- Houben, M.; Van de Poel, B. 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO): The enzyme that makes the plant hormone ethylene. Front. Plant Sci. 2019, 10, 695. [Google Scholar] [CrossRef] [Green Version]
- Dilley, D.R.; Kuai, J.; Poneleit, L.; Pekker, Y.; Wilson, I.D.; Burmeister, D.M.; Gran, C.; Bowers, A. Purification and characterization of ACC oxidase and its expression during ripening in apple fruit. In Cellular and Molecular Aspects of the Plant Hormone Ethylene. Current Plant Science and Biotechnology in Agriculture; Pech, J.C., Latché, A., Balagué, C., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 46–52. [Google Scholar]
- Leslie, C.A.; Romani, R.J. Salicylic acid: A new inhibitor of ethylene biosynthesis. Plant Cell Rep. 1986, 5, 144–146. [Google Scholar] [CrossRef]
- Lin, L.C.; Hsu, J.H.; Wang, L.C. Identification of novel inhibitors of 1-aminocyclopropane-1-carboxylic acid synthase by chemical screening in Arabidopsis thaliana. J. Biol. Chem. 2010, 285, 33445–33456. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Li, Y.; He, W.; Ji, C.; Xia, P.; Wang, Y.; Du, S.; Li, H.; Raikhel, N.; Xiao, J.; et al. Pyrazinamide and derivatives block ethylene biosynthesis by inhibiting ACC oxidase. Nat. Commun. 2017, 8, 15758. [Google Scholar] [CrossRef]
- Beyer, E.M. A potent inhibitor of ethylene action in plants. Plant Physiol. 1976, 58, 268–271. [Google Scholar] [CrossRef] [Green Version]
- Binder, B.M.; Rodriguez, F.I.; Bleecker, A.B.; Patterson, S.E. The effects of Group 11 transition metals, including gold, on ethylene binding to the ETR1 receptor and growth of Arabidopsis thaliana. FEBS Lett. 2007, 581, 5105–5109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDaniel, B.K.; Binder, B.M. Ethylene receptor 1 (ETR1) is sufficient and has the predominant role in mediating inhibition of ethylene responses by silver in Arabidopsis thaliana. J. Biol. Chem. 2012, 287, 26094–26103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vishwakarma, K.; Upadhyay, N.; Singh, J.; Liu, S.; Singh, V.P.; Prasad, S.M.; Chauhan, D.K.; Tripathi, D.K.; Sharma, S. Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front. Plant Sci. 2017, 8, 1501. [Google Scholar] [CrossRef] [PubMed]
- Cvjetko, P.; Zovko, M.P.; Štefanić, P.; Biba, R.; Tkalec, M.; Domijan, A.-M.; Vrček, I.V.; Letofsky-Papst, I.; Šikić, S.; Balen, B. Phytotoxic effects of silver nanoparticles in tobacco plants. Environ. Sci. Pollut. Res. 2018, 25, 5590–5602. [Google Scholar] [CrossRef]
- Karimi, J.; Mohsenzadeh, S. Physiological effects of silver nanoparticles and silver nitrate toxicity in Triticum aestivum. Iran. J. Sci. Technol. Trans. A Sci. 2017, 41, 111–120. [Google Scholar] [CrossRef]
- Jiang, H.S.; Li, M.; Chang, F.Y.; Li, W.; Yin, L.Y. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ. Toxicol. Chem. 2012, 31, 1880–1886. [Google Scholar] [CrossRef]
- Strader, L.C.; Beisner, E.R.; Bartel, B. Silver ions increase auxin efflux independently of effects on ethylene response. Plant Cell 2009, 21, 3585–3590. [Google Scholar] [CrossRef] [Green Version]
- Sisler, E.C. The discovery and development of compounds counteracting ethylene at the receptor level. Biotechnol. Adv. 2006, 24, 357–367. [Google Scholar] [CrossRef]
- Lürssen, K.; Naumann, K.; Schröder, R. 1-Aminocyclopropane-1-carboxylic acid-an intermediate of the ethylene biosynthesis in higher plants. Z. Pflanzenphysiol. 1979, 92, 285–294. [Google Scholar] [CrossRef]
- Yang, S.F. Ethylene evolution from 2-chloroethylphosphonic acid. Plant Physiol. 1969, 44, 1203–1204. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.; Lee, S.H.; Park, K.Y. Effects of spermine on ethylene biosynthesis in cut carnation (Dianthus caryophyllus L.) flowers during senescence. J. Plant Physiol. 1997, 151, 68–73. [Google Scholar] [CrossRef]
- Young, R.E.; Pratt, H.K.; Biale, J.B. Manometric determination of low concentrations of ethylene with particular reference to plant material. Anal. Chem. 1952, 24, 551–555. [Google Scholar] [CrossRef]
- Nelson, R.C. Studies on production of ethylene in the ripening process in apple and banana. J. Food Sci. 1939, 4, 173–190. [Google Scholar] [CrossRef]
- Stearns, J.C.; Glick, B.R. Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol. Adv. 2003, 21, 193–210. [Google Scholar] [CrossRef]
- Guzmán, P.; Ecker, J.R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 1990, 2, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.C.; Qu, X.; Mathews, D.E.; Schaller, G.E. Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis. Plant Physiol. 2002, 130, 1983–1991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieber, J.J.; Rothenberg, M.; Roman, G.; Feldmann, K.A.; Ecker, J.R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 1993, 72, 427–441. [Google Scholar] [CrossRef]
- Chae, H.S.; Faure, F.; Kieber, J.J. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 2003, 15, 545–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, A.E.; Chen, Q.G.; Findell, J.L.; Schaller, G.E.; Bleecker, A.B. The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. Plant Physiol. 1999, 121, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Roman, G.; Lubarsky, B.; Kieber, J.J.; Rothenberg, M.; Ecker, J.R. Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: Five novel mutant loci integrated into a stress response pathway. Genetics 1995, 139, 1393–1409. [Google Scholar] [CrossRef] [PubMed]
