Enhancing Energy Recovery in Form of Biogas, from Vegetable and Fruit Wholesale Markets By-Products and Wastes, with Pretreatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Samples
2.2. Analytical Methods for Compositional Characterization of Substrates, Mixtures and Pretreatments
- Physicochemical composition: Determination of the content in total solids (TS), volatile solids (VS), humidity (Hum), and Chemical Oxygen Demand (COD), also specifying total (CODt) and soluble (CODf). These two COD measures also include the solubility coefficient, which indicates the amount of COD directly accessible to microorganisms. This is a relevant indicator to analyze the results of pretreatment and whether it has enhanced the solubilization of hydrolytic enzymes.
- Organic composition: The development of a macronutritional analysis allows to determine the content of lipids, proteins and carbohydrates (LPCH), and determines the effect of the material that enters the anaerobic digestion process.
- Elemental Analysis: Determines the content in C, N, H and S, and the C/N ratio whose optimal value to ensure proper development of digestion is around 20. This ensures that there is enough carbon to digest, and that the nitrogen content is not high to cause ammonia accumulation and inhibition.
- Nitrogen content: Being nitrogen a fundamental element for digestion as nutrient and by releasing ammonia that can cause a buffer effect and reinforce the digestion process. But, at the same time, it is considered an inhibitor if high amounts of ammonia are released during digestion, causing a drastic increase in pH and the failure of the process. The analysed parameters were Total Kjeldahl Nitrogen (TKN), Organic Nitrogen (ON) and Ammoniacal Nitrogen (AN). The latter is an indicator of the formation and accumulation of ammonia. The limit for the accumulation of AN determined here is 2 mg/mL or 2 mg/g. Below this level it functions as a buffer, regulating pH; above it, it causes accumulation and subsequent inhibition.
- pH and alkalinity: pH is used as a reference of process development. The accumulation of acidic elements is shown by a decreasing pH, whereas the accumulation of ammonia is expressed with an increase in pH. Total alkalinity (TA), partial alkalinity (PA) (due to bicarbonates) and intermediate alkalinity (IA) (due to VFA) are indicators of alkalinity. A decrease in IA is indicative of excessive generation of VFA is shown with a decrease in IA and its accumulation can be verified with pH variations.
2.3. Pretreatment Procedure and Study of Its Influence
2.4. Biochemical Methane Potential Tests to Determine Anaerobic Biodegradation
2.5. Statistical Analysis of Results
2.6. Mathematical Determinations and Adjustments
3. Results and Discussion
3.1. Short Review of Previous Anaerobic Digestion Results of Substrate V
3.2. Results for Freezing Pretreatment (VF)
3.2.1. Course of Action of Pretreatment
Changes in Substrate Characterization When Freezing
Changes in the Outer Structure of the Substrate When Freezing
3.2.2. Biogas Production
3.2.3. Methane Production
3.2.4. Methane Proportion in the Generated Biogas
3.2.5. Hydrogen Production
3.2.6. Hydrogen Proportion in the Generated Biogas
3.2.7. Evaluation of the Evolution of the Digestion Process
3.2.8. Mathematical Analysis and Adjustment of the Digestion Process
3.3. Results for Ultrafreezing Pretreatment (VU)
3.3.1. Course of Action of Pretreatment
Changes in Substrate Characterization when Ultrafreezing
Changes in the Outer Structure of the Substrate When Ultrafreezing
