Effects of Conventional and Bokashi Hydroponics on Vegetative Growth, Yield and Quality Attributes of Bell Peppers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nutrients in Growth Media
2.2. Effect of Bokashi and Conventional Hydroponics on Vegetative Growth Parameters
2.2.1. Plant Height, Stem Diameter and Internodes
2.2.2. Photosynthetic Performance
2.2.3. Leaf Superoxide Dismutase (SOD)
2.2.4. Leaf Sap Content
2.3. Effects of Bokashi and Conventional Hydroponics on Fruit Yield, Harvest Quality and Postharvest Performance
2.3.1. Yield, Fruit Size and Weight
2.3.2. Fruit Respiration Rate
2.3.3. Weight Loss
2.3.4. Physicochemical Attributes
Color and Glossiness
Firmness and Moisture Content
Total Soluble Solids (TSS)
Carotenoid Concentration
3. Materials and Methods
3.1. Preharvest Conditions
3.2. Harvest and Postharvest Conditions
3.3. Assessments of Vegetative Growth Parameters
3.3.1. Plant Height, Stem Diameter and Internodes
3.3.2. Photosynthetic Assessments
3.3.3. Leaf Sap Analysis
3.3.4. Superoxide Dismutase (SOD)
3.4. Harvest and Postharvest Assessments of Fruit Quality Attributes
3.4.1. Weight Loss and Respiration Rate
3.4.2. Physicochemical Attributes
Color and Glossiness
Firmness
Total Soluble Solids (TSS)
Moisture Content
Carotenoid Content
4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saltveit, M. Mature fruit vegetables. In Postharvest Physiology and Pathology of Vegetables; Bartz, J., Brecht, J., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 703–732. ISBN 978-0-8247-0687-6. [Google Scholar]
- Nerdy, N. Determination of vitamin C in various colours of bell pepper (Capsicum annuum l.) by titration method. Alchemy J. Penel. Kim. 2018, 14, 164. [Google Scholar] [CrossRef] [Green Version]
- Del Amor, F.M.; Serrano-Martínez, A.; Fortea, M.I.; Gómez-López, M.D.; Núñez-Delicado, E. Yield and fruit quality response of sweet pepper genotypes grown under soilless cultivation. J. Plant Nutr. 2013, 36, 1247–1257. [Google Scholar] [CrossRef]
- Galgano, F.; Tolve, R.; Colangelo, M.A.; Scarpa, T.; Caruso, M.C. Conventional and organic foods: A comparison focused on animal products. Cogent Food Agric. 2016, 2, 1142818. [Google Scholar] [CrossRef]
- Kyan, T.; Shintani, M.; Kanda, S.; Sakurai, M.; Ohashi, H.; Fujisawa, A.; Pongdit, S. APNAN Manual.Pdf. Available online: https://www.scribd.com/doc/293535315/Apnan-Manual (accessed on 16 May 2011).
- Pohan, S.; Amrizal, A.; Masni, E.; Puspitasari, W.; Puspitasari, W.; Malau, N.; Pasaribu, R.; Pasaribu, R.; Siregar, R. The use of bokashi compost as a soil fertility amendment in increasing vegetative growth of organic tomato (Lycopersicum esculentum Mill.). In Proceedings of the 5th Annual International Seminar on Trends in Science and Science Education, Medan, Indonesia, 18–19 October 2018; pp. 1–7. [Google Scholar]
- Maass, V.; Céspedes, C.; Cárdenas, C. Effect of bokashi improved with rock phosphate on parsley cultivation under organic greenhouse management. Chil. J. Agric. Res. 2020, 80, 444–451. [Google Scholar] [CrossRef]