- Sakai, H.; Hua, J.; Chen, Q.G.; Chang, C.; Medrano, L.J.; Bleecker, A.B.; Meyerowitz, E.M. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 1998, 95, 5812–5817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, J.P.; Woeste, K.E.; Theologis, A.; Kieber, J.J. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc. Natl. Acad. Sci. USA 1998, 95, 4766–4771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czarny, J.C.; Grichko, V.P.; Glick, B.R. Genetic modulation of ethylene biosynthesis and signaling in plants. Biotechnol. Adv. 2006, 24, 410–419. [Google Scholar] [CrossRef]
- Ruduś, I.; Sasiak, M.; Kępczyński, J. Regulation of ethylene biosynthesis at the level of 1-aminocyclopropane-1-carboxylate oxidase (ACO) gene. Acta Physiol. Plant. 2013, 35, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Love, J.; Bjorklund, S.; Vahala, J.; Hertzberg, M.; Kangasjarvi, J.; Sundberg, B. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proc. Natl. Acad. Sci. USA 2009, 106, 5984–5989. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.; He, B.; Gao, S.; Guo, D.; Jia, X.; Dong, X.; Guo, M. CtACO1 Overexpression resulted in the alteration of the flavonoids profile of safflower. Molecules 2009, 24, 1128. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Zhang, B.; Ding, W.; Liu, X.; Yang, D.L.; Wei, P.; Cao, F.; Zhu, S.; Zhang, F.; Mao, Y.; et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013, 23, 1229–1232. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Kang, B.C.; Naing, A.H.; Bae, S.J.; Kim, J.S.; Kim, H.; Kim, C.K. CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity. Plant Biotechnol. J. 2020, 18, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Pikaard, C.S.; Mittelsten Scheid, O. Epigenetic regulation in plants. Cold Spring Harb. Perspect. Biol. 2014, 6, a019315. [Google Scholar] [CrossRef]
- Yan, X.; Ma, L.; Pang, H.; Wang, P.; Liu, L.; Cheng, Y.; Cheng, J.; Guo, Y.; Li, Q. METHIONINE SYNTHASE1 is involved in chromatin silencing by maintaining DNA and histone methylation. Plant Physiol. 2019, 181, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Wang, L.; Wang, J.; Zhao, X.; Cheng, J.; Yu, W.; Jin, D.; Li, Q.; Gong, Z. METHIONINE ADENOSYLTRANSFERASE4 mediates dna and histone methylation. Plant Physiol. 2018, 177, 652–670. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, F.; Qiao, H. Chromatin regulation in the response of ethylene: Nuclear events in ethylene signaling. Small Methods 2019, 4, 1900288. [Google Scholar] [CrossRef]
- Zhang, N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals. Anim. Nutr. 2018, 4, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Lindermayr, C.; Rudolf, E.E.; Durner, J.; Groth, M. Interactions between metabolism and chromatin in plant models. Mol. Metab. 2020, 38, 100951. [Google Scholar] [CrossRef]
- Li, W.; Han, Y.; Tao, F.; Chong, K. Knockdown of SAMS genes encoding S-adenosyl-l-methionine synthetases causes methylation alterations of DNAs and histones and leads to late flowering in rice. J. Plant Physiol. 2011, 168, 1837–1843. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Seo, P.J. Dynamic epigenetic changes during plant regeneration. Trends Plant Sci. 2018, 23, 235–247. [Google Scholar] [CrossRef]
- Zhang, F.; Qi, B.; Wang, L.; Zhao, B.; Rode, S.; Riggan, N.D.; Ecker, J.R.; Qiao, H. EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling. Nat. Commun. 2016, 7, 13018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhang, F.; Rode, S.; Chin, K.K.; Ko, E.E.; Kim, J.; Iyer, V.R.; Qiao, H. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis. BMC Genom. 2017, 18, 538. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, L.; Qi, B.; Zhao, B.; Ko, E.E.; Riggan, N.D.; Chin, K.; Qiao, H. EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proc. Natl. Acad. Sci. USA 2017, 114, 10274–10279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhang, Z.; Zhang, F.; Shao, Z.; Zhao, B.; Huang, A.; Tran, J.; Hernandez, F.V.; Qiao, H. EIN2-directed histone acetylation requires EIN3-mediated positive feedback regulation in response to ethylene. Plant Cell 2020, 33, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Khann, N.A.; Khann, M.I.I.; Ferrante, A.; Poor, P. Ethylene: A key regulator molecule in plants. Front. Plant Sci. 2017, 8, 1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lardon, R.; Geelen, D. Natural variation in plant pluripotency and regeneration. Plants 2020, 9, 1261. [Google Scholar] [CrossRef]
- Sangwan, R.S.; Harada, H. Chemical regulation of callus growth, organogenesis, plant regeneration, and somatic embryogenesis in Antirrhinum majus tissue and cell cultures. J. Exp. Bot. 1975, 26, 868–881. [Google Scholar] [CrossRef]
- Khanam, N.; Khoo, C.; Khan, A.G. Effects of cytokinin/auxin combinations on organogenesis, shoot regeneration and tropane alkaloid production in Duboisia myoporoides. Plant Cell Tiss. Organ Cult. 2000, 62, 125–133. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Wang, L.; Sun, W.; Zhang, Y.; Zhou, C.; Su, Y.H.; Li, W.; Sun, T.T.; Zhao, X.Y.; Li, X.G.; et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiol. 2013, 161, 240–251. [Google Scholar] [CrossRef] [Green Version]
