Comparative Assessment of the Phytochemical Composition and Biological Activity of Extracts of Flowering Plants of Centaurea cyanus L., Centaurea jacea L. and Centaurea scabiosa L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Making Centaurea L. Extracts
2.3. Gas Chromatography–Mass Spectrometry Analysis
2.4. UHPLC-ESI/HRMS Analysis
2.5. Antimicrobial Tests
2.5.1. Microorganism Strains and Nutrient Media
2.5.2. Antimicrobial Tests In Vitro
2.6. Antioxidant Activity
2.7. Total Polyphenol Content and Flavonoids
2.8. Flavonoid Counts by High-Performance Liquid Chromatography
2.9. Phytotoxicity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Composition of Flower Extracts for Some Centaurea L. Species
3.2. Antimicrobial Activity
3.3. Antioxidant Activity of Centaurea Ethanol Extracts
3.4. Phytotoxicity of Ethanol Extracts Produced from Centaurea L. Plants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Khammar, A.; Djeddi, S. Pharmacological and biological properties of some Centaurea species. Eur. J. Res. 2012, 84, 398–416. [Google Scholar]
- Joujeh, R.; Zaid, S.; Mona, S. Pollen morphology of some selected species of the genus Centaurea L. (Asteraceae) from Syria. S. Afr. J. Bot. 2019, 125, 196–201. [Google Scholar] [CrossRef]
- Rustaiyan, A.; Faridchehr, A. Constituents and biological activities of selected genera of the Iranian Asteraceae family. J. Herb. Med. 2020, 25, 100405. [Google Scholar] [CrossRef]
- Ayad, R.; Akkal, S. Phytochemistry and biological activities of algerian Centaurea and related genera. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 63, pp. 357–414. [Google Scholar]
- Bouafia, M.; Benarfa, A.; Gourine, N.; Yousfi, M. Seasonal variation of fatty acid composition, tocopherol content and antioxidant activity of lipid extracts from Centaurea sp. Food Biosci. 2020, 37, 100728. [Google Scholar] [CrossRef]
- Cherepanov, S.K.; Tsvelev, N.N.; Klokov, M.V.; Sosnovsky, D.I. Genus 1624. Cornflower—Centaurea. In Flora of the USSR: In 30 Volumes; Komarova, V.L., Bobrov, E.G., Cherepanov, S.K., Eds.; Publishing House of the Academy of Sciences of the USSR: Leningrad/Moscow, Russian, 1963; Volume 28, pp. 370–579. [Google Scholar]
- Aktumsek, A.; Zengin, G.; Guler, G.; Cakmak, Y.; Duran, A. Screening for in vitro antioxidant properties and fatty acid profiles of five Centaurea L. species from Turkey flora. Food Chem. Toxicol. 2011, 49, 2914–2920. [Google Scholar] [CrossRef]
- Koc, S.; Isgor, B.S.; Isgor, Y.G.; Moghaddam Sh, N.; Yildirim, O. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets. Pharm. Biol. 2015, 53, 746–751. [Google Scholar] [CrossRef]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crop Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Gürağaç Dereli, F.T.; Ilhan, M.; Küpeli Akkol, E. Identification of the main active antidepressant constituents in a traditional Turkish medicinal plant, Centaurea kurdica Reichardt. J. Ethnopharmacol. 2020, 1, 112373. [Google Scholar] [CrossRef]
- Krasnov, E.A.; Kaminskij, I.P.; Kadyrova, T.V.; Pekhen’ko, V.G.; Adekenov, S.M. Antimicrobial activity of extracts from the aerial part Centaurea scabiosa (Asteraceae). Rastit. Resur. 2012, 48, 262–266. [Google Scholar]