3.3.2. Biogas Production
3.3.3. Methane Production
3.3.4. Methane Proportion in the Generated Biogas
3.3.5. Hydrogen Production
3.3.6. Hydrogen Proportion in the Generated Biogas
3.3.7. Evaluation of the Evolution of the Digestion Process
3.3.8. Mathematical Analysis and Adjustment of the Digestion Process
3.4. Results for Lyophilization Pretreatment (VL)
3.4.1. Course of Action of Pretreatment
Changes in Substrate Characterization when Lyophilizating
Changes in the Outer Structure of the Substrate when Lyophilizating
3.4.2. Biogas Production
3.4.3. Methane Production
3.4.4. Methane Proportion in the Generated Biogas
3.4.5. Hydrogen Production
3.4.6. Hydrogen Proportion in the Generated Biogas
3.4.7. Evaluation of the Evolution of the Digestion Process
3.4.8. Mathematical Analysis and Adjustment of the Digestion Process
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Acronyms
AD | Anaerobic Digestion |
AN | Ammoniacal Nitrogen |
ANOVA | Analysis of Variance |
BD | Biodegradation |
BMP | Biochemical Methane Potential |
C/N | Carbon/Nitrogen Ratio |
COD | Chemical Oxygen Demand |
CODf | Chemical Oxigen Demand (filtered or soluble fraction) |
CODt | Chemical Oxigen Demand (total fraction) |
CV | Coefficient of variation |
FBP | Food By-Product |
FL | Food Loose |
FSC | Food Supply Chain |
FW | Food Waste |
GC | Gas Chromatograph |
Hum | Humidity |
IA | Intermediate Alkalinity |
kdis | Disintegration constant |
LCFA | Long Chain Fatty Acid |
LPCH | Lipids, Proteins and Carbohydrates content |
OM | Organic Matter |
ON | Organic Nitrogen |
PA | Partial Alkalinity |
S | Sludge (Inoculum) |
TA | Total Alkalinity |
TKN | Total Kjeldahl Nitrogen |
TS | Total Solids |
UASB | Upflow Anaerobic Sludge Blanket reactor |
VFA | Volatile Fatty Acid |
VS | Volatile Solids |
WWTP | Wastewater Treatment Plant |
References
- Eurostat Fooddrink Europe. Economic Bulletin Q1 2019; Eurostat Fooddrink Europe: Brussels, Belgium, 2019. [Google Scholar]
- Lipinski, B.; Hanson, C.; Lomax, J.; Kitinoja, L.; Waite, R.; Searchinger, T. Reducing food loss and waste. In World Resources Institude Working Paper; World Resources Institute: Washington, DC, USA, 2013; Volume 1, pp. 1–40. [Google Scholar]
- Buzby, J.C.; Hyman, J. Total and per capita value of food loss in the United States. Food Policy 2012, 37, 561–570. [Google Scholar] [CrossRef]
- Kojima, R.; Ishikawa, M. Prevention and Recycling of Food Wastes in Japan: Policies and Achievements. 2013. Available online: http://www.lib.kobe-u.ac.jp/repository/81005266.pdf (accessed on 25 June 2021).
- European Commision. Health and Food Safety. Available online: https://ec.europa.eu/info/departments/health-and-food-safety_en (accessed on 20 September 2018).
- Monier, V.; Mudgal, S.; Escalon, V.; O’Connor, C.; Gibon, T.; Anderson, G.; Montoux, H.; Reisinger, H.; Dolley, P.; Ogilvie, S. Preparatory Study on Food Waste across EU 27; Report for the European Commission; DG ENV—Directorate C; European Commission: Brussels, Belgium, 2010; Volume 210. [Google Scholar]
- Bräutigam, K.-R.; Jörissen, J.; Priefer, C. The extent of food waste generation across EU-27: Different calculation methods and the reliability of their results. Waste Manag. Res. 2014, 32, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Nellman, C.; MacDevette, M.; Manders, T.; Eickhout, B.; Svihus, B.; Prins, A. The Environmental Food Crisis—The Environment’s Role in Averting Future Food Crises; United Nations Environment Programme, GRID-Arendal: Arendal, Norway, 2009. [Google Scholar]