- Gaj, M.D. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Reg. 2004, 43, 27–47. [Google Scholar] [CrossRef]
- Feher, A. Somatic embryogenesis—Stress-induced remodeling of plant cell fate. Biochim. Biophys. Acta 2015, 1849, 385–402. [Google Scholar] [CrossRef]
- Swarup, R.; Perry, P.; Hagenbeek, D.; Van Der Straeten, D.; Beemster, G.T.; Sandberg, G.; Bhalerao, R.; Ljung, K.; Bennett, M.J. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 2007, 19, 2186–2196. [Google Scholar] [CrossRef] [Green Version]
- Ruzicka, K.; Ljung, K.; Vanneste, S.; Podhorska, R.; Beeckman, T.; Friml, J.; Benkova, E. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 2007, 19, 2197–2212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, D.R.; Negi, S.; Sukumar, P.; Muday, G.K. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 2011, 138, 3485–3495. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Nishiyama, R.; Watanabe, Y.; Van Ha, C.; Kojima, M.; An, P.; Tian, L.; Tian, C.; Sakakibara, H.; Tran, L.P. Effects of overproduced ethylene on the contents of other phytohormones and expression of their key biosynthetic genes. Plant Physiol. Biochem. 2018, 128, 170–177. [Google Scholar] [CrossRef]
- Vandenbussche, F.; Petrasek, J.; Zadnikova, P.; Hoyerova, K.; Pesek, B.; Raz, V.; Swarup, R.; Bennett, M.; Zazimalova, E.; Benkova, E.; et al. The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 2010, 137, 597–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muday, G.K.; Rahman, A.; Binder, B.M. Auxin and ethylene: Collaborators or competitors? Trends Plant Sci. 2012, 17, 181–195. [Google Scholar] [CrossRef]
- Tsuchisaka, A.; Theologis, A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 2004, 136, 2982–3000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salman-Minkov, A.; Levi, A.; Wolf, S.; Trebitsh, T. ACC synthase genes are polymorphic in watermelon (Citrullus spp.) and differentially expressed in flowers and in response to auxin and gibberellin. Plant Cell Physiol. 2008, 49, 740–750. [Google Scholar] [CrossRef]
- Hansen, M.; Chae, H.S.; Kieber, J.J. Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J. 2009, 57, 606–614. [Google Scholar] [CrossRef] [Green Version]
- Ikeuchi, M.; Iwase, A.; Rymen, B.; Lambolez, A.; Kojima, M.; Takebayashi, Y.; Heyman, J.; Watanabe, S.; Seo, M.; De Veylder, L.; et al. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol. 2017, 175, 1158–1174. [Google Scholar] [CrossRef] [Green Version]
- Correia, S.; Lopes, M.L.; Canhoto, J.M. Somatic embryogenesis induction system for cloning an adult Cyphomandra betacea (Cav.) Sendt. (tamarillo). Trees 2011, 25, 1009–1020. [Google Scholar] [CrossRef]
- Martins, J.F.; Correia, S.I.; Canhoto, J.M. Somatic embryogenesis induction and plant regeneration in strawberry tree (Arbutus unedo L.). In Methods in Molecular Biology; Germana, M., Lambardi, M., Eds.; Humana Press: New York, NY, USA, 2016; Volume 1359, pp. 329–339. [Google Scholar] [CrossRef]
- Boller, T.; Kende, H. Regulation of wound ethylene synthesis in plants. Nature 1980, 286, 259–260. [Google Scholar] [CrossRef]
- Ke, D.; Saltveit, M.E., Jr. Wound-induced ethylene production, phenolic metabolism and susceptibility to russet spotting in Iceberg lettuce. Physiol. Plant. 1989, 76, 412–418. [Google Scholar] [CrossRef]
- Hyodo, H.; Tanaka, K.; Suzuki, T. Wound-induced ethylene synthesis and its involvement in enzyme induction in mesocarp tissue of Cucurbita maxima. Postharvest Biol. Technol. 1991, 1, 127–136. [Google Scholar] [CrossRef]
- Rojo, E.; León, J.; Sánchez-Serrano, J.J. Cross-talk between wound signalling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J. 1999, 20, 135–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.J.; Park, C.-J.; Lee, S.-B.; Ham, B.-K.; Shin, R.; Paek, K.-H. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2–type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 2001, 13, 1035–1046. [Google Scholar] [CrossRef] [Green Version]
- Boex-Fontvieille, E.; Rustgi, S.; von Wettstein, D.; Pollmann, S.; Reinbothe, S.; Reinbothe, C. An ethylene-protected Achilles’ heel of etiolated seedlings for arthropod deterrence. Front. Plant Sci. 2016, 7, 1246. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Park, Y.S.; Yang, Y.; Borrego, E.J.; Isakeit, T.; Gao, X.; Kolomiets, M.V. Seed-Derived Ethylene Facilitates Colonization but Not Aflatoxin Production by Aspergillus flavus in Maize. Front. Plant Sci. 2017, 8, 415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, M.C.; Liao, P.M.; Kuo, W.W.; Lin, T.P. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 2013, 162, 1566–1582. [Google Scholar] [CrossRef] [Green Version]
- Dubois, M.; Skirycz, A.; Claeys, H.; Maleux, K.; Dhondt, S.; De Bodt, S.; Vanden Bossche, R.; De Milde, L.; Yoshizumi, T.; Matsui, M.; et al. Ethylene Response Factor6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiol. 2013, 162, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.P.; Lakshmanan, P.; Thorpe, T.A. Regulation of morphogenesis in plant tissue culture by ethylene. Cell. Dev. Biol. Plant 1998, 34, 94–103. [Google Scholar] [CrossRef]