- Grienke, U.; Brkanac, S.R.; Vujčić, V.; Urban, E.; Ivanković, S.; Stojković, R.; Rollinger, J.M.; Kralj, J.; Brozovic, A.; Radić Stojković, M. Biological activity of flavonoids and rare sesquiterpene lactones isolated from Centaurea ragusina L. Front Pharmacol. 2018, 22, 972. [Google Scholar] [CrossRef]
- Albayrak, S.; Atasagun, B.; Aksoy, A. Comparison of phenolic components and biological activities of two Centaurea sp. obtained by three extraction techniques. Asian Pac. J. Trop. Med. 2017, 10, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Özcan, K.; Acet, T.; Çorbacı, C. Centaurea hypoleuca DC: Phenolic content, antimicrobial, antioxidant and enzyme inhibitory activities. S. Afr. J. Bot. 2019, 127, 313–318. [Google Scholar] [CrossRef]
- Güvensen, N.C.; Keskin, D.; Güneş, H.; Oktay, M.K.; Yıldırım, H. Antimicrobial property and antiproliferative activity of Centaurea babylonica (L.) L. on human carcinomas and cervical cancer cell lines. Ann. Agric. Environ. Med. 2019, 26, 290–297. [Google Scholar] [CrossRef]
- Naeim, H.; El-Hawiet, A.; Abdel Rahman, R.A.; Hussein, A.; Demellawy, M.A.; Embaby, A.M. Antibacterial activity of Centaurea pumilio L. root and aerial part extracts against some multidrug resistant bacteria. BMC Complem. Altern. M 2020, 20, 79. [Google Scholar] [CrossRef] [Green Version]
- ISO/IEC GUIDE 98-1:2009. Uncertainty of Measurement—Part 1: Introduction to the Expression of Uncertainty in Measurement; International Organization for Standardization: Geneva, Switzerland, 2009; p. 32. [Google Scholar]
- Fitsev, I.; Shlyamina, O.; Makaeva, A.; Nasybullina, G.; Saifutdinov, A. Detection of cypermethrin residues in toxicological control objects using gas chromatography-mass spectrometry with solid-phase extraction. Int. J. Mech. Prod. Eng. Res. Dev. 2020, 10, 5563–5570. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institutes (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In CLSI Standard M07, 11th ed.; Clinical and Laboratory Standarts Institute: Wayne, PA, USA, 2018; p. 112. [Google Scholar]
- Kanagarajan, V.; Ezhilarasi, M.R.; Gopalakrishnan, M. In vitro microbiological evaluation of 1,1′-(5,5′-(1,4-phenylene)bis(3-aryl-1H-pyrazole-5,1-(4H,5H)-diyl))diethanones, novel bisacetylated pyrazoles. Org. Med. Chem. Lett. 2011, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institutes (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts. In CLSI Standard M27, 4th ed.; Clinical and Laboratory Standarts Institute: Wayne, PA, USA, 2017; p. 31. [Google Scholar]
- Semenov, V.E.; Voloshina, A.D.; Kulik, N.V.; Strobykina, A.S.; Giniyatullin, R.K.; Saifina, L.F.; Nikolaev, A.E.; Krylova, E.S.; Zobov, V.V.; Reznik, V.S. Macrocyclic and acyclic 1,3-bis5-(trialkylammonio)pentyl-5(6)-substituted uracil dibromides: Synthesis, antimicrobial properties, and the structure-activity relationship. Russ. Chem. Bull. 2015, 64, 2885–2896. [Google Scholar] [CrossRef]
- Vyshtakalyuk, A.B.; Semenov, V.E.; Sudakov, I.A.; Bushmeleva, K.N.; Gumarova, L.F.; Parfenov, A.A.; Nazarov, N.G.; Galyametdinova, I.V.; Zobov, V. Xymedon conjugate with biogenic acids. Antioxidant properties of a conjugate of Xymedon with L-ascorbic acid. Russ. Chem. Bull. 2018, 67, 705–711. [Google Scholar] [CrossRef]
