A Comprehensive Overview on the Production of Vaccines in Plant-Based Expression Systems and the Scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics
Abstract
:1. Introduction
2. Progress in Prophylactic and Therapeutic Treatments against COVID-19
2.1. Candidate Vaccine for COVID-19
2.2. Promising Adjuvants Used for the Development of COVID-19 Vaccines
3. Plant Biotechnology-Based Vaccines and Bio-Farming?
3.1. Strategies for the Production of Recombinant Proteins in Plant-Based Expression Systems
3.2. The Present Situation of Vaccines Produced by Plant Biotechnology That Target Respiratory Disease
4. Scope of SARS-CoV-2 Vaccine Development Using Plant Biotechnology Platform
5. Concluding Remarks and Future Direction
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACE2 | Angiotensin Converting Enzyme 2. |
APCs | Antigen Presenting Cells. |
CEPI | Coalition for Epidemic Preparedness Innovations. |
CoVLP | Coronavirus-Like-Particle. |
CRISPR/Cas9 | Clustered Regularly Interspaced Short Palindromic Repeats /CRISPR associated protein 9. |
DNA | Deoxyribose Nucleic Acid. |
EULs | Emergency Use Listing. |
GSK | GlaxoSmithKline. |
IV | Inactivated Virus. |
KBP | Kentucky BioProcessing. |
LAV | Live Attenuated Virus. |
PS | Protein Subunit. |
BHR | Bronchial Hyper-Responsiveness. |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus-2. |
SSA | Sunflower Seed Albumin. |
TALEN | Transcription activator-like effector nucleases. |
UTRs | Untranslated Regions. |
VLPs | Virus-Like Particles. |
WHO | World Health Organization. |
References
- Xu, X.T.; Chen, P.; Wang, J.F.; Feng, J.N.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 2020, 63, 457–460. [Google Scholar] [CrossRef] [Green Version]
- WHO (World Health Organization). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 14 June 2021).
- WHO (World Health Organization). Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed on 14 June 2021).
- Mitja, O.; Clotet, B. Use of antiviral drugs to reduce COVID-19 transmission. Lancet Glob. Health 2020, 8, E639–E640. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Schroeder, S.; Kleine-Weber, H.; Muller, M.A.; Drosten, C.; Pohlmann, S. Nafamostat Mesylate Blocks Activation of SARS-CoV-2: New Treatment Option for COVID-19. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef] [Green Version]
- Engelmann, C.; Fischer, J.; Krohn, S.; Herber, A.; Boehlig, A.; Deichsel, D.; Boehm, S.; Berg, T. Genetic polymorphism of mannose binding lectin 2: A potential new risk factor for spontaneous bacterial peritonitis in cirrhotic patients. Hepatology 2014, 60, 483a. [Google Scholar]
- Gurwitz, D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev. Res. 2020, 81, 537–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speth, R.C. Response to recent commentaries regarding the involvement of angiotensin-converting enzyme 2 (ACE2) and renin-angiotensin system blockers in SARS-CoV-2 infections. Drug Dev. Res. 2020, 81, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.G.; Wang, Z.Q.; Zhao, F.; Yang, Y.; Li, J.X.; Yuan, J.; Wang, F.X.; Li, D.L.; Yang, M.H.; Xing, L.; et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA 2020, 323, 1582–1589. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Bao, L.L.; Mao, H.Y.; Wang, L.; Xu, K.W.; Yang, M.N.; Li, Y.J.; Zhu, L.; Wang, N.; Lv, Z.; et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020, 369, 77. [Google Scholar] [CrossRef]
- van Riel, D.; de Wit, E. Next-generation vaccine platforms for COVID-19. Nat. Mater. 2020, 19, 810–812. [Google Scholar] [CrossRef]
- See, R.H.; Petric, M.; Lawrence, D.J.; Mok, C.P.Y.; Rowe, T.; Zitzow, L.A.; Karunakaran, K.P.; Voss, T.G.; Brunham, R.C.; Gauldie, J.; et al. Severe acute respiratory syndrome vaccine efficacy in ferrets: Whole killed virus and adenovirus-vectored vaccines. J. Gen. Virol. 2008, 89, 2136–2146. [Google Scholar] [CrossRef]
- Kobinger, G.P.; Figueredo, J.M.; Rowe, T.; Zhi, Y.; Gao, G.P.; Sanmiguel, J.C.; Bell, P.; Wivel, N.A.; Zitzow, L.A.; Flieder, D.B.; et al. Adenovirus-based vaccine prevents pneumonia in ferrets challenged with the SARS coronavirus and stimulates robust immune responses in macaques. Vaccine 2007, 25, 5220–5231. [Google Scholar] [CrossRef]
- Qu, D.; Zheng, B.J.; Yao, X.; Guan, Y.; Yuan, Z.H.; Zhong, N.S.; Lu, L.W.; Xie, J.P.; Wen, Y.M. Intranasal immunization with inactivated SARS-CoV (SARS-associated coronavirus) induced local and serum antibodies in mice. Vaccine 2005, 23, 924–931. [Google Scholar] [CrossRef]
- Kotomina, T.; Isakova-Sivak, I.; Matyushenko, V.; Kim, K.H.; Lee, Y.; Jung, Y.J.; Kang, S.M.; Rudenko, L. Recombinant live attenuated influenza vaccine viruses carrying CD8 T-cell epitopes of respiratory syncytial virus protect mice against both pathogens without inflammatory disease. Antiviral Res. 2019, 168, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.B.; Patel, D.K.; Antonello, J.M.; Washabaugh, M.W.; Kaslow, D.C.; Shiver, J.W.; Chirmule, N. Development of an adenovirus-shedding assay for the detection of adenoviral vector-based vaccine and gene therapy products in clinical specimens. Hum. Gene Ther. 2003, 14, 25–36. [Google Scholar] [CrossRef]
- Jiang, S.B. Don’t rush to deploy COVID-19 vaccines and drugs. Nature 2020, 579, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvatori, G.; Luberto, L.; Maffei, M.; Aurisicchio, L.; Roscilli, G.; Palombo, F.; Marra, E. SARS-CoV-2 SPIKE PROTEIN: An optimal immunological target for vaccines. J. Transl. Med. 2020, 18. [Google Scholar] [CrossRef]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281. [Google Scholar] [CrossRef] [PubMed]
- Armbruster, N.; Jasny, E.; Petsch, B. Advances in RNA Vaccines for Preventive Indications: A Case Study of a Vaccine against Rabies. Vaccines 2019, 7, 132. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.N.; Li, X.F.; Deng, Y.Q.; Zhao, H.; Huang, Y.J.; Yang, G.; Huang, W.J.; Gao, P.; Zhou, C.; Zhang, R.R.; et al. A Thermostable mRNA Vaccine against COVID-19. Cell 2020, 182, 1271–1283 e1216. [Google Scholar] [CrossRef] [PubMed]
- Tai, W.; Zhang, X.; Drelich, A.; Shi, J.; Hsu, J.C.; Luchsinger, L.; Hillyer, C.D.; Tseng, C.K.; Jiang, S.; Du, L. A novel receptor-binding domain (RBD)-based mRNA vaccine against SARS-CoV-2. Cell Res. 2020, 10, 932–935. [Google Scholar] [CrossRef] [PubMed]
- Corbett, K.S.; Flynn, B.; Foulds, K.E.; Francica, J.R.; Boyoglu-Barnum, S.; Werner, A.P.; Flach, B.; O’Connell, S.; Bock, K.W.; Minai, M.; et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Egan, K.P.; Hook, L.M.; Naughton, A.; Pardi, N.; Awasthi, S.; Cohen, G.H.; Weissman, D.; Friedman, H.M. An HSV-2 nucleoside-modified mRNA genital herpes vaccine containing glycoproteins gC, gD, and gE protects mice against HSV-1 genital lesions and latent infection. PLoS Pathog. 2020, 16, e1008795. [Google Scholar] [CrossRef]
- Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; et al. An mRNA Vaccine against SARS-CoV-2-. Preliminary Report. N. Engl. J. Med. 2020, 383, 1920–1931. [Google Scholar] [CrossRef]
