Insight into the Secondary Metabolites of Geum urbanum L. and Geum rivale L. Seeds (Rosaceae)
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC/MS Analyses of Fatty Acids
2.2. HPLC-DAD/MSn Analysis of Phenolic Compounds and Triterpenoids
Peak No. a | Compound b | tR (min) | MS (m/z) | MS/MS (m/z) | A | B | A* | B* | Reference |
---|---|---|---|---|---|---|---|---|---|
Sugars | |||||||||
1 | hexose polymer | 2.1 | 683 | 683, 533, 445, 377, 341, 179, 161, 131, 113, 101, 89, 59 | ✓ | ✓ | [9] | ||
33 | saccharide | 22.2 | 431 | 431, 387, 287, 225, 179, 161, 143, 131, 113, 101, 89, 59 | ✓ | [10] | |||
56 | saccharide | 40.1 | 547 | 547, 311, 293, 221, 191, 147, 131, 101, 89 | ✓ | ✓ | [11] | ||
Phenolics | |||||||||
2 | HHDP c-O-hexoside | 3.6 | 481 | 481, 421, 301, 284, 257, 229, 201, 185 | ✓ | [12] | |||
4 | galloyl-hexoside | 7.1 | 331 | 331, 313, 271, 211, 193, 169, 125 | ✓ | [13] | |||
5 | galloyl-hexoside | 9.8 | 331 | 331, 301, 169, 125 | ✓ | [13] | |||
6 | galloyl-HHDP-hexoside | 10.2 | 633 | 633, 481, 301, 184, 257, 229, 201, 185 | ✓ | [14] | |||
7 | digalloyl-hexoside | 11.1 | 483 | 483, 429, 331, 313, 271, 241, 211, 193, 169, 125 | ✓ | [13] | |||
8 | 3,4-dihydroxybenzoic acid-O-hexoside | 12.3 | 315 | 315, 279, 225, 153, 109, 108 | ✓ | [15] | |||
9 | galloyl-HHDP-hexoside | 12.6 | 633 | 633, 483, 435, 397, 345, 301, 284, 257, 229, 185, 137 | ✓ | [14] | |||
10 | galloyl-HHDP-hexoside | 12.7 | 633 | 633, 481, 436, 301, 257, 229, 185, 123 | ✓ | [14] | |||
11 | galloyl-hexoside | 12.8 | 331 | 331, 285, 169, 153, 125 | ✓ | [14] | |||
12 | pedunculagin | 13.7 | 783 | 783, 481, 301 257, 229, 185, 157 | ✓ | ✓ | [16] | ||
13 | 3,4-dihydroxybenzoic acid-O-hexoside | 13.9 | 315 | 315, 271, 203, 153, 109 | ✓ | [15] | |||
14 | galloyl-HHDP-glucose (corilagin isomer) | 14.7 | 633 | 633, 481, 301, 284, 275, 257, 229, 185, 159 | ✓ | ✓ | [16] | ||
15 | 7-methoxy-3′, 4′-dihydroxyl flavanone | 15.0 | 285 | 285, 153, 109 | ✓ | [17] | |||
16 | galloyl-HHDP-hexoside | 15.4 | 633 | 633, 481, 301, 275, 273, 229, 201,185 | ✓ | [14] | |||
17 | galloyl-HHDP-hexoside | 16.2 | 633 | 633, 391, 301, 275, 273, 257, 229, 201, 185 | ✓ | ✓ | [14,16] | ||
18 | pedunculagin | 16.5 | 783 | 783, 481, 301, 275, 257, 229, 185 | ✓ | ✓ | [16] | ||
19 | oxyresveratrol-O-hexoside | 16.7 | 451 | 451, 405, 327, 243, 225, 179, 167, 149, 134, 113 | ✓ | [18] | |||
20 | procyanidin B1/B2 | 17.0 | 577 | 577, 451, 425, 407, 289, 257, 241, 213 | ✓ | ✓ | [16,19,20,21] | ||
21 | procyanidin B1/B2 | 17.9 | 577 | 577, 451, 425, 407, 289, 285, 257, 213 | ✓ | ✓ | [16,19,20,21] | ||
22 | apigenin pentoside | 18.3 | 447 | 447, 401 [M − H] − 46, 287, 161, 131, 113 | ✓ | [22] | |||
23 | epi-/catechin | 18.3 | 289 | 289, 245, 227, 205, 203, 187, 161, 123 | ✓ | ✓ | ✓ | [21] | |
24 | digalloyl-HHDP-hexoside | 18.4 | 483 | 183, 392, 313, 289, 271, 211, 169, 168, 124 | ✓ | [14,23] | |||
25 | catechin | 18.5 | 289 | 289, 271, 245, 231, 227, 203, 188, 161 | ✓ | [24] | |||
26 | digalloyl-HHDP-hexoside | 18.6 | 785 | 785, 483, 419, 331, 301, 284, 257, 229, 186, 158 | ✓ | [23] | |||
5-caffeoylquinic acid | 18.9 | 353 | 353, 191, 179, 173, 127 | ✓ | [25] | ||||
27 | luteolin-hexoside | 19.6 | 447 | 447, 401, 285, 269, 233, 161, 101 | ✓ | [26] | |||
28 | galloyl-HHDP-hexoside | 20.8 | 633 | 633, 481, 463, 301, 283, 257, 229, 201, 185, 162 | ✓ | ✓ | [16,23] | ||
30 | luteolin-hexoside | 21.5 | 447 | 447, 431, 361, 285, 257, 241, 217, 213, 163, 109 | ✓ | [26] | |||
35 | (epi)afzelechin-(epi)catechin | 23.5 | 561 | 561, 543, 491, 429, 435, 425, 407, 381, 329, 289, 271, 245, 227, 203, 187, 179, 125 | ✓ | [21] | |||
naringenin | 23.9 | 271 | 271, 269, 225, 151, 85 | ✓ | [27] | ||||
36 | cyanidin 3-O-hexoside | 24.3 | 465 | 465 [−18], 339, 303, 285, 241, 213, 199, 169 | ✓ | [28] | |||
