Assessing the Effects of Agronomic Management Practices on Soybean (Glycine max L.) Post-Grain Harvest Residue Quality in the Lower Mississippi Delta
Abstract
:1. Introduction
2. Results
2.1. Weather Across Crop Seasons
2.2. Analysis of Variance (ANOVA) for Forage Quality Traits
2.3. Biomass Yield and Forage Quality as Influenced by Irrigation
2.4. Biomass Yield and Forage Quality as Influenced by Planting Pattern (PP)
2.5. Relative Feed Value (RFV) as Influenced by Irrigation and PP
3. Discussion
4. Materials and Methods
4.1. Field Conditions and Crop Management
4.2. Forage Quality Analysis
4.3. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibson, L.; Benson, G. Origin, History, and Uses of Soybean (Glycine max); Iowa State University Department of Agronomy: Ames, IA, USA, 2005; Available online: www.agron.iastate.edu/Courses/agron212/Readings/Soy_history.htm/ (accessed on 29 December 2020).
- Rees, J.C.W.; Mary, D.; Keith, G.; Randy, P.; Todd, W. What Is the Value of Soybean Residue? |CropWatch|University of Nebraska–Lincoln. Available online: https://cropwatch.unl.edu/2018/what-value-soybean-residue (accessed on 6 January 2021).
- Ulmer, K.M.; Rasby, R.J.; Macdonald, J.C.; Blanco-Canqui, H.; Rakkar, M.K.; Cox, J.L.; Bondurant, R.G.; Jenkin, K.H.; Drewnoski, M.E. Baling or grazing of corn residue does not reduce crop production in central United States. Agron. J. 2019, 111, 122–127. [Google Scholar] [CrossRef]
- Seiter, S.; Altemose, C.E.; Davis, M.H. Forage soybean yield and quality responses to plant density and row distance. Agron. J. 2004, 96, 966–970. [Google Scholar] [CrossRef]
- Kludze, H.; Deen, B.; Weersink, A.; van Acker, R.; Janovicek, K.; De Laporte, A.; McDonald, I. Estimating sustainable crop residue removal rates and costs based on soil organic matter dynamics and rotational complexity. Biomass Bioenergy 2013, 56, 607–618. [Google Scholar] [CrossRef]
- Wortmann, C.S.; Klein, R.N.; Shapiro, C.A. Harvesting Crop Residues. Inst. Agric. Nat. Resour. 2012, 4, G1846. [Google Scholar]
- Tubbs, R.S.; Gallaher, R.N. Row spacing and cultivar effects on yield and forage quality of fall-grown soybean. Crop Manag. 2010, 9, 1–11. [Google Scholar] [CrossRef]
- Asekova, S.; Han, S.-I.; Choi, H.-J.; Park, S.-J.; Shin, D.-H.; Kwon, C.-H.; Shannon, J.G.; LEE, J.D. Determination of forage quality by near-infrared reflectance spectroscopy in soybean. Turkish J. Agric. For. 2016, 40, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, M.; Pham, T.H.; Nieuwenhuis, A.; Ali, W.; Zaeem, M.; Ashiq, W.; Gillani, S.S.M.; Manful, C.; Adigun, O.A.; Galagedara, L. Adaptation strategies of forage soybeans cultivated on acidic soils under cool climate to produce high quality forage. Plant Sci. 2019, 283, 278–289. [Google Scholar] [CrossRef]
- Hintz, R.W.; Albrecht, K.A.; Oplinger, E.S. Yield and quality of soybean forage as affected by cultivar and management practices. Agron. J. 1992, 84, 795–798. [Google Scholar] [CrossRef]
- Miller, M.D.; Edwards, R.T.; Williams, W.A. Soybeans for Forage and Green Manure; California Agricultural Experiment Station: Berkeley, CA, USA, 1973; Volume 862, pp. 60–63. [Google Scholar]
- Pinnamaneni, S.R.; Anapalli, S.S.; Reddy, K.N.; Fisher, D.K.; Ashwell, N.E.Q. Assessing irrigation water use efficiency and economy of twin-row soybean in the Mississippi Delta. Agron. J. 2020, 112, 4219–4231. [Google Scholar] [CrossRef]
- Bellaloui, N.; Bruns, H.A.; Abbas, H.K.; Mengistu, A.; Fisher, D.K.; Reddy, K.N. Effects of row-type, row-spacing, seeding rate, soil-type, and cultivar differences on soybean seed nutrition under US Mississippi delta conditions. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Hintz, R.W.; Albrecht, K.A. Dry matter partitioning and forage nutritive value of soybean plant components. Agron. J. 1994, 86, 59–62. [Google Scholar] [CrossRef]
- Munoz, A.E.; Holt, E.C.; Weaver, R.W. Yield and quality of soybean hay as influenced by stage of growth and plant density 1. Agron. J. 1983, 75, 147–149. [Google Scholar] [CrossRef]
- Buxton, D.R.; Fales, S.L. Plant Environment and Quality. In Forage Quality, Evaluation, and Utilization; Fahey, G.C., Ed.; American Society of Agronomy: Madison, WI, USA, 1994. [Google Scholar] [CrossRef]
- Halim, R.A.; Buxton, D.R.; Hattendorf, M.J.; Carlson, R.E. Water-stress effects on alfalfa forage quality after adjustment for maturity differences. Agron. J. 1989, 81, 189–194. [Google Scholar] [CrossRef]
- Ohlsson, C. Growth, Development, and Composition of Temperate Forage Legumes and Grasses in Varying Environments, Digital Repository@ Iowa State University. 1991. Available online: http://lib.dr.iastate.edu/ (accessed on 20 February 2021).