- Ahammad, I.; Lira, S.S. Designing a novel mRNA vaccine against SARS-CoV-2: An immunoinformatics approach. Int. J. Biol. Macromol. 2020, 162, 820–837. [Google Scholar] [CrossRef]
- Verbeke, R.; Lentacker, I.; De Smedt, S.C.; Dewitte, H. Three decades of messenger RNA vaccine development. Nano Today 2019, 28, 100766. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.H.; Patel, N.; Haupt, R.; Zhou, H.; Weston, S.; Hammond, H.; Logue, J.; Portnoff, A.D.; Norton, J.; Guebre-Xabier, M.; et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat. Commun. 2021, 12, 372. [Google Scholar] [CrossRef]
- Grifoni, A.; Sidney, J.; Zhang, Y.; Scheuermann, R.H.; Peters, B.; Sette, A. A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2. Cell Host Microbe 2020, 27, 671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Lin, D.Z.; Sun, X.Y.Y.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science 2020, 368, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, J.M. (How) do aluminium adjuvants work? Immunol. Lett. 2006, 102, 10–15. [Google Scholar] [CrossRef]
- Kuroda, E.; Coban, C.; Ishii, K.J. Particulate Adjuvant and Innate Immunity: Past Achievements, Present Findings, and Future Prospects. Int. Rev. Immunol. 2013, 32, 209–220. [Google Scholar] [CrossRef]
- Ellouz, F.; Adam, A.; Ciorbaru, R.; Lederer, E. Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem. Biophys. Res. Commun. 1974, 59, 1317–1325. [Google Scholar] [CrossRef]
- Chedid, L.; Parant, M.; Audibert, F.; Riveau, G.; Parant, F.; Lederer, E.; Choay, J.; Lefrancier, P. Biological activity of a new synthetic muramyl peptide adjuvant devoid of pyrogenicity. Infect. Immun. 1982, 35, 417–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aucouturier, J.; Dupuis, L.; Ganne, V. Adjuvants designed for veterinary and human vaccines. Vaccine 2001, 19, 2666–2672. [Google Scholar] [CrossRef]
- Negash, T.; Liman, M.; Rautenschlein, S. Mucosal application of cationic poly (D, L-lactide-co-glycolide) microparticles as carriers of DNA vaccine and adjuvants to protect chickens against infectious bursal disease. Vaccine 2013, 31, 3656–3662. [Google Scholar] [CrossRef]
- Wen, Z.-S.; Xu, Y.-L.; Zou, X.-T.; Xu, Z.-R. Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar. Drugs 2011, 9, 1038–1055. [Google Scholar] [CrossRef]
- De Titta, A.; Ballester, M.; Julier, Z.; Nembrini, C.; Jeanbart, L.; Van Der Vlies, A.J.; Swartz, M.A.; Hubbell, J.A. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc. Natl. Acad. Sci. USA 2013, 110, 19902–19907. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.J.; Wilkinson, A.; Bramwell, V.W.; Christensen, D.; Perrie, Y. T h1 immune responses can be modulated by varying dimethyldioctadecylammonium and distearoyl-sn-glycero-3-phosphocholine content in liposomal adjuvants. J. Pharmacy Pharmacol. 2014, 66, 358–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, M.D.; Unger, W.J.; Storm, G.; Van Kooyk, Y.; Mastrobattista, E. Targeting tumor antigens to dendritic cells using particulate carriers. J. Controlled Release 2012, 161, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Petrovsky, N. Novel human polysaccharide adjuvants with dual Th1 and Th2 potentiating activity. Vaccine 2006, 24, S26–S29. [Google Scholar] [CrossRef] [Green Version]
- Petrovsky, N.; Aguilar, J.C. Vaccine adjuvants: Current state and future trends. Immunol. Cell Biol. 2004, 82, 488–496. [Google Scholar] [CrossRef]
- Ghimire, T.R. The mechanisms of action of vaccines containing aluminum adjuvants: An in vitro vs in vivo paradigm. Springerplus 2015, 4, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Hogenesch, H. Mechanisms of stimulation of the immune response by aluminum adjuvants. Vaccine 2002, 20, S34–S39. [Google Scholar] [CrossRef]
- Jones, L.S.; Peek, L.J.; Power, J.; Markham, A.; Yazzie, B.; Middaugh, C.R. Effects of adsorption to aluminum salt adjuvants on the structure and stability of model protein antigens. J. Biol. Chem. 2005, 280, 13406–13414. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S.S.; Magcalas, F.W.; Kalbfleisch, K.N.; Carpick, B.W.; Kirkitadze, M.D. Tuberculosis vaccine candidate: Characterization of H4-IC31 formulation and H4 antigen conformation. J. Pharm. Biomed. 2018, 157, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Doener, F.; Hong, H.S.; Meyer, I.; Tadjalli-Mehr, K.; Daehling, A.; Heidenreich, R.; Koch, S.D.; Fotin-Mleczek, M.; Gnad-Vogt, U. RNA-based adjuvant CV8102 enhances the immunogenicity of a licensed rabies vaccine in a first-in-human trial. Vaccine 2019, 37, 1819–1826. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.; Soldner, C.; Lienenklaus, S.; Spanier, J.; Trittel, S.; Riese, P.; Kramps, T.; Weiss, S.; Heidenreich, R.; Jasny, E. A new RNA-based adjuvant enhances virus-specific vaccine responses by locally triggering TLR-and RLH-dependent effects. J. Immunol. 2017, 198, 1595–1605. [Google Scholar] [CrossRef] [Green Version]
- Heidenreich, R.; Jasny, E.; Kowalczyk, A.; Lutz, J.; Probst, J.; Baumhof, P.; Scheel, B.; Voss, S.; Kallen, K.J.; Fotin-Mleczek, M. A novel RNA-based adjuvant combines strong immunostimulatory capacities with a favorable safety profile. Int. J. Cancer 2015, 137, 372–384. [Google Scholar] [CrossRef]
- Garçon, N.; Vaughn, D.W.; Didierlaurent, A.M. Development and evaluation of AS03, an Adjuvant System containing α-tocopherol and squalene in an oil-in-water emulsion. Expert Rev. Vaccines 2012, 11, 349–366. [Google Scholar] [CrossRef]
- Morel, S.; Didierlaurent, A.; Bourguignon, P.; Delhaye, S.; Baras, B.; Jacob, V.; Planty, C.; Elouahabi, A.; Harvengt, P.; Carlsen, H. Adjuvant System AS03 containing α-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 2011, 29, 2461–2473. [Google Scholar] [CrossRef] [PubMed]
- Cohet, C.; van der Most, R.; Bauchau, V.; Bekkat-Berkani, R.; Doherty, T.M.; Schuind, A.; Tavares Da Silva, F.; Rappuoli, R.; Garçon, N.; Innis, B.L. Safety of AS03-adjuvanted influenza vaccines: A review of the evidence. Vaccine 2019, 37, 3006–3021. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, S.E.; Reimer, J.M.; Karlsson, K.H.; Lilja, L.; Bengtsson, K.L.; Stertman, L. Immune enhancing properties of the novel Matrix-M™ adjuvant leads to potentiated immune responses to an influenza vaccine in mice. Vaccine 2013, 31, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- Reimer, J.M.; Karlsson, K.H.; Lövgren-Bengtsson, K.; Magnusson, S.E.; Fuentes, A.; Stertman, L. Matrix-M™ adjuvant induces local recruitment, activation and maturation of central immune cells in absence of antigen. PLoS ONE 2012, 7, e41451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, G.; Major, D.; Roseby, S.; Wood, J.; Madhun, A.S.; Cox, R.J. Matrix-M adjuvanted virosomal H5N1 vaccine confers protection against lethal viral challenge in a murine model. Influenza Other Respir. Viruses 2011, 5, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Madhun, A.S.; Haaheim, L.R.; Nilsen, M.V.; Cox, R.J. Intramuscular Matrix-M-adjuvanted virosomal H5N1 vaccine induces high frequencies of multifunctional Th1 CD4+ cells and strong antibody responses in mice. Vaccine 2009, 27, 7367–7376. [Google Scholar] [CrossRef]