apigenin | 26.1 | 269 | 269, 225, 207, 151 | ✓ | [29] | ||||
38 | digalloyl-HHDP-hexoside | 27.1 | 785 | 785, 633, 483, 419, 301, 257, 229, 185 | ✓ | [23] | |||
39 | HHDP-hexoside | 27.7 | 482 | 482, 461, 444, 368, 301, 275, 257, 229, 203, 175, 169 | ✓ | [13] | |||
40 | casuarinin or casuariin | 28.6 | 612 | 612, 603, 573, 527, 458, 301, 275, 257, 229, 211, 169 | ✓ | [14] | |||
41 | trigalloyl-HHDP-hexoside | 30.9 | 937 | 784, 937, 767, 741, 613, 589, 465, 301, 275 | ✓ | ✓ | [14] | ||
42 | galloyl-HHDP-hexoside | 31.7 | 635 | 635, 618, 465, 313, 295, 235, 193, 169, 125 | ✓ | ✓ | [23] | ||
naringin | 31.9 | 581 | 581, 563, 545, 515, 445, 401, 383, 357, 321 265, 223, 195 179 | ✓ | [30] | ||||
43 | ellagic acid hexuronide | 32.2 | 477 | 477, 301, 284, 257, 229, 201, 185, 174 | ✓ | ✓ | [23] | ||
44 | ellagic acid hexoside | 32.7 | 463 | 463, 301, 284, 257, 229, 201, 185, 173, 145 | ✓ | ✓ | ✓ | [13] | |
45 | catechin-O-galloyl dimer | 33.0 | 729 | 729, 635, 577, 559, 451, 425, 407, 363, 285 | ✓ | [15] | |||
46 | casuarinin or casuariin | 33.7 | 612 (935) | 612, 603, 573, 555, 527, 458, 437, 379, 301, 275, 257, 229, 185, 157 | ✓ | ✓ | [14] | ||
47 | ellagitannin (tentatively assigned) | 34.3 | 552 | 552, 530, 468, 392, 316, 301, 169 | ✓ | ✓ | |||
48 | quercetin/ellagic acid-O-(O-galloyl)-hexoside | 35.0 | 615 | 615, 463, 392, 301, 257, 229, 185 | ✓ | ✓ | [31] | ||
49 | catechin/epicatechin dimer | 35.4 | 577 | 577, 551, 451, 425, 407, 381, 363, 297, 285, 281, 255, 213 | ✓ | [15,32] | |||
50 | galloyl-bis-HHDP-hexoside | 35.3 | 935 | 935, 633, 551, 435, 301, 284, 229 | ✓ | [14] | |||
51 | galloyl-bis-HHDP-hexoside | 36.1 | 935/784 | 784, 935, 633, 465, 421, 313, 301, 252, 221, 169, 137 | ✓ | [33] | |||
52 | HHDP-/ellagic acid derivative | 37.2 | 935/467 | 467, 441, 391, 301, 275, 271, 257, 227, 169, 125 | ✓ | [23] | |||
54 | trigalloyl-HHDP-hexoside | 38.4 | 937/784 | 784, 937, 613, 557, 461, 417, 399, 227, 200, 171 | ✓ | [23] | |||
55 | sinapic acid derivative | 39.3 | 403 | 403, 223, 205, 179, 161, 135 | ✓ | ✓ | [34] | ||
57 | ellagic acid pentoside | 40.5 | 433 | 433, 301, 284, 273, 257, 244, 229, 201, 185, 201, 185, 173 | ✓ | ✓ | [16] | ||
58 | isorhamnetin-O-hexoside | 41.3 | 477 | 477, 315, 300, 272, 244 | ✓ | [23] | |||
59 | digalloyl-HHDP-hexoside | 41.7 | 767 | 767, 615, 467, 465, 767, 465, 392, 301, 169 | ✓ | ✓ | [23] | ||
60 | ellagic acid | 42.1 | 301 | 301, 284, 257, 229, 201, 185 | ✓ | ✓ | [16] | ||
undefined ellagitannin | 43.7 | 467 | 467,.458, 382, 301, 275, 257, 229, 169 | ✓ | ✓ | [13] | |||
61 | caffeoylquinate shikimate derivative | 43.8 | 509 | 509, 491, 473, 367, 339, 313, 167, 149 | ✓ | [35] | |||
62 | quercetin glucoside/rhamnoside | 44.5 | 467 | 467, 458, 382, 319, 301, 284, 275, 257, 229, 201, 185, 151 | ✓ | ✓ | ✓ | [36] | |
63 | quercetin-hexoside | 44.6 | 463 | 463, 303, 301, 271, 255, 229, 179, 151, 107 | ✓ | ✓ | [27] | ||
quercetin-O-glucuronide | 44.6 | 477 | 477, 301, 273, 257, 229, 211, 193, 179, 151 | ✓ | [37] | ||||
64 | trigalloyl hexose | 44.9 | 617 | 393, 617, 465,449, 317, 313, 246, 169 | ✓ | ✓ | [23] | ||
65 | caffeoylglucaric acid | 45.3 | 417 | 417, 371, 209, 179, 161, 159, 113 | ✓ | ✓ | [38] | ||
67 | epicatechin-3-O-gallate | 46.4 | 441 | 441, 317, 289, 245, 205, 203, 188, 179, 137 | ✓ | [19] | |||
69 | isorhamnetin pentoside | 48.8 | 447 | 447, 315, 300, 272, 244, 228, 200, 185 | ✓ | [27] | |||
70 | ellagic acid derivative | 49.3 | 489 | 489, 476, 439, 301, 284, 257, 229, 185 | ✓ | ✓ | |||
kaempferol-O-hexoside | 49.4 | 447 | 447, 385, 327, 285, 255, 227, 213, 193, 173, 151 | ✓ | [39] | ||||
71 | tetragalloyl-hexoside | 49.7 | 769 | 469, 769, 617, 465, 317, 295, 241, 169 | ✓ | [23] | |||
72 | isorhamnetin pentoside | 50.4 | 447 | 447, 381, 315, 300 | ✓ | [27] | |||