- Muchate, N.S.; Rajurkar, N.S.; Suprasanna, P.; Nikam, T.D. NaCl Induced salt adaptive changes and enhanced accumulation of 20-hydroxyecdysone in the in vitro shoot cultures of Spinacia oleracea (L.). Sci. Rep. 2019, 9, 12522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, D.J.; Bernal, M.P. The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Biores. Technol. 2008, 99, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.J. Complete Guide for Growing Plants Hydroponically; CRC Press: Boca Raton, FL, USA, 2014; Volume 47, ISBN 9781439876695. [Google Scholar]
- López-Serrano, L.; Calatayud, Á.; López-Galarza, S.; Serrano, R.; Bueso, E. Uncovering salt tolerance mechanisms in pepper plants: A physiological and transcriptomic approach. BMC Plant Biol. 2021, 21, 169. [Google Scholar] [CrossRef] [PubMed]
- Razaq, M.; Zhang, P.; Shen, H.L.; Salahuddin. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS ONE 2017, 12, e0171321. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.A.S.; Silva Júnior, M.; Viégas, I.; Lobato, A.; Silva, V.; Botelho, S.M.A.; Silva, G.R.; Freitas, J.M.N.; Neto, C.F.; Lima, S.S. Growth and visual symptoms of nutrient deficiencies in young Mentha piperita plants. J. Food Agric. Environ. 2014, 12, 292–296. [Google Scholar]
- Ling, Q.; Huang, W.; Jarvis, P. Use of a SPAD-502 Meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynth. Res. 2011, 107, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Riga, P.; Anza, M. Effect of magnesium deficiency on pepper growth parameters: Implications for determination of magnesium-critical value. J. Plant Nutr. 2003, 26, 1578–1588. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Chenani, S.K. Investigation of NDVI index in relation to chlorophyll content change and phenological event. in proceedings of the recent advances in environment, energy systems and naval science. In Proceedings of the 4th International Conference on Environmental and Geological Science and Engineering, Barcelona, Spain, 15–17 September 2011; pp. 22–28. [Google Scholar]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [Green Version]
- Zhani, K.; Mariem, B.F.; Fardaous, M.; Cherif, H.; Zhani, K.; Mariem, B.F.; Fardaous, M.; Cherif, H. Impact of salt stress (NaCl) on growth, chlorophyll content and fluorescence of Tunisian cultivars of chili pepper (Capsicum Frutescens L.). J. Stress Physiol. Biochem. 2012, 8, 236–252. [Google Scholar]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier: London, UK, 2012; ISBN 9780123849052. [Google Scholar]
- Clark, M.B.; Mills, H.A.; Robacker, C.D.; Latimer, J.G. Influence of nitrate:ammonium ratios on growth and elemental concentration in two Azalea cultivars. J. Plant Nutr. 2003, 26, 2503–2520. [Google Scholar] [CrossRef]
- Cometti, N.N.; Martins, M.Q.; Bremenkamp, C.A.; Nunes, J.A. Nitrate concentration in lettuce leaves depending on photosynthetic photon flux and nitrate concentration in the nutrient solution. Hortic. Brasil. 2011, 29, 548–553. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Zhu, Z.-L.; Wang, F.; Zhang, X.; Li, B.-Y.; Liu, Z.-X.; Wu, X.-X.; Ge, S.-F.; Jiang, Y.-M. Role of calcium as a possible regulator of growth and nitrate nitrogen metabolism in apple dwarf rootstock seedlings. Sci. Hortic. 2021, 276, 109740. [Google Scholar] [CrossRef]