- Chae, S.C.; Kim, H.H.; Park, S.U. Ethylene inhibitors enhance shoot organogenesis of gloxinia (Sinningia speciosa). Sci. World J. 2012, 2012, 859381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roustan, J.-P.; Latche, A.; Fallot, J. Enhancement of shoot regeneration from cotyledons of Cucumis melo by AgNO3, an inhibitor of ethylene action. J. Plant Physiol. 1992, 140, 485–488. [Google Scholar] [CrossRef]
- Amor, M.B.; Guis, M.; Latché, A.; Bouzayen, M.; Pech, J.C.; Roustan, J.P. Expression of an antisense 1-aminocyclopropane-1-carboxylate oxidase gene stimulates shoot regeneration in Cucumis melo. Plant Cell Rep. 1998, 17, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Paladi, R.K.; Rai, A.N.; Penna, S. Silver nitrate modulates organogenesis in Brassica juncea (L.) through differential antioxidant defense and hormonal gene expression. Sci. Horti. 2017, 226, 261–267. [Google Scholar] [CrossRef]
- Pua, E.-C.; Chi, G.-L. De novo shoot morphogenesis and plant growth of mustard (Brassica juncea) in vitro in relation to ethylene. Physiol. Plant. 1993, 88, 467–474. [Google Scholar] [CrossRef]
- Kepczyński, J.; McKersie, B.D.; Brown, D.C.W. Requirement of ethylene for growth of callus and somatic embryogenesis in Medicago sativa L. J. Exp. Bot. 1992, 43, 1199–1202. [Google Scholar] [CrossRef]
- Kępczyńska, E.; Ruduś, I.; Kępczyński, J. Endogenous ethylene in indirect somatic embryogenesis of Medicago sativa L. Plant Growth Regul. 2009, 59, 63–73. [Google Scholar] [CrossRef]
- Kępczyńska, E.; Zielińska, S. Disturbance of ethylene biosynthesis and perception during somatic embryogenesis in Medicago sativa L. reduces embryos’ ability to regenerate. Acta Physiol. Plant. 2011, 33, 1969–1980. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Zheng, Y.; Perry, S.E. AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response. Plant Physiol. 2013, 161, 2113–2127. [Google Scholar] [CrossRef] [Green Version]
- Meskaoui, A.E.; Tremblay, F.M. Involvement of ethylene in the maturation of black spruce embryogenic cell lines with different maturation capacities. J. Exp. Bot. 2001, 52, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Roustan, J.P.; Latche, A.; Fallot, J. Stimulation of Daucus carota somatic embryogenesis by inhibitors of ethylene synthesis: Cobalt and nickel. Plant Cell Rep. 1989, 8, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Navarro-García, N.; Martínez-Romero, D.; Pérez-Tornero, O. Assessment of the impact of ethylene and ethylene modulators in Citrus limon organogenesis. Plant Cell Tiss. Organ Cult. 2016, 127, 405–415. [Google Scholar] [CrossRef]
- Reis, L.B.; Paiva Neto, V.B.; Toledo Picoli, E.A.; Costa, M.G.C.; Rêgo, M.M.; Carvalho, C.R.; Finger, F.L.; Otoni, W.C. Axillary bud development of passionfruit as affected by ethylene precursor and inhibitors. Cell. Dev. Biol. Plant 2003, 39, 618–622. [Google Scholar] [CrossRef]
- Gonzalez, A.; Arigita, L.; Majada, J.; Sánchez Tamés, R. Ethylene involvement in in vitro organogenesis and plant growth of Populus tremula L. Plant Growth Regul. 1997, 22, 1–6. [Google Scholar] [CrossRef]
- Fuentes, S.R.; Calheiros, M.B.; Manetti-Filho, J.; Vieira, L.G. The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coffea canephora. Plant Cell Tiss. Organ Cult. 2000, 60, 5–13. [Google Scholar] [CrossRef]
- Kumar, V.; Ramakrishna, A.; Ravishankar, G.A. Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P ex Fr. Cell. Dev. Biol. Plant 2007, 43, 602–607. [Google Scholar] [CrossRef]
- Ishizaki, T.; Komai, F.; Msuda, K.; Megumi, C. Exogenous ethylene enhances formation of embryogenic callus and inhibits embryogenesis in cultures of explants of spinach roots. J. Amer. Soc. Hortic. Sci. 2000, 125, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Ptak, A.; Tahchy, A.E.; Wyżgolik, G.; Henry, M.; Laurain-Mattar, D. Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L. cultures. Plant Cell Tiss. Organ Cult. 2010, 102, 61–67. [Google Scholar] [CrossRef]
- Trujillo-Moya, C.; Gisbert, C. The influence of ethylene and ethylene modulators on shoot organogenesis in tomato. Plant Cell Tiss. Organ Cult. 2012, 111, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Mordhorst, A.P.; Voerman, K.J.; Hartog, M.V.; Meijer, E.A.; van Went, J.; Koornneef, M.; de Vries, S.C. Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics 1998, 149, 549–563. [Google Scholar] [CrossRef]
- Pua, E.-C.; Lee, J.E.E. Enhanced de novo shoot morphogenesis in vitro by expression of antisense 1-aminocyclopropane-1-carboxylate oxidase gene in transgenic mustard plants. Planta 1995, 196, 69–76. [Google Scholar] [CrossRef]
- Chatfield, S.P.; Raizada, M.N. Ethylene and shoot regeneration: hookless1 modulates de novo shoot organogenesis in Arabidopsis thaliana. Plant Cell Rep. 2008, 27, 655–666. [Google Scholar] [CrossRef]
- Hatanaka, T.; Sawabe, E.; Azuma, T.; Uchida, N.; Yasuda, T. The role of ethylene in somatic embryogenesis from leaf discs of Coffea canephora. Plant Sci. 1995, 107, 199–204. [Google Scholar] [CrossRef]
- Neves, M. Effect of Ethylene on Somatic Embryogenesis of Tamarillo (Solanum betaceum Cav.). Master’s Thesis, University of Coimbra, Coimbra, Portugal, 2018. Available online: http://hdl.handle.net/10316/86197 (accessed on 4 April 2021).