- Tuck, C.O.; Perez, E.; Horvath, I.T.; Sheldon, R.A.; Poliakoff, M. Valorization of biomass: Deriving more value from waste. Science 2012, 337, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.; Scott, E.; Weusthuis, R.; Mooibroek, H. Bio-refinery as the bio-inspired process to bulk chemicals. Macromol. Biosci. 2007, 7, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Ezaki, Y. Open L-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora. J. Biosci. Bioeng. 2006, 101, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, X.; Wang, X.; Ma, H.; Ren, N. Bioconversion of kitchen garbage to lactic acid by two wild strains of Lactobacillus species. J. Environ. Sci. Health Part A 2005, 40, 1951–1962. [Google Scholar] [CrossRef]
- Yang, S.Y.; Ji, K.S.; Baik, Y.H.; Kwak, W.S.; McCaskey, T.A. Lactic acid fermentation of food waste for swine feed. Bioresour. Technol. 2006, 97, 1858–1864. [Google Scholar] [CrossRef]
- Koike, Y.; An, M.-Z.; Tang, Y.-Q.; Syo, T.; Osaka, N.; Morimura, S.; Kida, K. Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process. J. Biosci. Bioeng. 2009, 108, 508–512. [Google Scholar] [CrossRef]
- Rao, M. Bioenergy conversion studies of organic fraction of MSW: Kinetic studies and gas yield?organic loading relationships for process optimisation. Bioresour. Technol. 2004, 95, 173–185. [Google Scholar] [CrossRef]
- Zhang, C.; Xiao, G.; Peng, L.; Su, H.; Tan, T. The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 2013, 129, 170–176. [Google Scholar] [CrossRef]
- Kim, J.K.; Oh, B.R.; Shin, H.-J.; Eom, C.-Y.; Kim, S.W. Statistical optimization of enzymatic saccharification and ethanol fermentation using food waste. Process Biochem. 2008, 43, 1308–1312. [Google Scholar] [CrossRef]
- Tang, Y.-Q.; Koike, Y.; Liu, K.; An, M.-Z.; Morimura, S.; Wu, X.-L.; Kida, K. Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Biomass Bioenergy 2008, 32, 1037–1045. [Google Scholar] [CrossRef]
- Alptekin, E.; Canakci, M.; Sanli, H. Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Manag. 2014, 34, 2146–2154. [Google Scholar] [CrossRef] [PubMed]
- Han, S. Biohydrogen production by anaerobic fermentation of food waste. Int. J. Hydrog. Energy 2004, 29, 569–577. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, R.; Elmashad, H.; Sun, H.; Ying, Y. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int. J. Hydrog. Energy 2008, 33, 6968–6975. [Google Scholar] [CrossRef]
- Morales-Polo, C.; Cledera-Castro, M.D.M.; Soria, B.Y.M. Biogas production from vegetable and fruit markets waste—Compositional and batch characterizations. Sustainability 2019, 11, 6790. [Google Scholar] [CrossRef] [Green Version]
- Gujer, W.; Zehnder, A.J.R. Conversion processes in anaerobic digestion. Water Sci. Technol. 1983, 15, 127–167. [Google Scholar] [CrossRef]
- Hawkes, F.R. The biochemistry of anaerobic digestion. In Biomethane: Production and Uses; Roger Bowskil Printing Ltd.: Devon, UK, 1980; pp. 41–60. [Google Scholar]
- Veeken, A.; Hamelers, B. Effect of temperature on hydrolysis rates of selected biowaste components. Bioresour. Technol. 1999, 69, 249–254. [Google Scholar] [CrossRef]
- Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [Google Scholar] [CrossRef]
- Kwietniewska, E.; Tys, J. Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew. Sustain. Energy Rev. 2014, 34, 491–500. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The anaerobic digestion of solid organic waste. Waste Manag. 2011, 31, 1737–1744. [Google Scholar] [CrossRef]