- Desmarchelier, C.; Repetto, M.; Coussio, J.; Llesuy, S.; Ciccia, G. Total reactive antioxidant potential (TRAP) and total antioxidant reactivity (TAR) of medicinal plants used in southwest Amazonia (Bolivia and Peru). Int. J. Pharmacogn. 1997, 35, 288–296. [Google Scholar] [CrossRef]
- Stanković, M.S. Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujev. J. Sci. 2011, 33, 63–72. [Google Scholar]
- GOST 12038-84. Seeds of crops. In Germination Methods; Izd-Vo Standartov: Moscow, Russian, 2004; pp. 32–60. [Google Scholar]
- Kadyrova, T.V.; Ermilova, E.V.; Larkina, M.S. Antioxidant activity of extracts of Centaurea jacea L. and Centaurea pseudomaculosa Dobrocz. Chem. Plant Raw Mater. 2014, 2, 143–146. [Google Scholar]
- Zater, H.; Huet, J.; Fontaine, V.; Benayache, S.; Stévigny, C.; Duez, P.; Benayache, F. Chemical constituents, cytotoxic, antifungal and antimicrobial properties of Centaurea diluta Ait. subsp. algeriensis (Coss. & Dur.) Maire. Asian Pac. J. Trop. Med. 2016, 9, 554–561. [Google Scholar] [CrossRef] [Green Version]
- Zengin, G.; Zheleva-Dimitrova, D.; Gevrenova, R.; Nedialkov, P.; Mocan, A.; Ćirić, A.; Glamočlija, J.; Soković, M.; Aktumsek, A.; Mahomoodally, M.F. Identification of phenolic components via LC-MS analysis and biological activities of two Centaurea species: C. drabifolia subsp. drabifolia and C. lycopifolia. J. Pharm. Biomed. Anal. 2018, 5, 436–441. [Google Scholar] [CrossRef] [Green Version]
- Uysal, A.; Zengin, G.; Mahomoodally, M.F.; Picot-Allain, C.; Jekő, J.; Cziáky, Z.; Rodrigues, M.J.; Ak, G.; Polat, R.; Urusan, Z.; et al. A comparative study on biological properties and chemical profiles of different solvent extracts from Centaurea bingoelensis, an endemic plant of Turkey. Process. Biochem. 2021, 102, 315–324. [Google Scholar] [CrossRef]
- Fernandes, L.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E.; Casal, S. Phytochemical characterization of Borago officinalis L. and Centaurea cyanus L. during flower development. Food Res. Int. 2019, 123, 771–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminsky, I.P.; Kadyrova, T.V.; Kalinkina, G.I.; Larkina, M.S.; Ermilova, E.V.; Belousov, M.V. Comparative pharmacognostic study of rough cornflower (Centaurea scabiosa L.) growing wild and cultivated in the conditions of Tomsk. Chem. Plant Raw Mater. 2020, 2, 119–126. [Google Scholar] [CrossRef]
- Van Vuuren, S.; Holl, D. Antimicrobial natural product research: A review from a South African perspective for the years 2009–2016. J. Ethnopharmacol. 2017, 208, 236–252. [Google Scholar] [CrossRef]
- Sarker, S.K.; Shoeb, M.; Celik, S.; Yucel, E.; Middleton, M.; Nahar, L. Antibacterial and antioxidant activities of three Turkish species of the genus Centaurea. Orient Pharm. Exp. Med. 2005, 5, 246–250. [Google Scholar] [CrossRef] [Green Version]