- Lavon, R.; Salomon, R.; Goldschmidt, E.E. Effect of potassium, magnesium, and calcium deficiencies on nitrogen constituents and chloroplast components in citrus leaves. J. Am. Soc. Hortic. Sci. 1999, 124, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Serna, M.D.; Borras, R.; Legaz, F.; Primo-Millo, E. The Influence of nitrogen concentration and ammonium /nitrate ratio on n-uptake, mineral composition and yield of citrus. Plant Soil 1992, 147, 13–23. [Google Scholar] [CrossRef]
- Zeng, H.; Liu, G.; Kinoshita, T.; Zhang, R.; Zhu, Y.; Shen, Q.; Xu, G. Stimulation of phosphorus uptake by ammonium nutrition involves plasma membrane h + atpase in rice roots. Plant Soil 2012, 357, 205–214. [Google Scholar] [CrossRef]
- Rodrigo, M.-J.; Alquezar, B.; Alférez, F.; Zacarias, L. Biochemistry of fruits and fruit products. In Handbook of Fruits and Fruit Processing; Sinha, N.K., Sidhu, J., Barta, J., Wu, J.S.B., Cano, M.P., Eds.; Wiley and Sons: Des Moines, IA, USA, 2012; pp. 13–34. ISBN 9781118352533. [Google Scholar]
- Montero-Calderón, M.; Cerdas-Araya, M. Postharvest Physiology and Storage; Wiley-Blackwell: Des Moines, IA, USA, 2012; ISBN 9781118324097. [Google Scholar]
- González- Aguilar, G.A.; Cruz, R.; Baez, R.; Wang, C.Y. Storage Quality of bell peppers pretreated with hot water and polyethylene packaging. J. Food Qual. 1999, 22, 287–299. [Google Scholar] [CrossRef]
- Weber, A.; Thewes, F.R.; Anese, R.D.O.; Both, V.; Pavanello, E.P.; Brackmann, A. Dynamic controlled atmosphere (DCA): Interaction between DCA methods and 1-methylcyclopropene on ‘fuji suprema’ apple quality. Food Chem. 2017, 235, 136–144. [Google Scholar] [CrossRef]
- Frans, M.; Aerts, R.; Ceusters, N.; Luca, S.; Ceusters, J. Possibilities of modified atmosphere packaging to prevent the occurrence of internal fruit rot in bell pepper fruit (Capsicum annuum) caused by Fusarium spp. Postharv. Biol. Technol. 2021, 178, 111545. [Google Scholar] [CrossRef]
- Osuna-Garcia, J.A.; Wall, M.M. Prestorage moisture content affects color loss of ground paprika (Capsicum annuum L.) under storage. J. Food Qual. 1998, 21, 251–259. [Google Scholar] [CrossRef]
- Fan, N.; Wang, X.; Sun, J.; Lv, X.; Gu, J.; Zhao, C.; Wang, D. Effects of konjac glucomannan/pomegranate peel extract composite coating on the quality and nutritional properties of fresh-cut kiwifruit and green bell pepper. J. Food Sci. Technol. 2021, 1–11. [Google Scholar] [CrossRef]
- Zekrehiwot, A.; Yetenayet, B.T.; Ali, M.; Abebe, Z.; Tola, Y.B.; Mohammed, A. Effects of edible coating materials and stages of maturity at harvest on storage life and quality of tomato (Lycopersicon esculentum Mill.) fruits. Afr. J. Agric. Res. 2017, 12, 550–565. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Pratibha; Neeraj; Ojha, A.; Upadhyay, A.; Singh, R.; Kumar, S. Effect of active chitosan-pullulan composite edible coating enrich with pomegranate peel extract on the storage quality of green bell pepper. LWT 2021, 138, 110435. [Google Scholar] [CrossRef]
- Neocleous, D.; Nikolaou, G. Antioxidant seasonal changes in soilless greenhouse sweet peppers. Agronomy 2019, 9, 730. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Zhang, J.; Nageswaran, D.; Li, L. Carotenoid metabolism and regulation in horticultural crops. Hortic. Res. 2015, 2. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.-L.; Lu, B.-Y.; Gong, Z.-H.; Shah, S.N.M. Effects of drought stress on capsanthin during fruit development and ripening in pepper (Capsicum annuum L.). Agric. Water Manag. 2014, 137, 46–51. [Google Scholar] [CrossRef]