- Agyeman, F.O.; Tao, W. Anaerobic co-digestion of food waste and dairy manure: Effects of food waste particle size and organic loading rate. J. Environ. Manag. 2014, 133, 268–274. [Google Scholar] [CrossRef]
- Palmowski, L.M.; Müller, J.A.; Palmowski, L.M.; Müller, J.A. Influence of the size reduction of organic waste on their anaerobic digestion. Water Sci. Technol. 2000, 41, 155–162. [Google Scholar] [CrossRef]
- Cesaro, A.; Naddeo, V.; Amodio, V.; Belgiorno, V. Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis. Ultrason. Sonochem. 2012, 19, 596–600. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Zhou, Y.; Chen, J.; Liang, Y.; Wei, L. Pilot-scale operation of enhanced anaerobic digestion of nutrient-deficient municipal sludge by ultrasonic pretreatment and co-digestion of kitchen garbage. J. Environ. Chem. Eng. 2013, 1, 73–78. [Google Scholar] [CrossRef]
- Izumi, K.; Okishio, Y.; Nagao, N.; Niwa, C.; Yamamoto, S.; Toda, T. Effects of particle size on anaerobic digestion of food waste. Int. Biodeterior. Biodegrad. 2010, 64, 601–608. [Google Scholar] [CrossRef]
- Schattauer, A.; Abdoun, E.; Weiland, P.; Plöchl, M.; Heiermann, M. Abundance of trace elements in demonstration biogas plants. Biosyst. Eng. 2011, 108, 57–65. [Google Scholar] [CrossRef]
- Yang, D.; Wei, S.J.; Wen, Q.M.; Zhang, X.J. Comparison of pretreatments for lignocellulosic biomass. Adv. Mater. Res. 2014, 1008–1009, 111–115. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Y. Effects of thermal pretreatment on acidification phase during two-phase batch anaerobic digestion of kitchen waste. Renew. Energy 2015, 77, 550–557. [Google Scholar] [CrossRef]
- Elbeshbishy, E.; Nakhla, G. Comparative study of the effect of ultrasonication on the anaerobic biodegradability of food waste in single and two-stage systems. Bioresour. Technol. 2011, 102, 6449–6457. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.L.H.; Lo, I.M.C. Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts. Environ. Sci. Pollut. Res. 2016, 23, 24435–24450. [Google Scholar] [CrossRef]
- Ma, J.; Duong, T.H.; Smits, M.; Verstraete, W.; Carballa, M. Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour. Technol. 2011, 102, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Chen, Y.; Zhao, S.; Chen, H.; Zheng, X.; Luo, J.; Liu, Y. Efficient production of optically pure l -lactic acid from food waste at ambient temperature by regulating key enzyme activity. Water Res. 2015, 70, 148–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, M.A.; Yee, L.-N.; Yee, P.L.; Ariffin, H.; Raha, A.R.; Shirai, Y.; Sudesh, K. Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass. Biomass Bioenergy 2013, 50, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gasparatos, A.; Stromberg, P.; Takeuchi, K. Biofuels, ecosystem services and human wellbeing: Putting biofuels in the ecosystem services narrative. Agric. Ecosyst. Environ. 2011, 142, 111–128. [Google Scholar] [CrossRef]
- AENOR. UNE-EN ISO 11734:1999 Water Quality—Evaluation of the “Ultimate” Anaerobic Biodegradability of Organic Compounds in Digested Sludge—Method by Measurement of the Biogas Production. ISO 11734:1995. 1999. Available online: https://www.iso.org/standard/19656.html (accessed on 25 June 2021).
- VDI. VDI 4630 Fermentation of Organic Materials. Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests. 2016. Available online: https://www.vdi.de/richtlinien/details/vdi-4630-fermentation-of-organic-materials-characterization-of-the-substrate-sampling-collection-of-material-data-fermentation-tests (accessed on 25 June 2021).