- Bai, B.; Su, Y.H.; Yuan, J.; Zhang, X.S. Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol. Plant 2013, 6, 1247–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowak, K.; Wojcikowska, B.; Gaj, M.D. ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway. Planta 2015, 241, 967–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantiri, F.R.; Kurdyukov, S.; Lohar, D.P.; Sharopova, N.; Saeed, N.A.; Wang, X.D.; Vandenbosch, K.A.; Rose, R.J. The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol. 2008, 146, 1622–1636. [Google Scholar] [CrossRef] [Green Version]
- Zobayed, S.M.A.; Armstrong, J.; Armstrong, W. Micropropagation of potato: Evaluation of closed, diffusive and forced ventilation on growth and tuberization. Ann. Bot. 2001, 87, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Vahala, J.; Pappinen, A. Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L.). Plant Cell Tiss. Organ Cult. 2011, 107, 25–33. [Google Scholar] [CrossRef]
- Zhao, Y.; Christensen, S.K.; Fankhauser, C.; Cashman, J.R.; Cohen, J.D.; Weigel, D.; Chory, J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 2001, 291, 306–309. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.-S.; Chen, M.; Li, L.-C.; Ma, Y.-Z. Functions of the ERF transcription factor family in plants. Botany 2008, 86, 969–977. [Google Scholar] [CrossRef]
- Gliwicka, M.; Nowak, K.; Balazadeh, S.; Mueller-Roeber, B.; Gaj, M.D. Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS ONE 2013, 8, e69261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojcikowska, B.; Jaskola, K.; Gasiorek, P.; Meus, M.; Nowak, K.; Gaj, M.D. LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 2013, 238, 425–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, E.W.; Tang, W.; Nichols, K.W.; Fernandez, D.E.; Perry, S.E. Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiol. 2003, 133, 653–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakare, D.; Tang, W.; Hill, K.; Perry, S.E. The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol. 2008, 146, 1663–1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.; Perry, S.E. Control of expression and autoregulation of AGL15, a member of the MADS-box family. Plant J. 2005, 41, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ren, N.; Wang, H.; Stromberg, A.J.; Perry, S.E. Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 2009, 21, 2563–2577. [Google Scholar] [CrossRef] [Green Version]
Plant Species | Process | Explant | Modulation | Effect | Ref. |
---|---|---|---|---|---|
Alfalfa (Medicago sativa) | SE | Petioles and petiole-derived EC | Between 0 and 410 µM NBD | Callus induction/explant and embryo maturation: ↓ as NBD concentration rises, but the calli preinduced with NBD form somatic embryos | [110] |
5 and 50 µM AVG | Somatic embryo differentiation and EC proliferation: ↓ in 50 µM AVG; Somatic embryos at the cotyledonary stage are reduced in all treatments, but EC induction is not significantly affected by AVG | [111] | |||
EC induced from petioles (suspension culture in liquid medium) | 1, 10, 100, or 500 µM AVG or SA; 0.045, 0.09, or 0.112 µM 1-MCP | EC proliferation: ↓ in 10, 100 and 500 µM SA (−50, −70 and −90%, respectively); ↓ in all AVG treatments (−25, −40, −55 and −90%); ↓ in all 1-MCP treatments (−30, −40 and −60%) Embryogenic potential of treated suspension cultures (number of somatic embryos formed): ↓ in all SA treatments (−25, −70, −80 and −90%); ↓ in 10, 100 and 500 µM AVG (−30, −50 and −90%, respectively) and also ↓ in all 1-MCP treatments Somatic embryo development: ↓ somatic embryos at the cotyledonary stage in 1 and 10 µM SA (−25 and −70%, respectively) but ↑ somatic embryos at the globular stage in 100 µM SA; ↑ globular embryos in all AVG treatments; cotyledonary embryos ↓ in 1, 10 and 100 µM AVG (−25, −35 and −40%, respectively); in all 1-MCP treatments ↑ number of globular embryos but further development was blocked | [112] | ||
Arabidopsis thaliana | SAM-SE system a | Seedlings a | 25 µM ACC; 10 µM AVG or AgNO3; 100 µM CoCl2 | Seedlings with embryos (%): ↑ in ACC treatment (around 40%); ↓ in AVG, AgNO3 and CoCl2 treatments (<10%); control: around 25% | [113] |