- Radošević, K.; Rodriguez, A.; Mintardjo, R.; Tax, D.; Bengtsson, K.L.; Thompson, C.; Zambon, M.; Weverling, G.J.; UytdeHaag, F.; Goudsmit, J. Antibody and T-cell responses to a virosomal adjuvanted H9N2 avian influenza vaccine: Impact of distinct additional adjuvants. Vaccine 2008, 26, 3640–3646. [Google Scholar] [CrossRef] [PubMed]
- Cox, F.; Roos, A.; Hafkemeijer, N.; Baart, M.; Tolboom, J.; Dekking, L.; Stittelaar, K.; Goudsmit, J.; Radošević, K.; Saeland, E. Matrix-M adjuvated seasonal virosomal influenza vaccine induces partial protection in mice and ferrets against avian H5 and H7 challenge. PLoS ONE 2015, 10, e0135723. [Google Scholar] [CrossRef] [Green Version]
- Fischer, R.; Buyel, J.F. Molecular farming-The slope of enlightenment. Biotechnol. Adv. 2020, 40, 107519. [Google Scholar] [CrossRef]
- Hiatt, A.; Cafferkey, R.; Bowdish, K. Production of antibodies in transgenic plants. Nature 1989, 342, 76–78. [Google Scholar] [CrossRef]
- Ma, J.K.; Drake, P.M.; Christou, P. The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 2003, 4, 794–805. [Google Scholar] [CrossRef]
- Stoger, E.; Fischer, R.; Moloney, M.; Ma, J.K. Plant molecular pharming for the treatment of chronic and infectious diseases. Annu. Rev. Plant. Biol. 2014, 65, 743–768. [Google Scholar] [CrossRef]
- Tschofen, M.; Knopp, D.; Hood, E.; Stoger, E. Plant Molecular Farming: Much More than Medicines. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 2016, 9, 271–294. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Mendoza, S.; Marquez-Escobar, V.A.; Gonzalez-Ortega, O.; Nieto-Gomez, R.; Arevalo-Villalobos, J.I. What Does Plant-Based Vaccine Technology Offer to the Fight against COVID-19? Vaccines 2020, 8, 183. [Google Scholar] [CrossRef] [Green Version]
- Sijmons, P.C.; Dekker, B.M.; Schrammeijer, B.; Verwoerd, T.C.; van den Elzen, P.J.; Hoekema, A. Production of correctly processed human serum albumin in transgenic plants. Biotechnology 1990, 8, 217–221. [Google Scholar] [CrossRef]
- Twyman, R.M.; Stoger, E.; Schillberg, S.; Christou, P.; Fischer, R. Molecular farming in plants: Host systems and expression technology. Trends Biotechnol. 2003, 21, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Gonzalez, J.A.; Banuelos-Hernandez, B.; Rosales-Mendoza, S. Current status of viral expression systems in plants and perspectives for oral vaccines development. Plant. Mol. Biol. 2015, 87, 203–217. [Google Scholar] [CrossRef] [PubMed]
- García-Hernández, A.L.; Rubio-Infante, N.; Moreno-Fierros, L. Mucosal Immunology and Oral Vaccination. In Genetically Engineered Plants as a Source of Vaccines Against Wide Spread Diseases: An Integrated View; Rosales-Mendoza, S., Ed.; Springer: New York, NY, USA, 2014; pp. 15–42. [Google Scholar]
- Rech, E.L.; Vianna, G.R.; Aragao, F.J. High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 2008, 3, 410–418. [Google Scholar] [CrossRef]
- Rech, E.L. Seeds, recombinant DNA and biodiversity. Seed Sci. Res. 2012, 22, S36–S44. [Google Scholar] [CrossRef]
- Pogrebnyak, N.; Golovkin, M.; Andrianov, V.; Spitsin, S.; Smirnov, Y.; Egolf, R.; Koprowski, H. Severe acute respiratory syndrome (SARS) S protein production in plants: Development of recombinant vaccine. Proc. Natl. Acad. Sci. USA 2005, 102, 9062–9067. [Google Scholar] [CrossRef] [Green Version]
- Li, H.Y.; Ramalingam, S.; Chye, M.L. Accumulation of recombinant SARS-CoV spike protein in plant cytosol and chloroplasts indicate potential for development of plant-derived oral vaccines. Exp. Biol. Med. 2006, 231, 1346–1352. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.Y.; Xia, R.; Yang, C.P.; Yin, B.J.; Li, Y.; Duan, C.G.; Liang, L.M.; Guo, H.S.; Xie, Q. Boosted expression of the SARS-CoV nucleocapsid protein in tobacco and its immunogenicity in mice. Vaccine 2009, 27, 5001–5007. [Google Scholar] [CrossRef] [PubMed]
- Demurtas, O.C.; Massa, S.; Illiano, E.; De Martinis, D.; Chan, P.K.S.; Di Bonito, P.; Franconi, R. Antigen Production in Plant to Tackle Infectious Diseases Flare Up: The Case of SARS. Front. Plant Sci 2016, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Daniell, H.; Chan, H.T.; Pasoreck, E.K. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases. Annu. Rev. Genet. 2016, 50, 595–618. [Google Scholar] [CrossRef] [Green Version]
- Bilichak, A.; Gaudet, D.; Laurie, J. Emerging Genome Engineering Tools in Crop Research and Breeding. Methods Mol. Biol. 2020, 2072, 165–181. [Google Scholar] [CrossRef]
- Olejniczak, S.A.; Lojewska, E.; Kowalczyk, T.; Sakowicz, T. Chloroplasts: State of research and practical applications of plastome sequencing. Planta 2016, 244, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Arai, Y.; Shikanai, T.; Doi, Y.; Yoshida, S.; Yamaguchi, I.; Nakashita, H. Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant. Cell Physiol. 2004, 45, 1176–1184. [Google Scholar] [CrossRef] [Green Version]
- Salazar-González, J.A.; Monreal-Escalante, E.; Díaz, A.H.; Koop, H.U.; Rosales-Mendoza, S. Plastid-Based Expression Strategies. In Genetically Engineered Plants as a Source of Vaccines Against Wide Spread Diseases: An Integrated View; Rosales-Mendoza, S., Ed.; Springer: New York, NY, USA, 2014; pp. 61–78. [Google Scholar]
- Marillonnet, S.; Giritch, A.; Gils, M.; Kandzia, R.; Klimyuk, V.; Gleba, Y. In planta engineering of viral RNA replicons: Efficient assembly by recombination of DNA modules delivered by Agrobacterium (vol 18, pg 3852, 2004). Proc. Natl. Acad. Sci. USA 2004, 101, 15546. [Google Scholar] [CrossRef] [Green Version]
- Peyret, H.; Lomonossoff, G.P. When plant virology met Agrobacterium: The rise of the deconstructed clones. Plant. Biotechnol. J. 2015, 13, 1121–1135. [Google Scholar] [CrossRef] [Green Version]
- Marquez-Escobar, V.A.; Rosales-Mendoza, S.; Beltran-Lopez, J.I.; Gonzalez-Ortega, O. Plant-based vaccines against respiratory diseases: Current status and future prospects. Expert Rev. Vaccines 2017, 16, 137–149. [Google Scholar] [CrossRef]
- Gomez, E.; Lucero, M.S.; Zoth, S.C.; Carballeda, J.M.; Gravisaco, M.J.; Berinstein, A. Transient expression of VP2 in Nicotiana benthamiana and its use as a plant-based vaccine against Infectious Bursal Disease Virus. Vaccine 2013, 31, 2623–2627. [Google Scholar] [CrossRef] [PubMed]
- Musiychuk, K.; Stephenson, N.; Bi, H.; Farrance, C.E.; Orozovic, G.; Brodelius, M.; Brodelius, P.; Horsey, A.; Ugulava, N.; Shamloul, A.M.; et al. A launch vector for the production of vaccine antigens in plants. Influenza Other Respir. Viruses 2007, 1, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Rybicki, E.P. Plant-based vaccines against viruses. Virol. J. 2014, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- D’Aoust, M.A.; Lavoie, P.O.; Couture, M.M.J.; Trepanier, S.; Guay, J.M.; Dargis, M.; Mongrand, S.; Landry, N.; Ward, B.J.; Vezina, L.P. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant. Biotechnol. J. 2008, 6, 930–940. [Google Scholar] [CrossRef] [PubMed]