- Al-Saleem, M.S.; Awaad, A.S.; Alothman, M.R.; Alqasoumi, S.I. Phytochemical standardization and biological activities of certain desert plants growing in Saudi Arabia. Saudi Pharm. J. 2018, 26, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Sharafutdinov, I.S.; Pavlova, A.S.; Akhatova, F.S.; Khabibrakhmanova, A.M.; Rozhina, E.V.; Romanova, Y.J.; Fakhrullin, R.F.; Lodochnikova, O.A.; Kurbangalieva, A.R.; Bogachev, M.I.; et al. Unraveling the molecular mechanism of selective antimicrobial activity of 2(5H)-furanone derivative against Staphylococcus aureus. Int. J. Mol. Sci. 2019, 20, 694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trizna, E.Y.; Khakimullina, E.N.; Latypova, L.Z.; Kurbangalieva, A.R.; Sharafutdinov, I.S.; Evtyugin, V.G.; Babynin, E.V.; Bogachev, M.I.; Kayumov, A.R. Thio derivatives of 2(5H)-Furanone as inhibitors against Bacillus subtilis biofilms. Acta Nat. 2015, 7, 102–107. [Google Scholar] [CrossRef] [PubMed]
Component | RRt | Centaurea cyanus L. | Centaurea jacea L. | Centaurea scabiosa L. |
---|---|---|---|---|
% of the total | ||||
Pyranone (heterocyclic chemical compounds) | 3.69 | nd | nd | 6.29 |
Coumaran (furan) | 4.65 | nd | nd | 1.23 |
Catechol (phenol) | 4.98 | 17.79 | 5.65 | nd |
5-Hydroxymethylfurfural (furfural) | 5.18 | nd | nd | 7.83 |
3-Ethyl-5-methylphenol (phenol) | 8.98 | nd | nd | 2.93 |
2-Hydroxy-5-methylbenzaldehyde (aldehyde) | 9.32–9.39 | 9.91 | 8.02 | nd |
4-Ethenyl-2-methoxyphenol (phenol) | 6.51 | nd | 1.74 | nd |
Hydroquinone (phenol) | 6.90 | nd | 2.21 | nd |
4-Methoxy-1-naphthol (phenol) | 10.07 | nd | nd | 3.44 |
Caryophyllene oxide (sesquiterpenoid) | 11.41 | nd | 0.81 | nd |
(1R,7S,E)-7-Isopropyl-4,10-dimethylenecyclodec-5-enol (sesquiterpenoid) | 12.88 | nd | nd | 4.61 |
Sucrose (disaccharide) | 13.86 | nd | nd | 3.38 |
4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol (phenol) | 14.00–14.38 | 1.37 | nd | 4.45 |
Neophytadiene (diterpene) | 15.87 | 1.71 | nd | nd |
14-Methyl pentadecanoic acid methyl ester (ester) | 17.32 | 0.37 | nd | nd |
Hexadecanoic acid ethyl ester (ester) | 18.00 | nd | nd | 1.12 |
Palmitic acid (fatty acid) | 18.10 | 8.76 | 6.49 | 12.57 |
Phytol (diterpene alcohol) | 20.17 | 4.15 | 1.47 | 1.64 |
Linoleic acid (fatty acid) | 20.15 | nd | nd | 6.13 |
Linoleic acid ethyl ester (ester) | 20.48 | nd | nd | 2.50 |
Linolenic acid ethyl ester (ester) | 20.57 | nd | nd | 2.77 |
Linolenic acid (fatty acid) | 20.77 | 8.02 | 2.71 | 5.01 |
[1,1’-Biphenyl]-2-ol acetate (aromatic compound) | 21.24 | nd | nd | 8.58 |
4-(4-Hydroxyphenyl)benzohydrazide (hydrazide) | 22.77 | nd | nd | 6.33 |
Chamazulene (aromatic compound) | 23.05 | nd | nd | 1.53 |
5,8,11,14-Eicosatetraynoic acid (fatty acid) | 24.67 | nd | nd | 5.35 |
Galangin flavanone (flavonoid) | 24.90 | nd | nd | 1.47 |
2-Monopalmitin (alcohol) | 25.56 | 4.49 | nd | 2.73 |
Palmitic acid β-monoglyceride (ester) | 25.57 | nd | 1.15 | nd |
2-Monolinolein (glyceride) | 27.28 | nd | nd | 2.60 |
Linolenic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester (Z,Z,Z)- (ester) | 27.38 | nd | nd | 1.31 |
1-Monolinolein (glyceride) | 27.72 | 4.34 | 0.77 | nd |
Eriostemin (flavonoid) | 33.39 | nd | 2.73 | nd |
1,1,6-trimethyl-3-methylene-2-(3,6,9,13-tetramethyl-6-ethenye-10,14-dimethylene-pentadec-4-enyl)cyclohexane (alkene) | 33.62 | nd | nd | 2.10 |