Black spruce (Picea mariana) | Somatic embryo maturation | Two embryogenic cell lines, with low (a) or high (b) embryogenic capacity | 5, 10, and 100 µM ACC; 0.5, 1, and 2 mM AgNO3; 5, 10, and 100 µM AOA; 178, 356, and 1069 µM C2H4 | Total embryos formed: ↓ in 100 µM ACC for (a) and ↓ in 10 and 100 µM ACC for (b); ↓ in 1069 µM C2H4 for (a), but C2H4 treatments not affect (b) significantly; ↑ in 10 µM AOA and ↓ 100 µM AOA for (a); ↓ in 10 and 100 µM AOA for (b); ↑ in 1 mM AgNO3 for (a) and ↓ in 1 and 2 mM AgNO3 for (b) Ethylene production in both lines: C2H4 production increased during somatic embryo maturation for (a) and C2H4 production was maintained constant and low for (b) | [114] |
Carrot (Daucus carota) | SE | Embryogenic cell suspension induced from hypocotyls | 10, 20, 50, and 100 µM CoC12; 69.2 and 692 µM ETH | Number somatic embryos formed (No./mL of cell suspension): ↑ in 10, 20 and 50 µM CoC12, but ↓ in 100 µM (best treatment, 79 No./mL at 50 µM; control: 23 No./mL); ↓ in both ETH treatments; ↓ in 50 µM CoC12 + 69.2 or 692 µM ETH | [115] |
Gloxinia (Sinningia speciosa) | Org b | Leaf explants | 6.24, 31.22, 62.43, and 124.87 µM AVG; 7.7, 38.5, 77, and 154 µM CoCl2; 3, 15.25, 30.5, and 61 µM STS | Regeneration (%) and shoots per explant: ↑ in 15.25 and 30.5 µM STS (best treatment, 15.25 µM STS, 40% more shoots/explant); ↑ in 6.24 µM AVG or 7.7 µM CoCl2 and ↓ in 62.43 and 124.87 µM AVG or 77 and 154 µM CoCl2 | [105] |
Lemon (Citrus limon) | Org | Adult nodal segments from two cultivars (a) Verna 51 and (b) Fino 49 | 10, 20, and 30 µM ACC, CoCl2 or STS; 5, 10, and 20 µM ETH | Regeneration (%): ↓ in 10, 20 and 30 µM ACC for both; ↓ in 10 and 20 µM ETH for (b); ↑ in 10 and 20 µM STS for both; ↓ in 10 and 20 µM CoCl2 for (b) and ↓ 30 µM CoCl2 for both Buds per explant: ↓ in 10, 20 and 30 µM ACC for both and ↓ in 30 µM CoCl2 for (a) | [116] |
Yellow passionfruit (Passiflora edulis) | Axillary bud culture | Nodal segments | 3 and 10 µM ACC, STS, or AVG | Buds and leaf area per explant: ↓ in 3 and 10 µM ACC and ↑ in 3 and 10 µM STS or AVG treatments Shoot length per explant: ↓ in 3 and 10 µM ACC treatments | [117] |
Melon (Cucumis melo) | Org | Cotyledons b | 60 or 120 µM AgNO3; 69.2 or 138.4 µM ETH | Shoot regeneration (%): ↑ in all AgNO3 treatment for all genotypes; line with best shoot regeneration, 75% at 60 µM and 68% at 120 µM (control 35%) Shoot regeneration (%) for the best line: ↓ in both ETH treatments (19% and 10% at 69.2 µM and 138.4 µM ETH, respectively) | [106] |
Mustard (Brassica juncea L.) | Org | Hypocotyls | 17.66 µM AgNO3 | Shoot regeneration (%): ↑ in AgNO3 treatment with 95.89% shoot regeneration (control: 14.6%) | [108] |
Leaf disc and petioles | 20 µM AgNO3 and 5 µM AVG; AgNO3 or AVG with 10, 25, or 50 µM ETH (combined) | Shoot regeneration (%) from both explants: ↑ in both AgNO3 and AVG treatments, with 80–90% (control: 20–30%) Shoot regeneration (%) in combined treatments (leaf explants): ↓ in 25 or 50 µM ETH + AVG (50 µM ETH + AVG almost inhibited regeneration and slight ↓ in ETH + AgNO3) | [109] | ||
Plant growth | Shoots | 20 µM AgNO3, 5 µM AVG, or 50 µM ETH | Plant growth parameters, such as plant height, number of leaves, number of roots and root length: ↓ in both AgNO3 and ETH treatments (AVG does not have a very significant effect on the same parameters) | ||
Poplar (Populus tremula) | Org | Nodal segments | 5, 10, and 15 µM AVG; 0.5, 1 and 5 µM ACC; 5 and 10 µM ETH | Shoot elongation and number of buds and roots/explant: ↓ in 10–15 µM AVG, ↑ in 5 µM ACC and ↑ in 10 µM ETH | [118] |
Robusta coffee (Coffea canephora) | SE | Leaf squares (two genotypes) | 30, 60, 150, and 300 µM AgNO3 | Number of embryos per explant: ↑ in 30 and 60 µM treatment and ↓ in 150 and 300 µM treatment; One genotype shows the greatest yield at 30 µM (+57%) and the other at 60 µM (+60%) | [119] |
EC developed from hypocotyl and leaf explants | 20 and 40 µM AgNO3, CoCl2, or SA | Calli responded for embryogenesis (%): ↑ in all AgNO3 treatments (best treatment, 40 µM, 48%); ↑ in all CoCl2 treatments (best treatment, 40 µM, 28%); ↑ in all SA treatments (best treatment, 40 µM, 32%), control 5% Number of somatic embryos per callus: ↑ in both all AgNO3 and AVG treatments (best treatment, at 40 µM, 153 and 45 embryos, respectively); in all SA treatments, only pro-embryogenic nodular masses appeared (control did not produce somatic embryos) | [120] | ||
Soybean (Glycine max) | SE | Cotyledons from cultivars with different embryogenic capacity | 10 µM ACC or AVG | Somatic embryo production: ↑ in ACC treatment for two recalcitrant cultivars (slight increase, but not significantly, for cultivar with high embryogenic capacity); ↓ in AVG treatment (almost inhibited) for both two recalcitrant cultivars and cultivar with high embryogenic capacity | [113] |