- Landry, N.; Ward, B.J.; Trepanier, S.; Montomoli, E.; Dargis, M.; Lapini, G.; Vezina, L.P. Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS ONE 2010, 5, e15559. [Google Scholar] [CrossRef] [Green Version]
- Le Mauff, F.; Mercier, G.; Chan, P.; Burel, C.; Vaudry, D.; Bardor, M.; Vezina, L.P.; Couture, M.; Lerouge, P.; Landry, N. Biochemical composition of haemagglutinin-based influenza virus-like particle vaccine produced by transient expression in tobacco plants. Plant Biotechnol. J. 2015, 13, 717–725. [Google Scholar] [CrossRef]
- Shoji, Y.; Prokhnevsky, A.; Leffet, B.; Vetter, N.; Tottey, S.; Satinover, S.; Musiychuk, K.; Shamloul, M.; Norikane, J.; Jones, R.M.; et al. Immunogenicity of H1N1 influenza virus-like particles produced in Nicotiana benthamiana. Hum. Vaccin Immunother. 2015, 11, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Shoji, Y.; Farrance, C.E.; Bautista, J.; Bi, H.; Musiychuk, K.; Horsey, A.; Park, H.; Jaje, J.; Green, B.J.; Shamloul, M.; et al. A plant-based system for rapid production of influenza vaccine antigens. Influenza Other Respir. Viruses 2012, 6, 204–210. [Google Scholar] [CrossRef]
- Shoji, Y.; Chichester, J.A.; Jones, M.; Manceva, S.D.; Damon, E.; Mett, V.; Musiychuk, K.; Bi, H.; Farrance, C.; Shamloul, M.; et al. Plant-based rapid production of recombinant subunit hemagglutinin vaccines targeting H1N1 and H5N1 influenza. Hum. Vaccines 2011, 7, 41–50. [Google Scholar] [CrossRef]
- Cummings, J.F.; Guerrero, M.L.; Moon, J.E.; Waterman, P.; Nielsen, R.K.; Jefferson, S.; Gross, F.L.; Hancock, K.; Katz, J.M.; Yusibov, V.; et al. Safety and immunogenicity of a plant-produced recombinant monomer hemagglutinin-based influenza vaccine derived from influenza A (H1N1)pdm09 virus: A Phase 1 dose-escalation study in healthy adults. Vaccine 2014, 32, 2251–2259. [Google Scholar] [CrossRef]
- Neuhaus, V.; Chichester, J.A.; Ebensen, T.; Schwarz, K.; Hartman, C.E.; Shoji, Y.; Guzman, C.A.; Yusibov, V.; Sewald, K.; Braun, A. A new adjuvanted nanoparticle-based H1N1 influenza vaccine induced antigen-specific local mucosal and systemic immune responses after administration into the lung. Vaccine 2014, 32, 3216–3222. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Stobart, C.C.; Hotard, A.L.; Moore, M.L. An overview of respiratory syncytial virus. PLoS Pathog. 2014, 10, e1004016. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; McAllister, D.A.; O’Brien, K.L.; Simoes, E.A.F.; Madhi, S.A.; Gessner, B.D.; Polack, F.P.; Balsells, E.; Acacio, S.; Aguayo, C.; et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study. Lancet 2017, 390, 946–958. [Google Scholar] [CrossRef] [Green Version]
- Ackerson, B.; Tseng, H.F.; Sy, L.S.; Solano, Z.; Slezak, J.; Luo, Y.; Fischetti, C.A.; Shinde, V. Severe Morbidity and Mortality Associated With Respiratory Syncytial Virus Versus Influenza Infection in Hospitalized Older Adults. Clin. Infect. Dis. 2019, 69, 197–203. [Google Scholar] [CrossRef]
- Foley, D.A.; Phuong, L.K.; Englund, J.A. Respiratory syncytial virus immunisation overview. J. Paediatr. Child Health 2020, 56, 1865–1867. [Google Scholar] [CrossRef]
- Sandhu, J.S.; Krasnyanski, S.F.; Domier, L.L.; Korban, S.S.; Osadjan, M.D.; Buetow, D.E. Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res. 2000, 9, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, C.; Robinson, K.; Le Page, R.W.F.; Wells, J.M. Heterologous expression of an immunogenic pneumococcal type 3 capsular polysaccharide in Lactococcus lactis. Infect. Immun. 2000, 68, 3251–3260. [Google Scholar] [CrossRef] [Green Version]
- van Deuren, M.; Brandtzaeg, P.; van der Meer, J.W.M. Update on meningococcal disease with emphasis on pathogenesis and clinical management. Clin. Microbiol Rev. 2000, 13, 144. [Google Scholar] [CrossRef]
- Smith, C.M.; Fry, S.C.; Gough, K.C.; Patel, A.J.F.; Glenn, S.; Goldrick, M.; Roberts, I.S.; Whitelam, G.C.; Andrew, P.W. Recombinant Plants Provide a New Approach to the Production of Bacterial Polysaccharide for Vaccines. PLoS ONE 2014, 9, e88144. [Google Scholar] [CrossRef] [PubMed]
- Abrami, L.; Reig, N.; van der Goot, F.G. Anthrax toxin: The long and winding road that leads to the kill. Trends Microbiol. 2005, 13, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Guichard, A.; Nizet, V.; Bier, E. New insights into the biological effects of anthrax toxins: Linking cellular to organismal responses. Microbes Infect. 2012, 14, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Aloni-Grinstein, R.; Gat, O.; Altboum, Z.; Velan, B.; Cohen, S.; Shafferman, A. Oral spore vaccine based on live attenuated nontoxinogenic Bacillus anthracis expressing recombinant mutant protective antigen. Infect. Immun. 2005, 73, 4043–4053. [Google Scholar] [CrossRef] [Green Version]
- Baillie, L.W.J.; Rodriguez, A.L.; Moore, S.; Atkins, H.S.; Feng, C.; Nataro, J.R.; Pasetti, M.F. Towards a human oral vaccine for anthrax: The utility of a Salmonella Typhi Ty21a-based prime-boost immunization strategy. Vaccine 2008, 26, 6083–6091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bielinska, A.U.; Janczak, K.W.; Landers, J.J.; Makidon, P.; Sower, L.E.; Peterson, J.W.; Baker, J.R., Jr. Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. Infect. Immun. 2007, 75, 4020–4029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brey, R.N. Molecular basis for improved anthrax vaccines. Adv. Drug Deliv. Rev. 2005, 57, 1266–1292. [Google Scholar] [CrossRef]
- Twyman, R.M.; Schillberg, S.; Fischer, R. Transgenic plants in the biopharmaceutical market. Expert Opin. Emerg. Drugs 2005, 10, 185–218. [Google Scholar] [CrossRef]
- Walmsley, A.M.; Arntzen, C.J. Plant cell factories and mucosal vaccines. Curr. Opin. Biotechnol. 2003, 14, 145–150. [Google Scholar] [CrossRef]
- Aziz, M.A.; Singh, S.; Anand Kumar, P.; Bhatnagar, R. Expression of protective antigen in transgenic plants: A step towards edible vaccine against anthrax. Biochem. Biophys. Res. Commun. 2002, 299, 345–351. [Google Scholar] [CrossRef]
- Aziz, M.A.; Sikriwal, D.; Singh, S.; Jarugula, S.; Kumar, P.A.; Bhatnagar, R. Transformation of an edible crop with the pagA gene of Bacillus anthracis. FASEB J. 2005, 19, 1501–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorantala, J.; Grover, S.; Rahi, A.; Chaudhary, P.; Rajwanshi, R.; Sarin, N.B.; Bhatnagar, R. Generation of protective immune response against anthrax by oral immunization with protective antigen plant-based vaccine. J. Biotechnol. 2014, 176, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chichester, J.A.; Manceva, S.D.; Rhee, A.; Coffin, M.V.; Musiychuk, K.; Mett, V.; Shamloul, M.; Norikane, J.; Streatfield, S.J.; Yusibov, V. A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis Ames spores. Hum. Vaccin Immunother. 2013, 9, 544–552. [Google Scholar] [CrossRef] [Green Version]