73 | monogalloyl-hexoside derivative | 50.9 | 521 | 521, 469, 331, 271, 211, 168, 124 | ✓ | [23] | |||
74 | ellagic acid derivative | 51.5 | 489 | 489, 467, 439, 301, 300, 184, 271, 257, 244, 229, 229, 201, 185, 160 | ✓ | ✓ | |||
methylquercetin-O-hexuronide | 51.5 | 491 | 491, 315, 300, 255, 175 | ✓ | [29] | ||||
75 | diosmetin-7-O-hexoside | 52.2 | 461 | 461, 445, 377, 328, 313, 298 | ✓ | ✓ | [40] | ||
77 | p-coumaroylshikimic acid derivative (tentatively assigned) | 53.0 | 527 | 527, 503, 469, 423, 361, 319, 301, 273, 271, 256, 215 | ✓ | ||||
78 | kaempferol-3-O-hexoside | 54.0 | 591 | 591, 571, 553, 529, 489, 447, 285, 257, 229, 197, 163 | ✓ | ✓ | ✓ | ✓ | [41] |
83 | dimethylellagic acid-sulfate | 57.0 | 409 | 409, 329, 314, 299, 271 | ✓ | ✓ | [27] | ||
84 | methylellagic acid pentoside derivative (tentatively assigned) | 58.2 | 503 | 503, 443, 435, 315, 300, 271, 244 | ✓ | ✓ | [42] | ||
85 | HHDP-hexoside derivative | 59.1 | 452 | 452, 376, 316, 301, 275, 249, 183, 169, 125 | ✓ | [13] | |||
86 | catechin derivative | 59.3 | 333 | 333, 315, 289, 288, 259, 245, 233, 231, 217, 200, 173 | ✓ | ||||
88 | quercetin-derivative | 59.9 | 542 | 542, 521, 457, 405, 319, 301, 284, 271, 257, 229, 201, 185, 129 | ✓ | [43] | |||
quercetin | 60.5 | 301 | 301, 273, 229, 213, 193, 151, 121 | ✓ | |||||
quinic acid derivative | 61.2 | 253 | 253, 235, 209, 191, 135, 93 | ✓ | |||||
91 | rhamnazin | 61.4 | 329 | 329, 314, 299, 271 | ✓ | ✓ | [44] | ||
flavonoid | 61.7 | 271 | 271, 253, 227, 185 | ✓ | |||||
93 | kaempferol deoxyhexosylhexoside | 62.1 | 593 | 593, 447, 285, 257, 182, 151 | ✓ | ✓ | [45] | ||
94 | undefined ellagitannin derivative | 62.9 | 444 | 444, 397, 368, 301, 275, 229, 213, 169, 121 | ✓ | ||||
naringenin | 63.3 | 271 | 271, 177, 151, 107 | ✓ | ✓ | [15] | |||
97 | 5,6-dihydroxy-3′,4′,7-trimethoxyflavone sulfate | 63.9 | 423 | 423, 343, 328, 313 | ✓ | [43] | |||
98 | 3′,5′-O-dimethyltricetin | 65.0 | 329 | 329, 311, 293, 229, 211, 183, 171, 155, 127 | ✓ | ✓ | ✓ | ✓ | [46] |
quercetin isomer | 65.8 | 301 | 301, 283, 265, 257, 239, 221, 187, 151, 127, 125, 113, 97 | ✓ | ✓ | ||||
flavonoid derivative | 66.2 | 287 | 287, 269, 241, 221, 211, 139, 125, 9, 97, 85 | ✓ | ✓ | ||||
102 | 5,6-dihydroxy-3′,4′,7-trimethoxyflavone | 66.5 | 343 | 343, 328, 313, 298, 257 | ✓ | [43] | |||
Lignan | |||||||||
31 d | (+)-pinoresinol-O-hexoside, (+)-epipinoresinol-4′’-O-hexoside and (+)-epipinoresinol-4′-O-hexoside | 22.0 | 565 | 565, 519, 387, 251, 225, 179, 161, 113 | ✓ | ✓ | [40] | ||
Terpenes | |||||||||
32 | geniposide | 22.1 | 433 | 433, 387, 225, 207, 189, 179, 153, 125 | ✓ | [47] | |||
53 | 8′-hydroxy-abscisic acid hexoside | 38.1 | 441 | 441, 397, 365, 330, 205, 179, 161, 150, 139, 113, 101 | ✓ | ✓ | ✓ | ✓ | [48] |
80 | triterpene acid-O-hexoside acetyl | 55.9 | 711 | 711, 665 [M − H] − 46, 503, 485, 453, 441, 409, 407, 379, 363, 333 | ✓ | ✓ | ✓ | [49] | |
81 | ganoderic acid C2 hexoside | 56.5 | 679 | 679, 633, 591, 573, 551, 517, 499, 481, 455, 441, 397, 381, 365, 297 | ✓ | [12] | |||
89 | triterpene acid-O-hexoside | 59.9 | 709 | 709, 663 [M − H] − 46, 501, 457, 425, 409, 395, 353, 341, 229, 149 | ✓ | [12] | |||
90 | triterpene acid-O-hexoside | 60.8 | 711 | 711, 665 [M − H] − 46, 503, 457, 441, 421, 403, 375 | ✓ | [12] | |||
92 | asiatic acid/madecassic acid derivative | 61.9 | 709 | 709, 663 [M − H] − 46, 501, 457, 427, 409, 391, 379, 363, 347 | ✓ | [12] | |||
95 | asiatic acid/madecassic acid derivative | 63.4 | 695 | 695, 649 [M − H] − 46, 487, 469, 441, 423, 405, 393, 377 | ✓ | ✓ | [8] | ||
96 | asiatic acid/madecassic acid derivative | 63.8 | 695 | 695, 649, 487, 469, 437, 423, 405, 393; 369 | ✓ | ✓ | [8] | ||
asiatic acid/madecassic acid derivative | 64.6 | 503 | 503, 485, 459, 441, 423, 405, 389, 369, 351, 321 | ✓ | |||||