- Hlavinka, J.; Naus, J.; Spundova, M. Anthocyanin contribution to chlorophyll meter readings and its correction. Photosynth. Res. 2013, 118, 277–295. [Google Scholar] [CrossRef]
- Paixão, J.S.; da Silva, J.R.; Ruas, K.F.; Rodrigues, W.P.; Filho, J.A.M.; Bernado, W.; Abreu, D.P.; Ferreira, L.S.; Gonzalez, J.C.; Griffin, K.L. Photosynthetic capacity, leaf respiration and growth in two papaya (Carica papaya) genotypes with different leaf chlorophyll concentrations. AoB Plants 2019, 11, plz013. [Google Scholar] [CrossRef] [PubMed]
- Folegatti, M.; Favaro Blanco, F.; Boaretto, R.; Boaretto, A. Calibration of cardy-ion meters to measure nutrient concentrations in soil solution an in plant sap. Sci. Agric 2005, 62, 8–11. [Google Scholar] [CrossRef]
- Miller, R.O. Determination of dry matter content of plant tissue: Gravimetric moisture. In Handbook of Methods for Plant Analysis; Yash, P., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 51–52. ISBN 9781574441246. [Google Scholar]
- Elansary, H.O.; Yessoufou, K.; Abdel-Hamid, A.M.E.; El-Esawi, M.A.; Ali, H.M.; Elshikh, M.S. Seaweed extracts enhance Salam turfgrass performance during prolonged irrigation intervals and saline shock. Front. Plant Sci. 2017, 8, 830. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Du, X.; Liu, Y.; Tong, L.; Wang, Q.; Li, J. Rhubarb extract incorporated into an alginate-based edible coating for peach preservation. Sci. Hortic. 2019, 257, 108685. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioproc. Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Ngcobo, B.L.; Bertling, I.; Clulow, A.D. Post-Harvest Alterations in quality and health-related parameters of cherry tomatoes at different maturity stages following irradiation with red and blue LED lights. J. Hortic. Sci. Biotechnol. 2020, 1–9. [Google Scholar] [CrossRef]
- Fallik, E.; Alkalai-Tuvia, S.; Chalupowicz, D.; Zaaroor-Presman, M.; Offenbach, R.; Cohen, S.; Tripler, E. How water quality and quantity affect pepper yield and postharvest quality. Horticulturae 2019, 5, 4. [Google Scholar] [CrossRef] [Green Version]
Nutrient Composition (mg/L) | Conventional | Bokashi | p Value |
---|---|---|---|
Chloride (Cl) | 29.00 ± 0.00 a | 125.33 ± 142.28 a | 0.2687 |
Sulphate (SO4) | 213.00 ± 0.00 a | 57.67 ± 44.64 b | 0.0060 |
Nitrate (N) | 163.00 ± 0.00 a | 24 ± 0.21 b | <0.0001 |
Ortho Phosphate (P) | 55.00 ± 0.00 a | 32.08 ± 22.32 a | 0.1323 |
Free and Saline Ammonium (NH4+) | 21.00 ± 0.00 a | 54.90 ± 51.47 a | 0.2793 |
Sodium (Na) | 11.00 ± 0.00 a | 45.00 ± 33.97 a | 0.1391 |
Potassium (K) | 255.00 ± 0.00 a | 178.25 ± 147.34 a | 0.3740 |
Calcium (Ca) | 147.00 ± 0.00 a | 8.42 ± 1.34 b | <0.0001 |
Magnesium (Mg) | 34.00 ± 0.00 a | 7.42 ± 2.51 b | 0.0002 |
Boron (B) | 1.11 ± 0.00 a | 0.85 ± 0.79 a | 0.5558 |
Copper (Cu) | 0.05 ± 0.00 a | 0.07 ± 0.04 a | 0.6322 |
Iron (Fe) | 1.72 ± 0.00 a | 0.84 ± 1.25 a | 0.2514 |
Manganese (Mn) | 0.45 ± 0.00 a | 0.10 ± 0.07 b | 0.0017 |
Zinc (Zn) | 0.51 ± 0.00 a | 0.19 ± 0.18 b | 0.0363 |
Growing Substrate | Plant Height (mm) | Stem Internode (mm) | Stem Diameter (mm) | NDVI | QY | SPAD | SOD in Plant (Units/mg Protein) |
---|---|---|---|---|---|---|---|