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005; Volume 21. [Google Scholar]
- Gutiérrez, M.E. Co-Digestión Anaerobia de Lodo de Edar Con Residuos Orgánicos de Diferente Naturaleza: Combinación de Técnicas Experimentales y Herramientas Matemáticas; Universidad de Navarra: Pamplona, Spain, 2014. [Google Scholar]
Method Procedure | |
---|---|
Proximate Analysis (Physical Parameters) | |
Hum [%hb] | APHA 2540-G |
TS [%hb] | |
VS [%hb] | |
Ashes [%hb] | |
Macronutritional Analysis (LPCH Content) | |
Lipids (L) [%hb] | UNE-EN-ISO 13804:2013 |
Proteins (P) [%hb] | |
Carbohydrates (CH) [%hb] | |
Organic Content Analysis | |
CODt [mg O2/g—mL] | APHA 5220-B |
CODf [mg O2/g—mL] | |
Solubility [%] | |
Nitrogen Content Analysis | |
TKN [mg N/g—mL] | APHA 4500-N |
AN [mg N/g—mL] | APHA 4500-NH3 |
ON [mg N/g—mL] | APHA 4500-Norg |
pH and Alkalinity Analysis | |
pH | |
TA [mg CaCO3/g—mL] | APHA 2320-B |
PA [mg CaCO3/g—mL] | |
IA [mg CaCO3/g—mL] | |
Ultimate Analysis (Elemental Analysis) | |
C [%db] | UNE-EN-ISO 15104:2011 |
H [%db] | |
N [%db] | |
S [%db] | |
C/N Ratio |
Production [NmL/100 g of Residue V] | Standard Deviation σ | Coefficient of Variation CV | Relative Error ε | |
---|---|---|---|---|
Biogas | 913.282 NmL | 222.904 | 0.244 | 14.436% |
Methane | 289.333 NmL | 94.723 | 0.327 | 21.421% |
Hydrogen | 0.456 NmL + 0.200 NmL | 0.298 + 0.200 | 0.655 + 1.000 | 57.583% + 90.609% |
Content [% vol] | Standard Deviation σ | Coefficient of Variation CV | Relative Error ε | |
---|---|---|---|---|
Methane | 32.252% | 7.906 | 0.245 | 12.051% |
Hydrogen | 0.265% + 0.017% | 0.128 + 0.019 | 0.484 + 1.124 | 42.311% + 92.375% |
Standard Deviation σ | Relative Error ε | ||
---|---|---|---|
Theoretical methane generation | 292.808 NmL | 91.809 | 22.260% |
Maximum methane generation | 323.000 NmL | 90.961 | 16.786% |
Disintegration constant | 0.200 days−1 | 0.044 | 17.920% |
Substrate biodegradation | 16.045% | 1.677 | 7.422% |
Substrate | Substrate | Initial Reactor Mix | Final Reactor Mix | |||
---|---|---|---|---|---|---|
V | VF | VF + F | VF + F | |||
Proximate Analysis (Physical parameters) | ||||||
Hum [%hb] | 87.90 | 87.60 | ➞ | 92.61 | ⇝ | 89.54 |
TS [%hb] | 12.10 | 12.40 | 7.40 | 5.12 | ||
VS [%hb] | 10.91 | 11.26 | 6.51 | 3.05 | ||
Macronutritional Analysis (LPCH Content) | ||||||
Lipids (L) [%hb] | 0.48 | 0.68 | ➞ | 0.53 | ⇝ | |
Proteins (P) [%hb] | 1.52 | 1.92 | 0.88 | |||
Carbohydrates (CH) [%hb] | 8.90 | 8.70 | 2.61 | |||
Organic Content Analysis (COD) | ||||||
CODt [mg O2/g—mL] | 173.64 | 175.26 | ➞ | 121.02 | ⇝ | 113.87 |
CODf [mg O2/g—mL] | 41.83 | 56.11 | 47.12 | 11.02 | ||