99 | asiatic acid/madecassic acid derivative | 65.4 | 695 | 695, 559, 487, 441, 423, 377, 153 | ✓ | [8] | |||
100 | asiatic acid/madecassic acid derivative | 65.5 | 693 | 693, 647, 643, 559, 503, 485, 441, 409, 392, 367, 325, 266 | ✓ | [8] | |||
asiatic acid/madecassic acid derivative | 65.7 | 503 | 503, 485, 439, 423, 407, 397, 383, 369, 351, 339, 285 | ✓ | |||||
101 | asiatic acid/madecassic acid derivative | 66.4 | 503 | 503, 485, 453, 439, 421, 409, 355 | ✓ | ✓ | ✓ | [8] | |
103 | asiatic acid/madecassic acid derivative | 66.7 | 693 | 693, 647, 503, 485, 467, 439, 423, 393, 365 | ✓ | ✓ | [8] | ||
104 | asiatic acid/madecassic acid derivative | 67.8 | 503 | 503, 485, 459, 441, 421, 403, 393, 359, 307, 291, 145 | ✓ | ✓ | ✓ | ✓ | [8] |
105 | asiatic acid/madecassic acid derivative | 68.3 | 501 | 501, 483, 471, 453, 439, 421, 405, 403, 365, 229 | ✓ | ✓ | ✓ | ✓ | [8] |
106 | asiatic acid/madecassic acid derivative | 68.6 | 503 | 503, 485, 441, 421, 409, 403, 393, 378, 375, 317, 268 | ✓ | ✓ | ✓ | ✓ | [8] |
asiatic acid/madecassic acid derivative | 68.8 | 501 | 501, 483, 471, 439, 421, 409, 378, 355 | ✓ | ✓ | ||||
107 | asiatic acid/madecassic acid derivative | 69.1 | 457 | 457, 437, 409, 393, 365, 323, 321, 163, 149 | ✓ | [8] | |||
asiatic acid/madecassic acid derivative | 69.1 | 489 | 489, 471, 469, 445, 429, 427, 425, 395, 369, 355,325 | ✓ | |||||
108 | asiatic acid/madecassic acid derivative | 69.5 | 503 | 503, 485, 465, 437, 421, 419, 402, 391, 176, 361 | ✓ | ✓ | ✓ | ✓ | [8] |
asiatic acid/madecassic acid derivative | 71.0 | 487 | 487, 457, 441, 439, 423, 395, 385, 355, 334, 302, 285, 235 | ✓ | |||||
asiatic acid/madecassic acid derivative | 71.2 | 473 | 473, 455, 453, 437, 409, 401, 371, 353, 319, 305, 265, 217, 135 | ✓ | |||||
109 | asiatic acid/madecassic acid derivative | 70.9 | 517 | 517, 455, 439, 421, 395, 379, 377, 311 | ✓ | ✓ | ✓ | [8] | |
111 | asiatic acid/madecassic acid derivative | 72.4 | 487 | 487, 469, 437, 423, 405, 393, 377 | ✓ | ✓ | [8] | ||
112 | asiatic acid/madecassic acid derivative | 72.7 | 487 | 487, 469, 441, 423, 407, 393, 377, 361, 289, 239, 189 | ✓ | ✓ | ✓ | ✓ | [8] |
113 | asiatic acid/madecassic acid derivative | 73.8 | 487 | 487, 441, 423, 409, 407, 393, 353, 135 | ✓ | ✓ | ✓ | [8] | |
114 | asiatic acid/madecassic acid derivative | 74.8 | 564 | 564, 505, 279, 261, 243, 146 109 | ✓ | ✓ | [8] | ||
asiatic acid/madecassic acid derivative | 75.0 | 483 | 483, 465, 455, 447, 439, 421, 405, 391, 353, 329, 283, 239 | ✓ | |||||
asiatic acid/madecassic acid derivative | 76.2 | 485 | 485, 467, 441, 437, 423, 393, 387, 377, 369, 339, 289 | ✓ | |||||
115 | asiatic acid/madecassic acid derivative | 78.6 | 633 | 633, 615, 589, 545, 529, 527, 495, 441, 409, 162 | ✓ | ✓ | [8] | ||
Other Compounds/Undefined | |||||||||
3 | undefined (dimer 183) | 4.6 | 367 | 367, 331, 325, 283, 183, 139, 111, 95 | ✓ | ✓ | |||
29 | roseoside derivative (pentoside) | 21.4 | 563 | 563, 517 [M − H] − 46, 385, 223, 205, 191, 179, 161, 153, 138, 113 | ✓ | ✓ | ✓ | [23,50] | |
emodin derivative (tentatively assigned) | 22.4 | 415 | 461, 415, 269, 161 | ✓ | |||||
34 | undefined | 22.7 | 467 | 467, 458, 449, 436, 38, 299, 275, 229, 169 | ✓ | ||||
37 | undefined | 26.2 | 439 | 439, 393, 311, 261, 221, 191, 179, 161, 149, 131, 113 | ✓ | [51] | |||
66 | undefined | 45.6 | 523 | 523, 475, 432, 341, 329, 315, 314, 283, 149 | ✓ | ✓ | ✓ | ||
68 | undefined | 47.1 | 517 | 517, 491, 487, 439, 341, 301, 291, 275, 259, 209, 195, 97 | ✓ | ||||
undefined | 47.1 | 523 | 523, 475, 432, 341, 329, 315, 314, 283, 149 | ✓ | |||||
undefined | 48.8 | 263 | 263, 245, 219, 204, 201, 186, 163, 161, 152, 119, 99 | ✓ | |||||
76 | undefined | 52.7 | 423 | 423, 279, 249, 205, 168, 139, 124 | ✓ | ✓ | ✓ | ✓ | |