- Bandurska, K.; Brodzik, R.; Spitsin, S.; Kohl, T.; Portocarrero, C.; Smirnov, Y.; Pogrebnyak, N.; Sirko, A.; Koprowski, H.; Golovkin, M. Plant-produced hepatitis B core protein chimera carrying anthrax protective antigen domain-4. Hybridoma (Larchmt) 2008, 27, 241–247. [Google Scholar] [CrossRef]
- Zenteno-Cuevas, R. Successes and failures in human tuberculosis vaccine development. Expert Opin. Biol. Ther. 2017, 17, 1481–1491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, S.; Li, J.; Liu, Y.; Hu, Y.; Cai, H. Oral immunogenicity of potato-derived antigens to Mycobacterium tuberculosis in mice. Acta Biochim. Biophys. Sin. (Shanghai) 2012, 44, 823–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepponi, I.; Diogo, G.R.; Stylianou, E.; van Dolleweerd, C.J.; Drake, P.M.W.; Paul, M.J.; Sibley, L.; Ma, J.K.C.; Reljic, R. Plant-derived recombinant immune complexes as self-adjuvanting TB immunogens for mucosal boosting of BCG. Plant. Biotechnol. J. 2014, 12, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Rigano, M.M.; Dreitz, S.; Kipnis, A.P.; Izzo, A.A.; Walmsley, A.M. Oral immunogenicity of a plant-made, subunit, tuberculosis vaccine. Vaccine 2006, 24, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Rigano, M.M.; Alvarez, M.L.; Pinkhasov, J.; Jin, Y.; Sala, F.; Arntzen, C.J.; Walmsley, A.M. Production of a fusion protein consisting of the enterotoxigenic Escherichia coli heat-labile toxin B subunit and a tuberculosis antigen in Arabidopsis thaliana. Plant. Cell Rep. 2004, 22, 502–508. [Google Scholar] [CrossRef]
- Uvarova, E.A.; Belavin, P.A.; Permyakova, N.V.; Zagorskaya, A.A.; Nosareva, O.V.; Kakimzhanova, A.A.; Deineko, E.V. Oral Immunogenicity of Plant-Made Mycobacterium tuberculosis ESAT6 and CFP10. Biomed. Res. Int. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Lakshmi, P.S.; Verma, D.; Yang, X.D.; Lloyd, B.; Daniell, H. Low Cost Tuberculosis Vaccine Antigens in Capsules: Expression in Chloroplasts, Bio-Encapsulation, Stability and Functional Evaluation In Vitro. PLoS ONE 2013, 8, e54708. [Google Scholar] [CrossRef]
- Smart, V.; Foster, P.S.; Rothenberg, M.E.; Higgins, T.J.V.; Hogan, S.P. A plant-based allergy vaccine suppresses experimental asthma via an IFN-gamma and CD4(+) CD45RB(low) T cell-dependent mechanism. J. Immunol. 2003, 171, 2116–2126. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Kaminuma, O.; Yang, L.J.; Takai, T.; Mori, A.; Umezu-Goto, M.; Ohtomo, T.; Ohmachi, Y.; Noda, Y.; Hirose, S.; et al. Prevention of allergic asthma by vaccination with transgenic rice seed expressing mite allergen: Induction of allergen-specific oral tolerance without bystander suppression. Plant. Biotechnol. J. 2011, 9, 982–990. [Google Scholar] [CrossRef]
- Bateman, E.D.; Hurd, S.S.; Barnes, P.J.; Bousquet, J.; Drazen, J.M.; FitzGerald, J.M.; Gibson, P.; Ohta, K.; O’Byrne, P.; Pedersen, S.E.; et al. Global strategy for asthma management and prevention: GINA executive summary (vol 31, pg 143, 2008). Eur. Respir. J. 2018, 51, 143–178. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Jiang, Y.; Guo, W.; Liu, Z. Production of a chimeric allergen derived from the major allergen group 1 of house dust mite species in Nicotiana benthamiana. Hum. Immunol. 2013, 74, 531–537. [Google Scholar] [CrossRef]
- Rosales-Mendoza, S.; Salazar-Gonzalez, J.A. Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Rev. Vaccines 2014, 13, 737–749. [Google Scholar] [CrossRef]
- Lee, M.F.; Chiang, C.H.; Li, Y.L.; Wang, N.M.; Song, P.P.; Lin, S.J.; Chen, Y.H. Oral edible plant vaccine containing hypoallergen of American cockroach major allergen Per a 2 prevents roach-allergic asthma in a murine model. PLoS ONE 2018, 13, e0201281. [Google Scholar] [CrossRef] [PubMed]
- Perotti, M.; Perez, L. Virus-Like Particles and Nanoparticles for Vaccine Development against HCMV. Viruses 2019, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, M.F.; Jennings, G.T. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 2010, 10, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Chabeda, A.; van Zyl, A.R.; Rybicki, E.P.; Hitzeroth, I.I. Substitution of Human Papillomavirus Type 16 L2 Neutralizing Epitopes Into L1 Surface Loops: The Effect on Virus-Like Particle Assembly and Immunogenicity. Front. Plant. Sci. 2019, 10, 779. [Google Scholar] [CrossRef]
- Lopez-Sagaseta, J.; Malito, E.; Rappuoli, R.; Bottomley, M.J. Self-assembling protein nanoparticles in the design of vaccines. Comput. Struct. Biotechnol. J. 2016, 14, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Manolova, V.; Flace, A.; Bauer, M.; Schwarz, K.; Saudan, P.; Bachmann, M.F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008, 38, 1404–1413. [Google Scholar] [CrossRef] [PubMed]
- Ward, B.J.; Gobeil, P.; Séguin, A.; Atkins, J.; Boulay, I.; Charbonneau, P.-Y.; Couture, M.; D’Aoust, M.-A.; Dhaliwall, J.; Finkle, C.; et al. Phase 1 trial of a Candidate Recombinant Virus-Like Particle Vaccine for Covid-19 Disease Produced in Plants. medRxiv 2020. [Google Scholar] [CrossRef]
- Shin, M.D.; Shukla, S.; Chung, Y.H.; Beiss, V.; Chan, S.K.; Ortega-Rivera, O.A.; Wirth, D.M.; Chen, A.; Sack, M.; Pokorski, J.K.; et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 2020, 15, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Medhi, R.; Srinoi, P.; Ngo, N.; Tran, H.V.; Lee, T.R. Nanoparticle-Based Strategies to Combat COVID-19. ACS Appl. Nano Mater. 2020, 3, 8557–8580. [Google Scholar] [CrossRef]
- Rao, L.; Xia, S.; Xu, W.; Tian, R.; Yu, G.; Gu, C.; Pan, P.; Meng, Q.F.; Cai, X.; Qu, D.; et al. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc. Natl. Acad. Sci. USA 2020, 117, 27141–27147. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.V.R.; Pereira, A.E.S.; de Oliveira, J.L.; Carvalho, L.B.; Guilger-Casagrande, M.; de Lima, R.; Fraceto, L.F. How can nanotechnology help to combat COVID-19? Opportunities and urgent need. J. Nanobiotechnol. 2020, 18, 1–23. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Darder, M.; Wicklein, B.; Ruiz-Garcia, C.; Martin-Sampedro, R.; del Real, G.; Aranda, P. Nanotechnology Responses to COVID-19. Adv. Healthc. Mater. 2020, 9, 2000979. [Google Scholar] [CrossRef]
- Gurunathan, S.; Qasim, M.; Choi, Y.; Do, J.T.; Park, C.; Hong, K.; Kim, J.H.; Song, H. Antiviral Potential of Nanoparticles-Can Nanoparticles Fight Against Coronaviruses? Nanomaterials 2020, 10, 1645. [Google Scholar] [CrossRef]
- Mamedov, T.; Yuksel, D.; Ilgın, M.; Gürbüzaslan, İ.; Gulec, B.; Mammadova, G.; Say, D.; Hasanova, G. Engineering, production and characterization of Spike and Nucleocapsid structural proteins of SARS–CoV-2 in Nicotiana benthamiana as vaccine candidates against COVID-19. bioRxiv 2020. [Google Scholar] [CrossRef]
- Medicago. COVID-19 Vaccine and Antibody Development Program. Available online: https://www.medicago.com/en/covid-19-programs/ (accessed on 28 May 2021).