Conventional | 762.6 ± 65.16 a | 2.95 ± 1.05 a | 10.18 ± 1.14 a | 78.80 ± 2.01 a | 0.64 ± 0.03 a | 73.89 ± 9.98 a | 0.37 ± 0.02 a |
Bokashi | 611 ± 24.34 b | 2.60 ± 0.10 a | 7.32 ± 0.81 b | 67.49 ± 4.13 b | 0.49 ± 0.03 b | 38.43 ± 10.35 b | 0.32 ± 0.02 b |
p value | 0.0012 | 0.3053 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0194 |
Nutrient Composition (g/L) | Conventional | Bokashi | p Value |
---|---|---|---|
Nitrate (N) | 59.17 ± 7.64 a | 17.25 ± 8.98 b | 0.0035 |
Ortho phosphate (P) | 1.10± ±0.10 a | 1.73 ± 0.03 b | 0.0159 |
Potassium | 37.50 ± 2.50 a | 17.50 ± 0.08 b | 0.0002 |
Yield | |||
---|---|---|---|
Growing Substrate | Number of Fruit per Plant | Fruit Weight per Plant (kg) | Fruit Circumference (mm) |
Conventional | 8.4 ± 3.78 | 1.02 ± 55.60 a | 278.00 ± 30.45 a |
Bokashi | 2.6 ± 0.89 | 0.76 ± 46.06 a | 233.6 ± 26.08 b |
p value | 0.0289 | 0.1528 | 0.0203 |
Growing Substrate | L* | a* | b* | C* | h° | Gloss (Gloss Units) |
---|---|---|---|---|---|---|
Harvest | ||||||
Conventional | 31.5 ± 1.30 a | 39.10 ± 2.23 a | 13.82 ± 2.04 a | 41.47 ± 1.43 a | 19.47 ± 2.75 a | 1.04 ± 0.03 a |
Bokashi | 32.60 ± 0.89 a | 32.4 ± 3.34 b | 12.60 ± 6.70 a | 41.06 ± 1.35 a | 17.87 ± 1.13 a | 0.9 ± 0.46 a |
After storage | ||||||
Conventional | 30.82 ± 0.94 a | 41.59 ± 1.89 a | 14.50 ± 1.30 a | 44.04 ± 1.52 a | 19.22 ± 1.12 a | 0.43 ± 0.20 a |
Bokashi | 30.14 ± 0.94 b | 30.32 ± 1,49 b | 12.25 ± 1.05 b | 32.70 ± 1.11 b | 22.00 ± 1.38 b | 0.34 ± 0.17 b |
Harvest vs. after storage | ||||||
conventional | ns | ns | ns | ns | ns | ns |
Bokashi | * | * | * | * | * | * |
Period Hydroponics | Firmness (Shore Units) | Moisture Content (%) | TSS (°Brix) | Carotenoid Content (µg/g) |
---|---|---|---|---|
Harvest | ||||
conventional | 52.3 ± 2.46 a | 88.63 ± 0.44 a | 9.78 ± 1.39 a | 1.22 ± 0.40 a |
bokashi | 46.58 ± 7.55 a | 89.62 ± 1.24 a | 8.48 ± 0.54 a | 1.20 ± 0.23 a |
After storage | ||||
conventional | 35.65 ± 8.61 a | 78.90 ± 1.2 a | 10.76 ± 0.37 a | 1.55 ± 0.24 a |
bokashi | 27.73 ± 9.21 b | 78.95 ± 1.82 a | 8.30 ± 0.67 b | 1.24 ± 0.13 a |
Harvest vs. after storage | ||||
conventional | * | ns | ns | ns |
bokashi | * | ns | ns | ns |
Bokashi Compost Ingredients | % |
---|---|
Wheat bran | 60.5 |
Oil cake | 15.1 |
Chicken manure | 15.1 |
Water | 9.1 |
Molasses | 0.1 |
Efficient microorganisms | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, R.C.; Whitehead, C.S.; Fawole, O.A. Effects of Conventional and Bokashi Hydroponics on Vegetative Growth, Yield and Quality Attributes of Bell Peppers. Plants 2021, 10, 1281. https://doi.org/10.3390/plants10071281
Tong RC, Whitehead CS, Fawole OA. Effects of Conventional and Bokashi Hydroponics on Vegetative Growth, Yield and Quality Attributes of Bell Peppers. Plants. 2021; 10(7):1281. https://doi.org/10.3390/plants10071281
Chicago/Turabian StyleTong, René Clarisse, Charles Stephen Whitehead, and Olaniyi Amos Fawole. 2021. "Effects of Conventional and Bokashi Hydroponics on Vegetative Growth, Yield and Quality Attributes of Bell Peppers" Plants 10, no. 7: 1281. https://doi.org/10.3390/plants10071281
APA StyleTong, R. C., Whitehead, C. S., & Fawole, O. A. (2021). Effects of Conventional and Bokashi Hydroponics on Vegetative Growth, Yield and Quality Attributes of Bell Peppers. Plants, 10(7), 1281. https://doi.org/10.3390/plants10071281