Stigmasterol (sterol) | 33.70 | 4.87 | nd | 0.54 |
γ-Sitosterol (sterol) | 34.29 | 8.64 | nd | 1.10 |
3′,5,6-trihydroxy-3,4′,7-trimethoxyflavone (flavonoid) | 34.36 | nd | 60.42 | nd |
Vitexicarpin (flavonoid) | 35.49 | nd | 5.83 | nd |
β-Amyrin (triterpene) | 34.54 | 9.33 | nd | nd |
α-Amyrin (triterpene) | 34.99 | 12.86 | nd | 0.45 |
Vitamin E acetate (vitamin) | 35.65 | 3.39 | nd | nd |
Component | RRt | EtOH | MeOH | PE | MTBE |
---|---|---|---|---|---|
% of the total | |||||
Pyranone (heterocyclic chemical compounds) | 3.69 | 6.29 | nd | nd | nd |
Coumaran (furan) | 4.62–4.65 | 1.23 | 5.05 | nd | nd |
5-Hydroxymethylfurfural (furfural) | 5.18–5.27 | 7.83 | 16.48 | nd | nd |
L-bornyl acetate (terpene ester) | 5.55 | nd | nd | nd | 38.42 |
Caryophyllene (sesquiterpene) | 7.98 | nd | nd | nd | 8.08 |
β-Yalangene (sesquiterpene) | 8.05 | nd | nd | 5.32 | nd |
β-Copaene (sesquiterpene) | 8.20 | nd | nd | 3.36 | nd |
Humulene (sesquiterpene) | 8.61 | nd | nd | nd | 3.66 |
Isogermacrene D (sesquiterpene) | 8.66 | nd | nd | 4.39 | nd |
3-Ethyl-5-methylphenol (phenol) | 8.98 | 2.93 | nd | nd | nd |
D-Germacrene (sesquiterpene) | 9.16 | nd | nd | 2.52 | nd |
β-Bisabolene (sesquiterpene) | 9.68 | nd | nd | nd | 4.48 |
3-Hydroxy-4-methoxybenzoic acid, methyl ester (ester) | 9.92 | nd | 46.60 | nd | nd |
4-Methoxy-1-naphthol (phenol) | 10.07 | 3.44 | nd | nd | nd |
3-Methyl-coumarin (lactone) | 10.36 | nd | 11.93 | nd | nd |
Germacrene D-4-ol (sesquiterpene alcohol) | 10.98 | nd | nd | 3.30 | nd |
Caryophyllene oxide (sesquiterpenoid) | 10.99 | nd | nd | nd | 2.89 |
Humulenol-II (sesquiterpene alcohol) | 11.69 | nd | 1.84 | nd | nd |
2,6-Dimethyl-10-methylene-2,6,11-dodecatrienal (sesquiterpenoid) | 11.91 | nd | 2.01 | nd | nd |
(1R,7S,E)-7-Isopropyl-4,10-dimethylenecyclodec-5-enol (sesquiterpenoid) | 12.88–13.00 | 4.61 | nd | 5.20 | nd |
α-Bisabolol (sesquiterpene alcohol) | 12.87 | nd | nd | nd | 1.60 |
Sucrose (disaccharide) | 13.86–14.29 | 3.38 | 6.37 | nd | nd |
4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol (phenol) | 14.00 | 4.45 | nd | nd | nd |
Palmitic acid (fatty acid) | 17.66–18.10 | 12.57 | nd | 2.46 | nd |
Hexadecanoic acid ethyl ester (ester) | 18.00 | 1.12 | nd | nd | nd |
3-Deoxy-d-mannoic lactone (lactone) | 18.55 | nd | 5.32 | nd | nd |
2-Chlorofluorene (aromatic compound) | 19.44 | nd | nd | 1.20 | nd |
Sclareol (diterpene alcohol) | 19.75 | nd | nd | nd | 4.21 |
Phytol (diterpene alcohol) | 19.75–20.17 | 1.64 | 0.53 | nd | nd |
Linoleic acid (fatty acid) | 20.15 | 6.13 | nd | nd | nd |
(Z,Z,Z)-9,12,15-Octadecatrien-1-ol (alcohol) | 20.21 | nd | 1.09 | nd | nd |
Linoleic acid ethyl ester (ester) | 20.48 | 2.50 | nd | nd | nd |
Linolenic acid ethyl ester (ester) | 20.57 | 2.77 | nd | nd | 0.40 |
Linolenic acid (fatty acid) | 20.24–20.77 | 5.01 | nd | 1.14 | nd |
[1,1’-Biphenyl]-2-ol, acetate (aromatic compound) | 21.24 | 8.58 | nd | nd | nd |
Tetracosane (alkane) | 22.37–22.50 | nd | nd | 0.78 | 1.93 |
4-(4-Hydroxyphenyl)benzohydrazide (hydrazide) | 22.77 | 6.33 | nd | nd | nd |
Chamazulene (aromatic compound) | 23.05 | 1.53 | nd | nd | nd |