Solubility [%] | 24.09 | 32.02 | 34.80 | 9.67 | ||
Nitrogen Content Analysis | ||||||
TKN [mg N/g—mL] | 2.46 | 2.56 | ➞ | 2.14 | ⇝ | 2.32 |
AN [mg N/g—mL] | 0.03 | 0.02 | 0.87 | 1.14 | ||
ON [mg N/g—mL] | 2.43 | 2.53 | 1.26 | 1.12 | ||
pH and Alkalinity Analysis | ||||||
pH | 4.96 | 4.73 | ➞ | 6.77 | ⇝ | 7.01 |
TA [mg CaCO3/g—mL] | 5.83 | 2.71 | 7.45 | 119.72 | ||
PA [mg CaCO3/g—mL] | - | - | 4.02 | 3.98 | ||
IA [mg CaCO3/g—mL] | 5.83 | 2.71 | 1.23 | 8.56 | ||
Ultimate Analysis (Elemental Analysis) | ||||||
C [%db] | 34.52 | 36.25 | ➞ | 17.42 | ⇝ | |
H [%db] | 6.43 | 6.75 | 8.41 | |||
N [%db] | 1.69 | 1.77 | 2.11 | |||
S [%db] | 0.09 | 0.10 | 0.16 | |||
C/N Ratio | 20.43 | 20.43 | 8.25 |
Production [NmL/100 g of Substrate VF] | Standard Deviation σ | Coefficient of Variation CV | Relative Error ε | |
---|---|---|---|---|
Biogas | 1097.469 NmL | 90.913 | 0.082 | 6.094% |
Methane | 651.319 NmL | 68.978 | 0.105 | 7.790% |
Hydrogen | 4.066 NmL | 1.204 | 0.296 | 23.177% |
Content [% vol] | Standard Deviation σ | Coefficient of Variation CV | Relative Error ε | |
---|---|---|---|---|
Methane | 59.438% | 5.165 | 0.086 | 5.838% |
Hydrogen | 0.903% | 0.233 | 0.258 | 20.291% |
Standard Deviation σ | Relative Error ε | ||
---|---|---|---|
Theoretical methane generation | 639.253 NmL | 58.469 | 12.966% |
Maximum methane generation | 651.319 NmL | 57.590 | 19.422% |
Disintegration constant | 0.813 days−1 | 0.209 | 18.423% |
Substrate biodegradation | 21.565% | 2.850 | 9.598% |
Substrate | Substrate | Initial Reactor Mix | Final Reactor Mix | |||
---|---|---|---|---|---|---|
V | VU | VU + F | VU + F | |||
Proximate Analysis (Physical parameters) | ||||||
Hum [%hb] | 87.90 | 87.50 | ➞ | 92.60 | ⇝ | 84.51 |
TS [%hb] | 12.10 | 12.50 | 7.40 | 5.92 | ||
VS [%hb] | 10.91 | 11.09 | 6.46 | 3.28 | ||
Macronutritional Analysis (LPCH Content) | ||||||
Lipids (L) [%hb] | 0.48 | 0.51 | ➞ | 0.48 | ⇝ | |
Proteins (P) [%hb] | 1.52 | 1.62 | 0.80 | |||
Carbohydrates (CH) [%hb] | 8.90 | 8.90 | 2.64 | |||
Organic Content Analysis (COD) | ||||||
CODt [mg O2/g—mL] | 173.64 | 171.24 | ➞ | 119.04 | ⇝ | 113.61 |
CODf [mg O2/g—mL] | 41.83 | 41.00 | 38.06 | 13.52 | ||
Solubility [%] | 24.09 | 23.94 | 31.97 | 11.90 | ||
Nitrogen Content Analysis | ||||||
TKN [mg N/g—mL] | 2.46 | 2.47 | ➞ | 2.12 | ⇝ | 2.28 |
AN [mg N/g—mL] | 0.03 | 0.03 | 0.87 | 1.09 | ||
ON [mg N/g—mL] | 2.43 | 2.44 | 1.25 | 1.19 | ||
pH and Alkalinity Analysis | ||||||
pH | 4.96 | 4.95 | ➞ | 6.83 | ⇝ | 6.97 |
TA [mg CaCO3/g—mL] | 5.83 | 4.02 | 7.65 | 8.40 | ||
PA [mg CaCO3/g—mL] | - | - | 3.91 | 6.95 | ||