79 | undefined | 55.2 | 523 | 523, 489, 313, 167, 149, 122 | ✓ | ✓ | |||
82 | undefined | 56.8 | 501 | 501, 471, 443, 315, 290, 275, 259, 195, 97 | ✓ | ||||
undefined | 57.9 | 543 | 543, 767, 319, 301, 275, 169 | ✓ | |||||
87 | undefined | 59.6 | 503 | 503, 455, 443, 428, 382, 298, 270 | ✓ | ✓ | |||
oxo-dihydroxyoctadecenoic acid | 63.6 | 327 | 327, 309, 291, 229, 211, 171 | ✓ | ✓ | [47] | |||
110 | undefined | 71.7 | 473 | 473, 455, 439, 422, 403, 367, 319, 263, 237 | ✓ | ✓ | ✓ | ||
9-oxo-octadecadienoic acid derivative | 75.6 | 293 | 293, 231, 275, 265, 231, 211, 185, 183, 171, 149, 111 | ✓ | [46] | ||||
9-oxo-octadecadienoic acid derivative | 75.8 | 293 | 293, 275, 265, 231, 224, 196, 195, 179, 177, 139, 113, 111 | ✓ | ✓ | [46] | |||
unknown flavonoid | 76.6 | 473 | 473, 453, 413, 369, 287, 271, 201 | ✓ | |||||
fatty acid derivative | 77.0 | 311 | 311, 291, 249, 233, 185, 181, 171, 155, 141, 127 | ✓ | |||||
116 | undefined | 78.9 | 663 | 663, 645, 619, 604, 587, 533, 505, 399, 331, 175 | ✓ | ✓ | ✓ |
2.3. Determination of Total Phenolic Contents in Seed Oils and Assessment of their Antioxidant Potential
3. Materials and Methods
3.1. Standards, Solvents and Reagents
3.2. Plant Material
3.3. Extraction of Geum Seeds
3.4. Methylation of Fatty Acids for GC/MS Analyses
3.5. Folin–Ciocâlteu Assay for Total Phenolic Content Determination and Assessment of Antioxidant Capacity
3.6. GC/MS Analyses of Seed Extracts after Derivatization
3.7. HPLC-(DAD)/ESI-MSn Analyses of Phenolic Compounds
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blaschek, W.; Eble, S.; Hilgenfeldt, U.; Holzgrabe, U.; Reichling, J.; Schulz, V. (Eds.) Hager ROM 2018; Hagers Enzyklopädie der Arzneistoffe und Drogen; Wiss. Verl.-Ges: Stuttgart, Germany, 2018; ISBN 978-3-8047-3903-1. [Google Scholar]
- Al-Snafi, A.E. Constituents and pharmacology of Geum urbanum—A review. IOSR-PHR 2019, 9, 28–33. [Google Scholar]
- Seed Information Database: Search Results. Available online: https://data.kew.org/sid/SidServlet?ID=10952&Num=p7J (accessed on 21 April 2020).
- Mayer, A.M.; Shain, Y. Control of seed germination. Annu. Rev. Plant. Physiol. 1974, 25, 167–193. [Google Scholar] [CrossRef]
- Pernetti, M.; van Malssen, K.F.; Flöter, E.; Bot, A. Structuring of edible oils by alternatives to crystalline fat. Curr. Opin. Colloid Interface Sci. 2007, 12, 221–231. [Google Scholar] [CrossRef]
- Haukioja, E. Induction of defenses in trees. Annu. Rev. Entomol. 1991, 36, 25–42. [Google Scholar] [CrossRef]
- Lv, J.; Sharma, A.; Zhang, T.; Wu, Y.; Ding, X. Pharmacological review on asiatic acid and its derivatives: A potential compound. SLAS Technol. 2018, 23, 111–127. [Google Scholar] [CrossRef] [Green Version]
- Xia, B.; Bai, L.; Li, X.; Xiong, J.; Xu, P.; Xue, M. Structural analysis of metabolites of asiatic acid and its analogue madecassic acid in Zebrafish using LC/IT-MSn. Molecules 2015, 20, 3001–3019. [Google Scholar] [CrossRef] [Green Version]
- Verardo, G.; Duse, I.; Callea, A. Analysis of underivatized oligosaccharides by liquid chromatography/electrospray ionization tandem mass spectrometry with post-column addition of formic acid. RCM 2009, 23, 1607–1618. [Google Scholar] [CrossRef]
- Spínola, V.; Castilho, P.C. Evaluation of Asteraceae herbal extracts in the management of diabetes and obesity. Contribution of caffeoylquinic acids on the inhibition of digestive enzymes activity and formation of advanced glycation end-products (in vitro). Phytochemistry 2017, 143, 29–35. [Google Scholar] [CrossRef]
- Spínola, V. Nutraceuticals and Functional Foods for Diabetes and Obesity Control. Ph.D. Thesis, Universidade da Madeira, Funchal, Portugal, 2018. Available online: http://hdl.handle.net/10400.13/2218 (accessed on 6 July 2020).