Linolenic acid, methyl ester (ester) | 23.25 | nd | nd | nd | 1.06 |
Eicosanoic acid (fatty acid) | 23.77 | nd | nd | 3.24 | nd |
5,8,11,14-Eicosatetraynoic acid (fatty acid) | 24.67 | 5.35 | nd | nd | nd |
Galangin flavanone (flavonoid) | 24.90 | 1.47 | nd | nd | nd |
Pentacosane (alkane) | 24.99–25.13 | nd | nd | 1.46 | 1.43 |
2-Monopalmitin (alcohol) | 25.13–25.56 | 2.73 | nd | 0.46 | nd |
Vitamin A acetate (vitamin) | 26.32 | nd | nd | nd | 2.15 |
2-Monolinolein (glyceride) | 27.26–50.40 | 2.60 | 0.89 | 5.89 | nd |
Linolenic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester (Z,Z,Z)-(ester) | 27.38 | 1.31 | nd | nd | nd |
Octacosane (alkane) | 27.42–28.65 | nd | nd | 1.05 | 4.17 |
Desogestrel (hormone) | 28.06 | nd | nd | nd | 1.17 |
Tetratetracontane (alkane) | 29.69 | nd | nd | nd | 6.36 |
Tetratriacontane (alkane) | 29.89 | nd | nd | 19.71 | nd |
Heptacosane-6,8-dione (ketone) | 30.79 | nd | nd | 1.00 | nd |
Octacosanol (alcohol) | 31.65 | nd | nd | 1.15 | nd |
Hentriacontane (alkane) | 31.83 | nd | nd | nd | 4.41 |
Tetratriacontane (alkane) | 32.00 | nd | nd | 4.72 | nd |
Nonacosane-6,8-dione (ketone) | 32.78–32.98 | nd | nd | 1.12 | 0.50 |
Campesterol (sterol) | 33.14 | nd | nd | 1.18 | nd |
Stigmasterol (sterol) | 33.28–33.53 | 0.54 | nd | 3.24 | nd |
1,1,6-trimethyl-3-methylene-2-(3,6,9,13-tetramethyl-6-ethenye-10,14-dimethylene-pentadec-4-enyl)cyclohexane (alkene) | 33.62 | 2.10 | nd | nd | nd |
Canophyllal (triterpenoid) | 33.64 | nd | nd | nd | 1.93 |
β-Sitosterol (sterol) | 33.87 | nd | nd | nd | 3.04 |
γ-Sitosterol (sterol) | 33.87–34.29 | 1.10 | nd | 9.26 | nd |
β-Amyrin (triterpene) | 34.12–34.46 | nd | nd | 1.43 | 0.91 |
Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, octadecyl ester (ester) | 37.47 | nd | nd | 7.67 | nd |
Phytyl decanoate (ester) | 43.86 | nd | nd | 1.75 | nd |
Peak No. | [M-H]-m/z Molecular Formula | Proposed Compound |
---|---|---|
1 | 153.0182 C7H5O4 | Protocatechuic acid (phenolic acid) |
2 | 353.0885 C16H17O9 | 3-Caffeoylquinic acid (flavonoid ester) |
3 | 353.0893 C16H17O9 | 5-Caffeoylquinic acid (flavonoid ester) |
4 | 179.0342 C9H7O4 | Caffeic acid (phenolic acid) |
5 | 195.1981 C12H20O2 | L-bornyl acetate (terpene ester) |
6 | 463.0885 C21H19O12 | Quercetin-3-O-glucoside (flavonoid) |
7 | 593.1512 C27H29O15 | Luteolin-7-O-rutinoside (flavonoid) |
8 | 447.0926 C21H19O11 | Luteolin-7-O-glucoside (flavonoid) |
9 | 301.0353 C15H9O7 | Quercetin (flavonoid) |
10 | 269.0453 C15H9O6 | Apigenin (flavonoid) |
11 | C19H21O7 361.0721 | Repin (flavonoid) |
12 | 285.0401 C15H9O6 | Luteolin (flavonoid) |
13 | 333.0126 C18H21O6 | Cynaropikrin (sesquiterpene lactone) |
14 | 263.0328 C15H19O4 | Grossgemin (sesquiterpene lactone) |
Solvents, Raw for Extraction | Clavibacter michiganensis VKM Ac-1404 | Alternaria solani K-100054 | Statistics a | ||
---|---|---|---|---|---|
MIC | MBC | MIC | MBC | ||
Ethanol, freshly harvested flowers | 1250 ± 100 | 5000 ± 300 | 2500 ± 200 | >10,000 | 0.001 |
Ethanol, flash-frozen flowers | 625 ± 50 | 2500 ± 200 | 1250 ± 100 | 5000 ± 500 | <0.001 |
Water, freshly harvested flowers | 5000 ± 300 | >10,000 | 5000 ± 300 | >10,000 | 0.001 |