IA [mg CaCO3/g—mL] | 5.83 | 4.02 | 3.74 | 1.95 | ||
Ultimate Analysis (Elemental Analysis) | ||||||
C [%db] | 34.52 | 33.83 | ➞ | 16.85 | ⇝ | |
H [%db] | 6.43 | 6.30 | 3.25 | |||
N [%db] | 1.69 | 1.66 | 2.08 | |||
S [%db] | 0.09 | 0.09 | 0.15 | |||
C/N Ratio | 20.43 | 20.43 | 8.10 |
Production [NmL/100 g of Substrate VU] | Standard Deviation σ | Coefficient of Variation CV | Relative Error ε | |
---|---|---|---|---|
Biogas | 1153.493 NmL | 135.690 | 0.117 | 8.667% |
Methane | 690.123 NmL | 114.251 | 0.165 | 12.220% |
Hydrogen | 0.627 NmL | 0.315 | 0.503 | 43.695% |
Content [% vol] | Standard Deviation σ | Coefficient of Variation CV | Relative Error ε | |
---|---|---|---|---|
Methane | 59.751% | 6.194 | 0.103 | 8.369% |
Hydrogen | 0.755% | 0.327 | 0.437 | 39.911% |
Standard Deviation σ | Relative Error ε | ||
---|---|---|---|
Theoretical methane generation | 674.222 NmL | 88.176 | 16.826% |
Maximum methane generation | 690.123 NmL | 87.141 | 16.393% |
Disintegration constant | 0.285 days−1 | 0.209 | 53.236% |
Substrate biodegradation | 19.856% | 1.46 | 7.422% |
Substrate | Substrate | Initial Reactor Mix | Final Reactor Mix | |||
---|---|---|---|---|---|---|
V | VL | VL + F | VL + F | |||
Proximate Analysis (Physical parameters) | ||||||
Hum [%hb] | 87.90 | 1.05 | ➞ | 70.14 | ⇝ | 69.52 |
TS [%hb] | 12.10 | 9.92 | 6.77 | 5.81 | ||
VS [%hb] | 10.91 | 8.97 | 5.94 | 3.48 | ||
Macronutritional Analysis (LPCH Content) | ||||||
Lipids (L) [%hb] | 0.48 | 0.44 | ➞ | 0.39 | ⇝ | |
Proteins (P) [%hb] | 1.52 | 1.07 | 0.77 | |||
Carbohydrates (CH) [%hb] | 8.90 | 7.81 | 2.35 | |||
Organic Content Analysis (COD) | ||||||
CODt [mg O2/g—mL] | 173.64 | 135.26 | ➞ | 110.05 | ⇝ | 105.99 |
CODf [mg O2/g—mL] | 41.83 | 64.12 | 39.02 | 14.51 | ||
Solubility [%] | 24.09 | 47.40 | 35.46 | 13.69 | ||
Nitrogen Content Analysis | ||||||
TKN [mg N/g—mL] | 2.46 | 2.02 | ➞ | 2.02 | ⇝ | 2.27 |
AN [mg N/g—mL] | 0.03 | 0.02 | 1.16 | 1.44 | ||
ON [mg N/g—mL] | 2.43 | 2.00 | 0.85 | 0.83 | ||
pH and Alkalinity Analysis | ||||||
pH | 4.96 | 4.95 | ➞ | 6.81 | ⇝ | 6.84 |
TA [mg CaCO3/g—mL] | 5.83 | 4.15 | 7.54 | 8.40 | ||
PA [mg CaCO3/g—mL] | - | - | 3.85 | 6.85 | ||
IA [mg CaCO3/g—mL] | 5.83 | 4.15 | 3.69 | 2.05 | ||
Ultimate Analysis (Elemental Analysis) | ||||||
C [%db] | 34.52 | 33.87 | ➞ | 16.74 | ⇝ | |
H [%db] | 6.43 | 6.21 | 8.30 | |||
N [%db] | 1.69 | 1.63 | 2.07 | |||
S [%db] | 0.09 | 0.08 | 0.15 | |||
C/N Ratio | 20.43 | 20.43 | 8.09 |
Production [NmL/100 g of Substrate VL] | Standard Deviation σ | Coefficient of Variation CV | Relative Error ε | |
---|---|---|---|---|