Spinach (Spinacia oleracea) | SE | Roots | 1, 10, and 100 µM ETH or AgNO3 1 and 10 µM AVG | Embryogenic callus (%): ↓ in all AgNO3 and AVG treatments and ↑ in 10 and 100 µM ETH (only in combination w/ 0.1 µM GA3) Calli forming embryos (%): ↓ in all ETH treatments (somatic embryos formation inhibited at 100 µM) and ↑ in all AgNO3 treatments Number of embryos/calli: ↓ in all ETH treatments and ↑ in all AgNO3 treatments (best treatment, 10 µM AgNO3, 3× more embryos) | [121] |
Summer snowflake (Leucojum aestivum) | SE | EC | 10 µM ACC, AgNO3, or STS KMnO4 (4.5 g solid) | EC increment (%):↑ in both AgNO3 and in KMnO4; ↓ in both ACC and STS treatments Somatic embryo induction and maturation: ↑ in ACC treatment Length of plantlets development: ↑ in KMnO4 treatment | [122] |
Tomato (Solanum pennellii and Solanum lycopersium) | Org | Leaves from two genotypes (Solanum pennellii and F1: Solanum pennellii vs Solanum lycopersicum cv. Anl27) | 5.8, 14.5, 29, and 58 µM AgNO3; 4.2, 10.5, 21, and 42 µM CoCl2; 9.8, 24.5, 49, and 98 µM ACC; 6.9, 17.2, 34.5, and 69 µM ETH | Explants with buds (%): ↓ in 14.5, 29 and 58 µM AgNO3 for S. pennellii; ↓ in 21 µM CoCl2 for F1; ↓ in 98 µM ACC for both genotypes; ↓ in 17.2, 34.5, and 69 µM ETH for S. pennellii and ↓ in 34.5 and 69 µM ETH for F1; (lowest percentage at 69 µM ETH for both S. pennellii and F1, with 20% and 16%, respectively) Explants with shoots (%): ↓ in 14.5, 29 and 58 µM AgNO3 for S. pennellii; ↓ in 21 µM CoCl2 for F1; ↓ in 24.5 and 98 µM ACC for both S. pennellii and F1; ↓ in all ETH treatments for both genotypes (lowest percentage at 69 µM ETH for both S. pennellii and F1, with 12% and 8%, respectively) Nunber of shoots per explant with shoots: ↓ in all AgNO3 treatments for S. pennellii; ↑ in 9.8, 49 and 98 µM ACC for S. pennellii (↑ ×2 more compared to control (around 5 shoots), with around 10 shoots); ↓ in 17.2, 34.5 and 69 µM ETH for S. pennellii; (lowest number at 58 µM AgNO3 and 69 µM ETH with 0.96 and 1, respectively) All AgNO3 treatments inhibited regeneration for F1 | [123] |
Plant Species | Process | Type of Explant | Modulation | Effect | Ref. |
---|---|---|---|---|---|
Arabidopsis thaliana | Org a | Cotyledons | Ethylene mutants | Shoot regeneration (%): ↓ in ethylene insensitive mutants (etr1-1 and ein2-1), ↑ in ethylene constitutive response mutants (ctr1-1 and ctr1-12) and ↑ in ethylene overproduction mutant (eto1-1) | [126] |
SE | Embryonic calli (induced from primary somatic embryos preinduced from immature zygotic embryos) | 10, 20, 50, 100, 150, and 200 µM ACC; ethylene mutants | Somatic embryo regeneration/embryonic calli: ↓ as ACC treatment concentration rises, 100 and 150 μM greatly decreases somatic embryo production and 200 μM almost inhibited its regeneration; ↓ in both ethylene overproduction mutant (eto1-1) and ethylene constitutive response mutant (ctr1-1); ctr1-1 almost inhibited somatic embryo formation; (ethylene insensitive mutants (etr1-3 and ein2-1) and double ACS mutant (acs2-1 acs6-1) do not affect somatic embryos production) | [129] | |
Immature zygotic embryos | 1, 5, 10 µM ACC; 1, 10 µM CoCl2; 1, 10, 15 µM AVG; 1, 10, 100 µM AgNO3 or 250 mM KMnO4; ethylene mutants | Explants that formed somatic embryos (%): ↓ in 1, 5, and 10 µM ACC; in 10 µM CoCl2; in 10 and 15 µM AVG; in 10 and 100 µM AgNO3 and also in 250 mM KMnO4 treatments (lower % at both 10 µM ACC and 10 µM CoCl2 treatments around 20%, control around 90%) Average number of somatic embryos produced/explant: ↓ in 1, 5, and 10 µM ACC; in 10 µM CoCl2; in 10 and 15 µM AVG and also in 100 µM AgNO3 treatments Both parameters ↓ in ethylene insensitive mutants, in ethylene constitutive response mutants, and in ethylene over- and under-producer mutants | [130] | ||
Medicago truncatula | SE | Two different genotype leaf-derived EC lines, with different embryo production capability | 0.1, 1, 10, and 100 µM ACC, MGBG, AgNO3, or AVG; ACS and ACO expression; MtSERF1 b knockdown (using RNAi) | Number of somatic embryos developed/explant: ↑ in 1 and 10 µM ACC and in 10 and 100 µM MGBG, best treatments 10 µM ACC and 100 µM MGBG, = around 35 embryos/explant (control = around 12); ↓ in 1 and 10 µM AVG or AgNO3 and completely inhibited at both 100 µM AVG and AgNO3 treatments; ACS and ACO expression: ↑ in line with highly embryo production capacity; MtSERF1 knockdown: Disrupt somatic embryo production | [131] |