- BAT. BAT Makes Progress on COVID-19 Vaccine & Provides Community Support. Available online: https://www.bat.com/group/sites/UK__9D9KCY.nsf/vwPagesWebLive/DOBPMBZC (accessed on 14 June 2021).
- iBio. iBio Announces Development of Proprietary COVID-19 Vaccine Candidates. Available online: https://www.ibioinc.com/therapeutics-and-vaccines#covid-19-overview (accessed on 14 June 2021).
- Roose, K.; De Baets, S.; Schepens, B.; Saelens, X. Hepatitis B core-based virus-like particles to present heterologous epitopes. Expert Rev. Vaccines 2013, 12, 183–198. [Google Scholar] [CrossRef]
- Moradi Vahdat, M.; Hemmati, F.; Ghorbani, A.; Rutkowska, D.; Afsharifar, A.; Eskandari, M.H.; Rezaei, N.; Niazi, A. Hepatitis B core-based virus-like particles: A platform for vaccine development in plants. Biotechnol. Rep. 2021, 29, e00605. [Google Scholar] [CrossRef]
- Zahmanova, G.; Mazalovska, M.; Takova, K.; Toneva, V.; Minkov, I.; Peyret, H.; Lomonossoff, G. Efficient Production of Chimeric Hepatitis B Virus-Like Particles Bearing an Epitope of Hepatitis E Virus Capsid by Transient Expression in Nicotiana benthamiana. Life 2021, 11, 64. [Google Scholar] [CrossRef]
- Arntzen, C. Plant-made pharmaceuticals: From ‘Edible Vaccines’ to Ebola therapeutics. Plant. Biotechnol. J. 2015, 13, 1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chansaenroj, J.; Chuchaona, W.; Thanusuwannasak, T.; Duang-In, A.; Puenpa, J.; Vutithanachot, V.; Vongpunsawad, S.; Poovorawan, Y. Prevalence of poliovirus vaccine strains in randomized stool samples from 2010 to 2018: Encompassing transition from the trivalent to bivalent oral poliovirus vaccine. Virusdisease 2019, 30, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Spice, A.J.; Aw, R.; Bracewell, D.G.; Polizzi, K.M. Synthesis and Assembly of Hepatitis B Virus-Like Particles in a Pichia pastoris Cell-Free System. Front. Bioeng. Biotechnol. 2020, 8, 72. [Google Scholar] [CrossRef]
- D’Aoust, M.A.; Couture, M.M.; Charland, N.; Trepanier, S.; Landry, N.; Ors, F.; Vezina, L.P. The production of hemagglutinin-based virus-like particles in plants: A rapid, efficient and safe response to pandemic influenza. Plant. Biotechnol. J. 2010, 8, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Hodgins, B.; Pillet, S.; Landry, N.; Ward, B.J. A plant-derived VLP influenza vaccine elicits a balanced immune response even in very old mice with co-morbidities. PLoS ONE 2019, 14, e0210009. [Google Scholar] [CrossRef] [Green Version]
- Herbst-Kralovetz, M.; Mason, H.S.; Chen, Q. Norwalk virus-like particles as vaccines. Expert Rev. Vaccines 2010, 9, 299–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbewana, S.; Meyers, A.E.; Rybicki, E.P. Chimaeric Rift Valley Fever Virus-Like Particle Vaccine Candidate Production in Nicotiana benthamiana. Biotechnol. J. 2019, 14, 1800238. [Google Scholar] [CrossRef]
- Meyers, A.; Chakauya, E.; Shephard, E.; Tanzer, F.L.; Maclean, J.; Lynch, A.; Williamson, A.L.; Rybicki, E.P. Expression of HIV-1 antigens in plants as potential subunit vaccines. BMC Biotechnol. 2008, 8, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deml, L.; Speth, C.; Dierich, M.P.; Wolf, H.; Wagner, R. Recombinant HIV-1 Pr55gag virus-like particles: Potent stimulators of innate and acquired immune responses. Mol. Immunol. 2005, 42, 259–277. [Google Scholar] [CrossRef]
- Ruiz, V.; Baztarrica, J.; Rybicki, E.P.; Meyers, A.E.; Wigdorovitz, A. Minimally processed crude leaf extracts of Nicotiana benthamiana containing recombinant foot and mouth disease virus-like particles are immunogenic in mice. Biotechnol. Rep. (Amst.) 2018, 20, e00283. [Google Scholar] [CrossRef]
- Ho, Y.; Lin, P.H.; Liu, C.Y.Y.; Lee, S.P.; Chao, Y.C. Assembly of human severe acute respiratory syndrome coronavirus-like particles. Biochem. Biophys. Res. Commun. 2004, 318, 833–838. [Google Scholar] [CrossRef]
- Bai, B.K.; Hu, Q.X.; Hu, H.; Zhou, P.; Shi, Z.L.; Meng, J.; Lu, B.J.; Huang, Y.; Mao, P.Y.; Wang, H. Virus-Like Particles of SARS-Like Coronavirus Formed by Membrane Proteins from Different Origins Demonstrate Stimulating Activity in Human Dendritic Cells. PLoS ONE 2008, 3, e2685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, B.J.; Huang, Y.; Huang, L.; Li, B.; Zheng, Z.H.; Chen, Z.; Chen, J.J.; Hu, Q.X.; Wang, H.Z. Effect of mucosal and systemic immunization with virus-like particles of severe acute respiratory syndrome coronavirus in mice. Immunology 2010, 130, 254–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satija, N.; Lal, S.K. The molecular biology of SARS coronavirus. Ann. N. Y. Acad. Sci. 2007, 1102, 26–38. [Google Scholar] [CrossRef]
- Balke, I.; Zeltins, A. Recent Advances in the Use of Plant Virus-Like Particles as Vaccines. Viruses 2020, 12, 270. [Google Scholar] [CrossRef] [Green Version]
- Kirk, D.D.; McIntosh, K.; Walmsley, A.M.; Peterson, R.K.D. Risk analysis for plant-made vaccines. Transgenic Res. 2005, 14, 449–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, R.E.; Vieths, S.; Sampson, H.A.; Hill, D.; Ebisawa, M.; Taylor, S.L.; van Ree, R. Allergenicity assessment of genetically modified crops-what makes sense? (vol 26, pg 73, 2008). Nat. Biotechnol. 2008, 26, 241. [Google Scholar] [CrossRef] [Green Version]
- van Ree, R. Carbohydrate epitopes and their relevance for the diagnosis and treatment of allergic diseases. Int. Arch. Allergy Immunol. 2002, 129, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Kirk, D.D.; Webb, S.R. The next 15 years: Taking plant-made vaccines beyond proof of concept. Immunol. Cell Biol. 2005, 83, 248–256. [Google Scholar] [CrossRef]
- Azegami, T.; Itoh, H.; Kiyono, H.; Yuki, Y. Novel transgenic rice-based vaccines. Arch. Immunol. Ther. Exp. (Warsz.) 2015, 63, 87–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Platform | Candidate Vaccines | ||
---|---|---|---|
Number | Percentage | ||
1 | Protein subunit | 32 | Thirty-one |
2 | Viral Vector (non-replicating) (VVnr) | 16 | Sixteen |
3 | DNA | 10 | Ten |
4 | Inactivated Virus (IV) | 16 | Sixteen |
5 | RNA | 16 | Sixteen |
6 | Viral Vector (replicating) (VVr) | 2 | Two |
7 | Virus-Like Particle (VLP) | 5 | Five |
8 | VVr + Antigen Presenting Cell (VVr+APC) | 2 | Two |
9 | Live Attenuated Virus (LAV) | 2 | Two |
10 | VVnr + Antigen Presenting Cell (VVnr+APC) | 1 | One |
Total | 102 |
Sr. No. | Vaccine Platform | Type of Candidate Vaccine | No. of Doses | Adjuvant | Schedule | Route of Administration | Developers | Phase | Clinical Trials (gov.Identifier) |
---|---|---|---|---|---|---|---|---|---|
1 | Inactivated virus (IV) | CoronaVac; SARS-CoV-2 vaccine (inactivated) | 2 | Aluminium hydroxide gel (Algel) | Day 0 + 14 | IM | Sinovac Research and Development Co., Ltd. | Phase 4 | NCT04775069 |