- Spínola, V.; Pinto, J.; Llorent-Martínez, E.J.; Tomás, H.; Castilho, P.C. Evaluation of Rubus grandifolius L. (wild blackberries) activities targeting management of type-2 diabetes and obesity using in vitro models. FCT 2019, 123, 443–452. [Google Scholar] [CrossRef]
- Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; García-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and comprehensive evaluation of (poly)phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Dong, X.; Guo, M. Phenolic profiling of Duchesnea indica combining macroporous resin chromatography (MRC) with HPLC-ESI-MS/MS and ESI-IT-MS. Molecules 2015, 20, 22463–22475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.-Y.; Fan, M.-X.; Wu, X.; Wang, H.-J.; Yang, J.; Si, N.; Bian, B.-L. Chemical profiling of the chinese herb formula Xiao-Cheng-Qi decoction using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Chromatogr. Sci. 2013, 51, 273–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dincheva, I.; Badjakov, I.; Kondakova, V.; Dobson, P.; McDougall, G.; Stewart, D. Identification of the phenolic components in Bulgarian raspberry cultivars by LC-ESI-MSn. IJASR 2013, 3, 127–137. [Google Scholar]
- Ye, M.; Yang, W.-Z.; Liu, K.-D.; Qiao, X.; Li, B.-J.; Cheng, J.; Feng, J.; Guo, D.-A.; Zhao, Y.-Y. Characterization of flavonoids in Millettia nitida var. hirsutissima by HPLC/DAD/ESI-MSn. J. Pharm. Anal. 2012, 2, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.; Yan, R.; Wang, Y. A practical strategy for chemical profiling of herbal medicines using ultra-high performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry: A case study of Mori Cortex. Anal. Methods 2015, 7, 443–457. [Google Scholar] [CrossRef]
- Sun, J.; Liang, F.; Bin, Y.; Li, P.; Duan, C. Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules 2007, 12, 679–693. [Google Scholar] [CrossRef] [Green Version]
- Lv, Q.; Luo, F.; Zhao, X.; Liu, Y.; Hu, G.; Sun, C.; Li, X.; Chen, K.; Ashida, H. Identification of proanthocyanidins from Litchi (Litchi chinensis Sonn.) pulp by LC-ESI-Q-TOF-MS and their antioxidant activity. PLoS ONE 2015, 10, e0120480. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.-Z.; Sun, J.; Chen, P.; Monagas, M.J.; Harnly, J.M. UHPLC-PDA-ESI/HRMSn profiling method to identify and quantify oligomeric proanthocyanidins in plant products. J. Agric. Food Chem. 2014, 62, 9387–9400. [Google Scholar] [CrossRef] [Green Version]
- Gulsoy-Toplan, G.; Goger, F.; Yildiz-Pekoz, A.; Gibbons, S.; Sariyar, G.; Mat, A. Chemical constituents of the different parts of Colchicum micranthum and C. chalcedonicum and their cytotoxic activities. Nat. Prod. Commun. 2018, 13, 1934578X1801300. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, T.; Nebehaj, E.; Albert, L. Antioxidant properties and detailed polyphenol profiling of European hornbeam (Carpinus betulus L.) leaves by multiple antioxidant capacity assays and high-performance liquid chromatography/multistage electrospray mass spectrometry. Ind. Crop. Prod. 2016, 87, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Lane, M.; Yang, M.; Heinrich, M. A hexa-herbal TCM decoction used to treat skin inflammation: An LC-MS-based phytochemical analysis. Planta Med. 2016, 82, 1134–1141. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tang, W.; Chen, J.; Jia, R.; Ma, L.; Wang, S.; Wang, J.; Shen, X.; Chu, Z.; Zhu, C.; et al. Development of marker-free transgenic potato tubers enriched in caffeoylquinic acids and flavonols. J. Agric. Food Chem. 2016, 64, 2932–2940. [Google Scholar] [CrossRef] [PubMed]
- Otłowska, O.; Ślebioda, M.; Kot-Wasik, A.; Karczewski, J.; Śliwka-Kaszyńska, M. Chromatographic and spectroscopic identification and recognition of natural dyes, uncommon dyestuff components, and mordants: Case study of a 16th century carpet with chintamani motifs. Molecules 2018, 23, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.; Price, W.E.; Ashton, J.; Tapsell, L.C.; Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of Sorghum wholegrains by LC-ESI-MSn. Food Chem. 2016, 211, 215–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Liu, X.; Yang, T.; Slovin, J.; Chen, P. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMSn. Food Chem. 2014, 146, 289–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, D.; Yang, Y.; Abdulla, R.; Aisa, H.A. Characterization and identification of chemical compositions in the extract of Artemisia rupestris L. by liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. RCM 2012, 26, 83–100. [Google Scholar] [CrossRef]
- Zheng, G.-D.; Zhou, P.; Yang, H.; Li, Y.-S.; Li, P.; Liu, E.-H. Rapid resolution liquid chromatography-electrospray ionisation tandem mass spectrometry method for identification of chemical constituents in Citri Reticulatae Pericarpium. Food Chem. 2013, 136, 604–611. [Google Scholar] [CrossRef]