Water, flash-frozen flowers | 5000 ± 300 | >10000 | 5000 ± 300 | >10000 | 0.001 |
Petroleum ether, freshly harvested flowers | 120 ± 10 | 500 ± 30 | 120 ± 10 | 250 ± 20 | <0.001 |
Petroleum ether, flash-frozen flowers | 120 ± 10 | 1000±100 | 250 ± 20 | 500 ± 100 | <0.001 |
MTBE, freshly harvested flowers | 120 ± 10 | 250 ± 20 | 60 ± 6 | 120 ± 10 | <0.001 |
MTBE, flash-frozen flowers | 60±6 | 250 ± 30 | 60 ± 6 | 120 ± 10 | <0.001 |
Species | 10 mg/mL | 1 mg/mL | 0.1 mg/mL | 0.01 mg/mL |
---|---|---|---|---|
Centaurea cyanus L. | 19,000 | 6576 | 220 | 0 |
Centaurea jacea L. | 19,000 | 9212 | 179 | 0 |
Centaurea scabiosa L. | 19,000 | 3572 | 90 | 0 |
Trolox | 19,000 | 14,000 | 2697 | 443 |
Dihydroquercetin | 20,000 | 16,152 | 14,647 | 922 |
Species | 10 mg/mL | 1 mg/mL | 0.1 mg/mL | 0.01 mg/mL |
---|---|---|---|---|
Centaurea cyanus L. | 99.75 | 70.06 | 47.75 | 2.16 |
Centaurea jacea L. | 99.79 | 96.9 | −38.4 | −13.31 |
Centaurea scabiosa L. | 99.93 | 72.52 | 7.97 | 16.06 |
Trolox | 99.96 | 99.77 | 4.5 | 1.68 |
Dihydroquercetin | 99.99 | 99.19 | 96.83 | 30.37 |
Species | Rutin, mg/L | Quercetin, mg/L | Hesperidin, mg/L | Total Phenolic Content a, mg GAE/l | Total Flavonoid Content b, mg Kv/l | Statistics c |
---|---|---|---|---|---|---|
Centaurea cyanus L. | 13.2 ± 0.03 | 5.6 ± 0.01 | 13.2 ± 0.02 | 97.9 ± 1.15 | 118.52 ± 3.11 | <0.001 |
Centaurea jacea L. | 52.3 ± 1.72 | 11.9 ± 0.07 | 28.9 ± 0.23 | 163.7 ± 2.25 | 193.63 ± 2.67 | 0.001 |
Centaurea scabiosa L. | 11.4 ± 0.19 | 3.4 ± 0.01 | 9.7 ± 0.03 | 91.3 ± 1.07 | 97.21 ± 1.00 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharonova, N.; Nikitin, E.; Terenzhev, D.; Lyubina, A.; Amerhanova, S.; Bushmeleva, K.; Rakhmaeva, A.; Fitsev, I.; Sinyashin, K. Comparative Assessment of the Phytochemical Composition and Biological Activity of Extracts of Flowering Plants of Centaurea cyanus L., Centaurea jacea L. and Centaurea scabiosa L. Plants 2021, 10, 1279. https://doi.org/10.3390/plants10071279
Sharonova N, Nikitin E, Terenzhev D, Lyubina A, Amerhanova S, Bushmeleva K, Rakhmaeva A, Fitsev I, Sinyashin K. Comparative Assessment of the Phytochemical Composition and Biological Activity of Extracts of Flowering Plants of Centaurea cyanus L., Centaurea jacea L. and Centaurea scabiosa L. Plants. 2021; 10(7):1279. https://doi.org/10.3390/plants10071279
Chicago/Turabian StyleSharonova, Natalia, Evgeny Nikitin, Dmitriy Terenzhev, Anna Lyubina, Syumbelya Amerhanova, Kseniya Bushmeleva, Adelya Rakhmaeva, Igor Fitsev, and Kirill Sinyashin. 2021. "Comparative Assessment of the Phytochemical Composition and Biological Activity of Extracts of Flowering Plants of Centaurea cyanus L., Centaurea jacea L. and Centaurea scabiosa L." Plants 10, no. 7: 1279. https://doi.org/10.3390/plants10071279
APA StyleSharonova, N., Nikitin, E., Terenzhev, D., Lyubina, A., Amerhanova, S., Bushmeleva, K., Rakhmaeva, A., Fitsev, I., & Sinyashin, K. (2021). Comparative Assessment of the Phytochemical Composition and Biological Activity of Extracts of Flowering Plants of Centaurea cyanus L., Centaurea jacea L. and Centaurea scabiosa L. Plants, 10(7), 1279. https://doi.org/10.3390/plants10071279