2 | Inactivated virus (IV) | Inactivated SARS-CoV-2 vaccine (Vero cell) | 2 | Aluminium hydroxide gel (Algel) | Day 0 + 21 | IM | Sinopharm + China National Biotec Group Co + Wuhan Institute of Biological Products | Phase 3 | NCT04612972 |
3 | Inactivated virus (IV) | BBIBP-CorV, Inactivated SARS-CoV-2 vaccine (Vero cell) | 2 | Aluminium hydroxide gel (Algel) | Day 0 + 21 | IM | Sinopharm + China National Biotec Group Co + Beijing Institute of Biological Products | Phase 3 | NCT04510207 * |
4 | Whole-Virion Inactivated SARS-CoV-2 Vaccine (BBV152) | Inactivated virus vaccine | 2 | Aluminium hydroxide gel (Algel) | Day 0 + 14 | IM | Bharat Biotech International Limited | Phase 3 | NCT04641481; CTRI/2020/11/028976 |
5 | SARS-CoV-2 vaccine (vero cells) | Inactivated virus vaccine | 2 | Aluminium hydroxide gel (Algel) | Day 0 + 28 | IM | Institute of Medical Biology + Chinese Academy of Medical Sciences | Phase 3 | NCT04659239 |
6 | QazCovid-in® -COVID-19 (Inactivated virus) | Inactivated virus vaccine | 2 | No | Day 0 + 21 | IM | Research Institute for Biological Safety Problems, Rep of Kazakhstan | Phase 3 | NCT04691908 |
7 | Viral vector (Non-replicating) (VVnr) | ChAdOx1-S- (AZD1222) (Covishield, Vaxzevria) | 1-2 | No | Day 0 + 28 | IM | AstraZeneca + University of Oxford | Phase 4 | NCT04775069 |
8 | Viral vector (Non-replicating) (VVnr) | Recombinant novel coronavirus vaccine (Adenovirus type 5 vector) | 1 | No | Day 0 | IM | CanSino Biological Inc./Beijing Institute of Biotechnology | Phase 4 | NCT04540419 |
9 | Viral vector (Non-replicating) (VVnr) | Gam-COVID-Vac Adeno-based (rAd26-S+rAd5-S) | 2 | No | Day 0 + 21 | IM | Gamaleya Research Institute; Health Ministry of the Russian Federation | Phase 3 | NCT04741061 |
10 | Viral vector (Non-replicating) (VVnr) | Ad26.COV2.S | 1-2 | aluminum phosphate adjuvant (Adjuphos) | Day 0 or Day 0 +56 | IM | Janssen Pharmaceutical | Phase 3 | NCT04614948 |
11 | Protein subunit | SARS-CoV-2 rS/Matrix M1-Adjuvant (Full length recombinant SARS CoV-2 glycoprotein nanoparticle vaccine adjuvanted with Matrix M) | 2 | Matrix-M™ | Day 0 + 21 | IM | Novavax | Phase 3 | NCT04583995 |
12 | Protein subunit | Recombinant SARS-CoV-2 vaccine (CHO Cell) | 2-3 | Aluminium hydroxide gel (Algel) | Day 0 + 28 or Day 0 + 28 + 56 | IM | Anhui Zhifei Longcom Biopharmaceutical + Institute of Microbiology, Chinese Academy of Sciences | Phase 3 | NCT04646590 |
13 | Protein subunit | VAT00002: SARS-CoV-2 vaccine formulation 1 with adjuvant 1 (S protein (baculovirus production) | 2 | AS03 | Day 0 + 21 | IM | Sanofi Pasteur + GSK | Phase 3 | PACTR202011523101903 ** |
14 | Protein subunit (SOBERANA 02) | FINLAY-FR-2 anti-SARS-CoV-2 Vaccine (RBD chemically conjugated to tetanus toxoid plus adjuvant) | 2 | Aluminium hydroxide gel (Algel) | Day 0 + 28 | IM | Instituto Finlay de Vacunas | Phase 3 | RPCEC00000354 |
15 | Protein subunit | EpiVacCorona (EpiVacCorona vaccine based on peptide antigens for the prevention of COVID-19) | 2 | Aluminium hydroxide gel (Algel) | Day 0 + 21 | IM | Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” | Phase 3 | NCT04780035 |
16 | RNA based vaccine | mRNA -1273 | 2 | No | Day 0 + 28 | IM | Moderna + National Institute of Allergy and Infectious Diseases (NIAID) | Phase 4 | NCT04760132 |
17 | RNA based vaccine | BNT162 (3 LNP-mRNAs), Comirnaty | 2 | No | Day 0 + 21 | IM | Pfizer/BioNTech + Fosun Pharma | Phase 4 | NCT04775069 |
18 | RNA based vaccine | CVnCoV Vaccine | 2 | CV8102 | Day 0 + 28 | IM | CureVac AG | Phase 3 | NCT04674189 |
19 | DNA based vaccine (ZyCoV-D) | nCov vaccine | 3 | No | Day 0 + 28 + 56 | ID | Zydus Cadila | Phase 3 | CTRI/2020/07/026352 |
Method | Features | Limitations | Target/Plant Species | The Protein Used/Route of Inoculation | Experimental Phase | Dose | Degree and Type of Protection Generated | Functions | Reference |
---|---|---|---|---|---|---|---|---|---|
Stable nuclear transformation | Seed bank possible; Inheritable antigen production; Many methods are available for different crops | Random insertion; Possibility of horizontal gene transfer; position effects and gene silencing; transformation is tedious | Full and truncated S protein/tomato and tobacco | Purified Protein/In saline and oral immunization | Pre-clinical | 500 mg of dry tomato fruit, 50 mg of dry tobacco root, 2-week intervals, after a 4-week booster dose of 1 μg of commercially obtained S peptide without adjuvant. | Significantly increased levels of SARS-CoV-specific IgA after oral ingestion of tomato fruits expressing S1 protein. | Expression of SARS-CoV S protein (S1) in tomato and tobacco plants and after oral ingestion of tomato fruits, mice display elevated SARS-CoV-specific IgA levels. | [73] |
Transient nuclear transformation | High and rapid protein production; Industrial scale production | The seed bank is impossible; requires purification of the antigen; | Partial spike protein of SARS-CoV; recombinant nucleocapsid (rN)and the membrane protein (M)/tobacco | Purified Protein/Intraperitoneally | Pre-clinical | 2–4 μg rN protein | Vaccination of BALB/c mice with tobacco-expressed rN protein successfully led to a specific B-cell response. | Produced S1 proteins in chloroplast- and nuclear-transformed plants display potential in safe oral recombinant subunit vaccine. The expression of IL-10 and IFN-γ was up-regulated during the vaccination of rN protein, while IL-4 and IL-2 expression were not. | [74,75,76] |
Transplastomic technologies | Multigene expression Highly productive; Better biosafety; site-specific insertion via recombination; Unaffected by silencing or position effects | Lacks complex post-translational modifications; Limited protocols available for limited species; generation of lines are tedious | N-terminal fragment of SARS-CoV S spike protein (S1)/Tomato and tobacco | Purified Protein/In saline and oral immunization | Pre-clinical | 500 mg of dry tomato fruit, 50 mg of dry tobacco root, 2-week intervals | The mice parenterally primed with plant-derived antigen developed an immune response after booster immunization. | Sera of mice display the SARS-CoV-specific IgG. | [73,77] |
Vaccine Candidate | Plant | Antigen | Animal | Route of Inoculation/Doses | Degree of Protection | Immunological Data | Reference |
---|---|---|---|---|---|---|---|
Bursal disease virus | Tobacco | VP2/extracted | Embryonated eggs of White Leghorn chickens | Intramuscular/12 μg of VP2 and equal volume of Freund’s adjuvant and 1% total volume of Tween 40 | Plant-derived VP2 elicited an antibody response with neutralizing activity | VP2 produced in plants can elicit an appropriate immune response in chickens | [85] |