- Saldanha, L.; Vilegas, W.; Dokkedal, A. Characterization of flavonoids and phenolic acids in Myrcia bella Cambess. using FIA-ESI-IT-MSn and HPLC-PAD-ESI-IT-MS combined with NMR. Molecules 2013, 18, 8402–8416. [Google Scholar] [CrossRef] [Green Version]
- Llorent-Martínez, E.J.; Gouveia, S.; Castilho, P.C. Analysis of phenolic compounds in leaves from endemic trees from Madeira Island. A contribution to the chemotaxonomy of Laurisilva forest species. Ind. Crop. Prod. 2015, 64, 135–151. [Google Scholar] [CrossRef]
- Radenkovs, V.; Püssa, T.; Juhnevica-Radenkova, K.; Anton, D.; Seglina, D. Phytochemical characterization and antimicrobial evaluation of young leaf/shoot and press cake extracts from Hippophae rhamnoides L. Food Biosi. 2018, 24, 56–66. [Google Scholar] [CrossRef]
- Narváez-Cuenca, C.-E. Hydroxycinnamoyl Conjugates in Potato Tubers: Diversity and Reactivity upon Processing; Wageningen University: Wageningen, The Netherlands, 2013; ISBN 9789461734914. [Google Scholar]
- Ben Said, R.; Hamed, A.I.; Mahalel, U.A.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Oleszek, W.; Stochmal, A. Tentative characterization of polyphenolic compounds in the male flowers of Phoenix dactylifera by liquid chromatography coupled with mass spectrometry and DFT. Int. J. Mol. Sci. 2017, 18, 512. [Google Scholar] [CrossRef]
- Fathoni, A.; Saepudin, E.; Cahyana, A.H.; Rahayu, D.U.C.; Haib, J. Identification of nonvolatile compounds in clove (Syzygium aromaticum) from Manado. AIP Conf. Proc. 2017, 1862, 30079. [Google Scholar] [CrossRef] [Green Version]
- Fraternale, D.; Ricci, D.; Verardo, G.; Gorassini, A.; Stocchi, V.; Sestili, P. Activity of Vitis vinifera tendrils extract against phytopathogenic fungi. Nat. Prod. Commun. 2015, 10, 1934578X1501000. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.; Spínola, V. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 14–30. [Google Scholar] [CrossRef]
- Francescato, L.N.; Debenedetti, S.L.; Schwanz, T.G.; Bassani, V.L.; Henriques, A.T. Identification of phenolic compounds in Equisetum giganteum by LC-ESI-MS/MS and a new approach to total flavonoid quantification. Talanta 2013, 105, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, Y.; Liu, R.; Liu, S.; Zhang, X.; Wang, Z.; Zhang, J.; Lu, J. HPLC-LTQ-orbitrap MSn profiling method to comprehensively characterize multiple chemical constituents in xiao-er-qing-jie granules. Anal. Methods 2015, 7, 7511–7526. [Google Scholar] [CrossRef]
- Hokkanen, J. Liquid Chromatography/Mass Spectrometry of Bioactive Secondary Metabolites—In Vivo and In Vitro Studies. Ph.D. Thsis, University of Oulu, Oulu, Finland, 2013. Available online: http://urn.fi/urn:isbn:9789526200897 (accessed on 6 July 2020).
- Djoukeng, J.D.; Abou-Mansour, E.; Tapondjou, L.A.; Lontsi, D.; Tabacchi, R. Identification of ellagic acid derivatives from stem bark of Syzygium Guineense (Myrtaceae). Nat. Prod. Commun. 2007, 2, 1934578X0700200. [Google Scholar] [CrossRef] [Green Version]
- Salih, E.; Fyhrquist, P.; Abdalla, A.; Abdelgadir, A.; Kanninen, M.; Sipi, M.; Luukkanen, O.; Fahmi, M.; Elamin, M.; Ali, H. LC-MS/MS tandem mass spectrometry for analysis of phenolic compounds and pentacyclic triterpenes in antifungal extracts of Terminalia brownii (Fresen). Antibiotics 2017, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Chernonosov, A.A.; Karpova, E.A.; Lyakh, E.M. Identification of phenolic compounds in Myricaria bracteata leaves by high-performance liquid chromatography with a diode array detector and liquid chromatography with tandem mass spectrometry. Rev. Bras. 2017, 27, 576–579. [Google Scholar] [CrossRef]
- Silva, N.A.D.; Rodrigues, E.; Mercadante, A.Z.; Rosso, V.V.D. Phenolic compounds and carotenoids from four fruits native from the Brazilian Atlantic Forest. J. Agric. Food Chem. 2014, 62, 5072–5084. [Google Scholar] [CrossRef] [PubMed]
- Ağalar, H.G.; Akalın Çiftçi, G.; Göger, F.; Kırımer, N. Activity guided fractionation of Arum italicum Miller tubers and the LC/MS-MS profiles. Rec. Nat. Prod. 2017, 12, 64–75. [Google Scholar] [CrossRef]
- Friščić, M.; Bucar, F.; Hazler Pilepić, K. LC-PDA-ESI-MSn analysis of phenolic and iridoid compounds from Globularia spp. J. Mass Spectrom. 2016, 51, 1211–1236. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.A. Phytoconstituents, LC-ESI-MS profile, antioxidantand antimicrobial activities of Citrus x limon L. Burm. f. cultivar variegated pink lemon. J. Pharm. Sci. Res. 2017, 9, 375–391. [Google Scholar]
- Gouveia-Figueira, S.C.; Castilho, P.C. Phenolic screening by HPLC–DAD–ESI/MSn and antioxidant capacity of leaves, flowers and berries of Rubus grandifolius Lowe. Ind. Crop. Prod. 2015, 73, 28–40. [Google Scholar] [CrossRef]