Biogas | 1046.492 NmL | 131.253 | 0.125 | 8.564% |
Methane | 511.657 NmL | 90.442 | 0.176 | 13.333% |
Hydrogen | 1.085 NmL | 0.376 | 0.346 | 24.188% |
Content [% vol] | Standard Deviation σ | Coefficient of Variation CV | Relative Error ε | |
---|---|---|---|---|
Methane | 48.761% | 5.433 | 0.111 | 8.359% |
Hydrogen | 0.183% | 0.050 | 0.274 | 20.487% |
Standard Deviation σ | Relative Error ε | ||
---|---|---|---|
Theoretical methane generation | 523.287 NmL | 44.287 | 18.821% |
Maximum methane generation | 576.720 NmL | 42.515 | 19.108% |
Disintegration constant | 0.129 days−1 | 0.231 | 50.389% |
Substrate biodegradation | 20.907% | 3.444 | 9.668% |
V | VF | VU | VL | |||||
---|---|---|---|---|---|---|---|---|
Increase (%) | Increase (%) | Increase (%) | ||||||
Biogas | Production [NmL/100 g of substrate] | 913.282 NmL | 1097.469 NmL | +20.200% | 1153.493 NmL | +26.341% | 1046.492 NmL | +14.621% |
Methane | Production [NmL/100 g of substrate] | 289.333 NmL | 651.319 NmL | +125.370% | 690.123 NmL | +138.797% | 511.657 NmL | +77.044% |
Content [%vol biogas] | 32.252% | 59.438% | +85.743% | 59.751% | +86.612% | 48.761% | +52.378% | |
Hydrogen | Production [NmL/100 g of substrate] | 0.456 + 0.200 NmL | 4.066 NmL | +790% | 0.627 NmL | +37.500% | 1.085 NmL | +137.938% |
Content [%vol biogas] | 0.265 + 0.017% | 0.903% | 240.754% | 0.755% | +184.905% | 0.183% | −30.943% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Polo, C.; Cledera-Castro, M.d.M.; Revuelta-Aramburu, M.; Hueso-Kortekaas, K. Enhancing Energy Recovery in Form of Biogas, from Vegetable and Fruit Wholesale Markets By-Products and Wastes, with Pretreatments. Plants 2021, 10, 1298. https://doi.org/10.3390/plants10071298
Morales-Polo C, Cledera-Castro MdM, Revuelta-Aramburu M, Hueso-Kortekaas K. Enhancing Energy Recovery in Form of Biogas, from Vegetable and Fruit Wholesale Markets By-Products and Wastes, with Pretreatments. Plants. 2021; 10(7):1298. https://doi.org/10.3390/plants10071298
Chicago/Turabian StyleMorales-Polo, Carlos, María del Mar Cledera-Castro, Marta Revuelta-Aramburu, and Katia Hueso-Kortekaas. 2021. "Enhancing Energy Recovery in Form of Biogas, from Vegetable and Fruit Wholesale Markets By-Products and Wastes, with Pretreatments" Plants 10, no. 7: 1298. https://doi.org/10.3390/plants10071298
APA StyleMorales-Polo, C., Cledera-Castro, M. d. M., Revuelta-Aramburu, M., & Hueso-Kortekaas, K. (2021). Enhancing Energy Recovery in Form of Biogas, from Vegetable and Fruit Wholesale Markets By-Products and Wastes, with Pretreatments. Plants, 10(7), 1298. https://doi.org/10.3390/plants10071298