Melon (Cucumis melo) | Org | Leaves and cotyledons | Transgenic plant line expressing antisense ACO; 50 or 100 µM ETH | Shoot regeneration (%) from leaf explants: ↑ in transgenic line with 53% (control 15%) Shoot regeneration (%) from cotyledon explants: ↑ in transgenic line with 37% (control 13%) Shoot regeneration (%) from both explants in response to ETH: ↓ in all ETH treatments (for both explants); transgenic leaf explants + 50 µM ETH treatment shows 5% shoot regeneration and + 100 µM ETH treatment regeneration was inhibited; transgenic cotyledon explants + 50 µM ETH treatment shows 8% shoot regeneration and + 100 µM ETH treatment shows 1% | [107] |
Mustard (Brassica juncea) | Org | Leaf discs and Hypocotyl segments | 10 transgenic plant lines expressing antisense ACO; 5 µM AVG, 10 µM AgNO3, or 50 µM ETH (alone or combined) | Shoot regeneration (%) from leaf explants: ↑ in 9 transgenic lines, between 58% and 92% (control 12–16%), 4 best lines % (83, 79, 80, 92); Shoot regeneration (%) from leaf explants in response to inhibitors and/or ETH: ↑ in WT plants + AVG or + AgNO3 treatments (similar % compared with the 4 transgenic lines w/o treatment), (WT plants + AgNO3 + ETH = around 60%); Both WT plants + AVG + ETH (%) and the 4 transgenic lines + ETH (%) are similar to control; Shoot regeneration (%) from hypocotyl explants: ↑ in the 4 best transgenic lines, 85–95% (control = around 5%) | [125] |
Potato (Solanum tuberosum) | Plant growth; Callus formation | Nodal segments with unfolded leaf | Different ventilations: (a) sealed with silicone rubber bungs; (b) capped with polypropylene discs; and (c) forced ventilation; 3 µM AgNO3 or 2 µM ACC, applied to cultures under different ventilations | Leaf area/explant: ↑ in both (a) + AgNO3 and (b) + AgNO3; ↑ in (a) + ACC and ↓ in (b) + ACC Steam length: ↑ (a) + ACC and ↓ in both (b) + ACC and (c) + ACC Roots/explant: ↑ (a) + ACC and ↓ in both (a) + AgNO3 and (b) + AgNO3 Root length/explant: ↓ in both (a) + ACC and (b) + ACC and ↑ in both a) + AgNO3 and (b) + AgNO3 Ethylene concentration in vessels: low ethylene concentration in both (b) and (c) vessels (similar) and high concentration in (a) vessels | [132] |
Scots pine (Pinus sylvestris) | SE | Embryogenic cell line cultures with distinct embryogenetic capacity | ACS1 and ACS2 expression and ethylene production during different SE stages | ACS1 transcript is accumulated throughout the lines with different embryogenic capacity and also in somatic embryos, similarly; ACS2 transcript is accumulated only in somatic embryos (the ethylene production is only greatly detected in somatic embryos); ↑ ACS2 gene expression levels in the cell line with higher embryogenic capacity; embryos at cotyledonary stage showed highly ethylene production and during germination into plantlets ethylene production is greatly reduced | [133] |
Plant Species | Embryogenic Callus Induction | Embryogenic Callus Proliferation | Somatic Embryo Development | Somatic Embryo Maturation | References |
---|---|---|---|---|---|
Alfalfa | = a | ↑ | ↑ | ↑ | [111,112] |
Arabidopsis thaliana; Carrot; Robusta coffee | NA | NA | ↓ | NA | [129,115,119,120] |
Medicago truncatula; Soybean | NA | NA | ↑ | NA | [131,113] |
Scots pine | NA | NA | ↑ | ↑ | [133] |
Spinach | ↑ | NA | ↓ | NA | [121] |
Summer snowflake | NA | ↓ | ↑ | ↑ | [122] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neves, M.; Correia, S.; Cavaleiro, C.; Canhoto, J. Modulation of Organogenesis and Somatic Embryogenesis by Ethylene: An Overview. Plants 2021, 10, 1208. https://doi.org/10.3390/plants10061208
Neves M, Correia S, Cavaleiro C, Canhoto J. Modulation of Organogenesis and Somatic Embryogenesis by Ethylene: An Overview. Plants. 2021; 10(6):1208. https://doi.org/10.3390/plants10061208
Chicago/Turabian StyleNeves, Mariana, Sandra Correia, Carlos Cavaleiro, and Jorge Canhoto. 2021. "Modulation of Organogenesis and Somatic Embryogenesis by Ethylene: An Overview" Plants 10, no. 6: 1208. https://doi.org/10.3390/plants10061208
APA StyleNeves, M., Correia, S., Cavaleiro, C., & Canhoto, J. (2021). Modulation of Organogenesis and Somatic Embryogenesis by Ethylene: An Overview. Plants, 10(6), 1208. https://doi.org/10.3390/plants10061208