- Bender, O.; Llorent-Martínez, E.J.; Zengin, G.; Mollica, A.; Ceylan, R.; Molina-García, L.; Fernández-de Córdova, M.L.; Atalay, A.; Agbor, G. Integration of in vitro and in silico perspectives to explain chemical characterization, biological potential and anticancer effects of Hypericum salsugineum: A pharmacologically active source for functional drug formulations. PLoS ONE 2018, 13, e0197815. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; Spínola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Ind. Crop. Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
- Pšenák, M.; Jindra, A.; Kovács, P.; Dulovcová, H. Biochemical study in Geum urbanum. Planta Med. 1970, 19, 154–159. [Google Scholar] [CrossRef]
- Kuczerenko, A.; Krawczyk, M.; Przybyl, J.L.; Geszprych, A.; Angielczyk, M.; Baczek, K.; Weglarz, Z. Morphological and chemical variability within the population of common avens (Geum urbanum L.). Herba Polonica 2011, 57, 16–21. [Google Scholar]
- Ahangari, H.; King, J.W.; Ehsani, A.; Yousefi, M. Supercritical fluid extraction of seed oils—A short review of current trends. Trends Food Sci. Technol. 2021, 111, 249–260. [Google Scholar] [CrossRef]
- Bot, A.; Agterof, W.G.M. Structuring of edible oils by mixtures of γ-oryzanol with β-sitosterol or related phytosterols. J. Am. Oil Chem. Soc. 2006, 83, 513–521. [Google Scholar] [CrossRef]
- Gandolfo, F.G.; Bot, A.; Flöter, E. Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures. J. Am. Oil Chem. Soc. 2004, 81, 1–6. [Google Scholar] [CrossRef]
- Rodriguez-Rodriguez, R.; Simonsen, U. Natural Triterpenoids from Olive Oil: Potential Activities Against Cancer. In Natural Compounds as Inducers of Cell Death; Diederich, M., Noworyta, K., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 447–461. ISBN 978-94-007-4574-2. [Google Scholar]
- Negro, C.; Aprile, A.; Luvisi, A.; Nicolì, F.; Nutricati, E.; Vergine, M.; Miceli, A.; Blando, F.; Sabella, E.; Bellis, L.D. Phenolic profile and antioxidant activity of italian monovarietal extra virgin olive oils. Antioxidants 2019, 8, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Ruth, S.M.; Shaker, E.S.; Morrissey, P.A. Influence of methanolic extracts of soybean seeds and soybean oil on lipid oxidation in linseed oil. Food Chem. 2001, 75, 177–184. [Google Scholar] [CrossRef]
- Koski, A.; Pekkarinen, S.; Hopia, A.; Wähälä, K.; Heinonen, M. Processing of rapeseed oil: Effects on sinapic acid derivative content and oxidative stability. Eur. Food Res. Technol. 2003, 217, 110–114. [Google Scholar] [CrossRef]
- Paun, G.; Neagu, E.; Albu, C.; Radu, G.L. Inhibitory potential of some Romanian medicinal plants against enzymes linked to neurodegenerative diseases and their antioxidant activity. Pharmacogn. Mag. 2015, 11, 110. [Google Scholar] [CrossRef] [Green Version]
- Owczarek, A.; Gudej, J.; Olszewska, M.A. Antioxidant activity of Geum rivale L. and Geum urbanum L. Acta Pol. Pharm. 2015, 72, 1239–1244. [Google Scholar]
- Heinrich, M.; Lorenz, P.; Daniels, R.; Stintzing, F.C.; Kammerer, D.R. Lipid and phenolic constituents from seeds of Hypericum perforatum L. and Hypericum tetrapterum Fr. and their antioxidant activity. Chem. Biodivers. 2017, 14, e1700100. [Google Scholar] [CrossRef]
- Alessandri, S.; Ieri, F.; Romani, A. Minor polar compounds in extra virgin olive oil: Correlation between HPLC-DAD-MS and the folin-ciocalteu spectrophotometric method. J. Agric. Food Chem. 2014, 62, 826–835. [Google Scholar] [CrossRef]
- Bunse, M.; Lorenz, P.; Stintzing, F.C.; Kammerer, D.R. Characterization of secondary metabolites in flowers of Sanguisorba officinalis L. by HPLC-DAD-MSn and GC-MS. Chem. Biodivers. 2020, 17, e1900724. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunse, M.; Lorenz, P.; Stintzing, F.C.; Kammerer, D.R. Insight into the Secondary Metabolites of Geum urbanum L. and Geum rivale L. Seeds (Rosaceae). Plants 2021, 10, 1219. https://doi.org/10.3390/plants10061219
Bunse M, Lorenz P, Stintzing FC, Kammerer DR. Insight into the Secondary Metabolites of Geum urbanum L. and Geum rivale L. Seeds (Rosaceae). Plants. 2021; 10(6):1219. https://doi.org/10.3390/plants10061219
Chicago/Turabian StyleBunse, Marek, Peter Lorenz, Florian C. Stintzing, and Dietmar R. Kammerer. 2021. "Insight into the Secondary Metabolites of Geum urbanum L. and Geum rivale L. Seeds (Rosaceae)" Plants 10, no. 6: 1219. https://doi.org/10.3390/plants10061219
APA StyleBunse, M., Lorenz, P., Stintzing, F. C., & Kammerer, D. R. (2021). Insight into the Secondary Metabolites of Geum urbanum L. and Geum rivale L. Seeds (Rosaceae). Plants, 10(6), 1219. https://doi.org/10.3390/plants10061219