Respiratory syncytial virus | Tomato | F-gene/extracted | BALB/c mice | Oral immunization/each mouse was given 5–7 g of ripe tomato fruit containing recombinant RSV-F protein and consumed 3–4 g. | Transgenic-fruit-derived RSV-F antigen primed a mixed type 1–2 T-helper cell immune response and further that this RSV-boost-induced response showed some bias towards the Th1-type | Ripe transgenic tomato administered to mice orally that led to the elevation of mucosal and serum RSV-F specific antibodies | [100] |
Streptococcus pneumoniae | Tobacco | Serotype 3 capsular polysaccharide/extracted | MF1 female mice | Intraperitonea l/2 µg plant-derived pneumococcal polysaccharide per mouse in 67 µL PBS and 33 µL Inject alum adjuvant (Pierce, Rockford, IL, USA) | None of the fifteen animals given wild-type extract were alive ten days after the challenge, whereas eight of the fourteen immunized with transgenic extract survived | Immunized mice had significantly elevated levels of serum anti-pneumococcal polysaccharide antibodies. | [103] |
Bacillus anthracis | Tobacco, Tomato, and Mustard | Protective antigen (PA)/extracted | BALB/c mice | Intraperitoneal/Protein extracted from tomato leaves was mixed with complete Freund’s adjuvant (for the first dose) and incomplete Freund’s adjuvant (for subsequent doses) in a ratio of 1:1. | The PA expressed in nuclear transgenic tomato plants was able to generate an antibody-mediated immune response. | A specific mucosal immune response was observed | [112,113] |
Mycobacterium tuberculosis | Potato, Tobacco, Carrot, Arabidopsis, and Lettuce | Ag85B, ESAT-6, MPT64, MPT83, Acr, Ag85B, ESAT-6 fused to LTB, CFP10, ESAT-6, Mtb72F, and ESAT-6 fused to CTB/extracted | C57BL/6 mice, BALB/c mice, Female ICR mice, Seryi velikan strain rabbits. | Orally, intranasal, intraperitoneal/BCG group were fed orally with 1.8 × 107 CFU BCG in 100 μL saline per mouse. The mice of the combined-plant vaccine group were fed with 1ml of the concentrated transgenic potato extract. Mice were immunized subcutaneously with 100 μL of BCG administered at the base of the tail or with 10 μg TB-RICs preparation (in 30 μL) intranasal, under isoflurane anesthesia. Test animals were provided with 3 g of the mix (92.6 μg of plant-made LTB-ESAT-6). Feed treatments were given on days 0, 7, 14, and 28. | Generating antigen-specific, Th1 response | Antigens expression | [118,119,120,121,122,123] |
Asthma | Lupin | SSA-lupin/extracted | BALB/c mice | Intraperitoneal/50 μg of SSA or OVA in alum (1 mg/mL) dissolved in PBS (final volume 200 μL). On days 14 and 16. B, Lupin, and SSA-lupin induced systemic sensitization and DTH responses. | GM plant-based vaccine can promote a protective immune response and attenuate experimental asthma | Consumption of SSA-lupin promoted the elevation of an Ag-specific IgG2a Ab response through CD4+CD45RBlow T Cell and IFN-γ -dependent mechanism | [124] |
Bronchial hyper-responsiveness | Rice | Der p 1/purified | BALB/c mice | Orally vaccinated by feeding 6–8-week-old female BALB/c mice were orally vaccinated by feeding 0.5 or 5 mg purified recombinant Der P1 dissolved in PBS on day 1. Mice were given four intraperitoneal injections of 2 μg of recombinant Der p 1 adsorbed to alum adjuvant. | Prophylactic efficacy of oral vaccination with Tg rice seeds accumulated Der p 1 (45–145) in a mouse model of asthma, reducing allergic airway inflammation and reduced BHR. | Oral administration of the Tg rice seeds to mice inhibits the allergen-specific IgE responses and allergen-specific T helper 2 (Th2) cytokine synthesis (IL-4, IL-5, and IL-13) | [125] |
Vaccine | Vaccine Platform Description | Developers | Transformation Method | Expression System | Status | No. of Doses | Schedule | Route of Administration | References |
---|---|---|---|---|---|---|---|---|---|
COVID-19 VPL Vaccine (CoVLP) | Virus-like particle (VLP)/Spike protein | Medicago Inc. (Québec, Canada) | VLPExpress™ system (Agro-infiltration) | Nicotiana benthamiana | Phase 2/3 | 2 | Day 0 + 21 | IM | [135,143] |
COVID-19 Subunit Vaccine (KBP-201) | Protein Subunit | Kentucky BioProcessing, Inc. (KBP) | Agro-infiltration | Nicotiana benthamiana | Phase 2 | 2 | Day 0 + 21 | IM | [144] |
COVID-19 Subunit Vaccine (IBIO-201) | Protein Subunit/Spike protein | iBio, Inc. (NY, USA) | FastPharming™ system (Agro-infiltration) | Arabidopsis thaliana | Pre-clinical | NA | NA | NA | [145] |
COVID-19 Subunit Vaccine | Development of recombinant protein-based S1 and S2 (Spike) and nucleocapsid subunits vaccines using a plant expression vector. | Akdeniz University (Turkey) | Agro-infiltration | Nicotiana benthamiana | Pre-clinical | NA | NA | NA | [142] |
COVID-19 VLP | Virus-like particle/Spike protein | Shiraz University (Iran) | Agro-infiltration | Nicotiana benthamiana | Pre-clinical | NA | NA | NA | [142] |
COVID-19 Subunit Vaccine | Plant-based subunit (RBD-Fc + Adjuvant)/Spike protein | Baiya Phytopharm/Chula Vaccine Research Center (Thailand) | Agro-infiltration | Nicotiana benthamiana | Pre-clinical | NA | NA | NA | [3] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, M.; Kumari, N.; Thakur, N.; Bhatia, S.K.; Saratale, G.D.; Ghodake, G.; Mistry, B.M.; Alavilli, H.; Kishor, D.S.; Du, X.; et al. A Comprehensive Overview on the Production of Vaccines in Plant-Based Expression Systems and the Scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics. Plants 2021, 10, 1213. https://doi.org/10.3390/plants10061213
Kumar M, Kumari N, Thakur N, Bhatia SK, Saratale GD, Ghodake G, Mistry BM, Alavilli H, Kishor DS, Du X, et al. A Comprehensive Overview on the Production of Vaccines in Plant-Based Expression Systems and the Scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics. Plants. 2021; 10(6):1213. https://doi.org/10.3390/plants10061213
Chicago/Turabian StyleKumar, Manu, Nisha Kumari, Nishant Thakur, Shashi Kant Bhatia, Ganesh Dattatraya Saratale, Gajanan Ghodake, Bhupendra M. Mistry, Hemasundar Alavilli, D. S. Kishor, Xueshi Du, and et al. 2021. "A Comprehensive Overview on the Production of Vaccines in Plant-Based Expression Systems and the Scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics" Plants 10, no. 6: 1213. https://doi.org/10.3390/plants10061213
APA StyleKumar, M., Kumari, N., Thakur, N., Bhatia, S. K., Saratale, G. D., Ghodake, G., Mistry, B. M., Alavilli, H., Kishor, D. S., Du, X., & Chung, S. -M. (2021). A Comprehensive Overview on the Production of Vaccines in Plant-Based Expression Systems and the Scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics. Plants, 10(6), 1213. https://doi.org/10.3390/plants10061213