- Wilson, J.R.; Minson, D.J. Influence of temperature on the digestibility of the tropical legume Macroptilium atropurpureum. Grass Forage Sci. 1983, 38, 39–44. [Google Scholar] [CrossRef]
- Kulkarni, K.P.; Tayade, R.; Asekova, S.; Song, J.T.; Shannon, J.G.; Lee, J.-D. Harnessing the potential of forage legumes, alfalfa, soybean, and cowpea for sustainable agriculture and global food security. Front. Plant Sci. 2018, 9, 1314. [Google Scholar] [CrossRef] [PubMed]
- National Research Council Recommended Dietary Allowances, 10th ed.; National Academies Press: Washington, DC, USA, 1989. Available online: https://www.ncbi.nlm.nih.gov/books/NBK234932/pdf/Bookshelf_NBK234932.pdf (accessed on 16 March 2021).
- Heitholt, J.J.; Kee, D.; Farr, J.B.; Read, J.C.; Metz, S.; MacKown, C.T. Forage from soybean provides an alternative to its poor grain yield in the southern Great Plains. Crop. Manag. 2004, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Deshavath, N.N.; Mohan, M.; Veeranki, V.D.; Goud, V.V.; Pinnamaneni, S.R.; Benarjee, T. Dilute acid pretreatment of sorghum biomass to maximize the hemicellulose hydrolysis with minimized levels of fermentative inhibitors for bioethanol production. 3 Biotech 2017, 7, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desclaux, D.; Roumet, P. Impact of drought stress on the phenology of two soybean (Glycine max L. Merr) cultivars. Field Crop. Res. 1996, 46, 61–70. [Google Scholar] [CrossRef]
- Schenk, U.; Jäger, H.; Weigel, H. The response of perennial ryegrass/white clover mini-swards to elevated atmospheric CO2 concentrations: Effects on yield and fodder quality. Grass Forage Sci. 1997, 52, 232–241. [Google Scholar] [CrossRef]
- Weiss, W.P. Estimating the available energy content of feeds for dairy cattle. J. Dairy Sci. 1998, 81, 830–839. [Google Scholar] [CrossRef]
- National Research Council Nutrient Requirements of Dairy Cattle, 7th ed.; National Research Council: Washington, DC, USA, 2001.
- Kuehn, C.S.; Jung, H.G.; Linn, J.G.; Martin, N.P. Characteristics of Alfalfa Hay Quality Grades Based on the Relative Feed Value Index. J. Prod. Agric. 1999, 12, 681–684. [Google Scholar] [CrossRef]
Source of Variance | df | Biomass | Dry Matter | Crude Protein | ADF (%) | NDF (%) | Lignin | NFC (%) | TDN (%) | NEL | NEM | NEG | Ash |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Irrigation level | 2 | * | * | * | * | * | ns | ns | ns | * | ns | ns | ns |
PP | 1 | ns | ns | ns | ns | * | ns | ns | ns | * | ns | ns | ns |
Crop season | 1 | * | * | * | * | ** | ** | ** | * | ** | ns | * | ns |
Irrigation level * PP | 2 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Irrigation level * crop season | 2 | * | * | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
PP * crop season | 1 | ns | ns | ns | ns | * | ns | ns | ns | ns | ns | ns | ns |
Irrigation level * PP * crop season | 2 | ns | * | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatment | PP | Biomass Yield (Mg ha−1) | Dry Matter (%) | Crude Protein (%) | ADF (%) | NDF (%) | Lignin (%) | NFC (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||
AI | SR | 5.0a | 5.4a | 94.2a | 92.8a | 7.9a | 8.1a | 49.0b | 48.0b | 60.9c | 59.5c | 13.8a | 11.6a | 13.1a | 17.1a |
TR | 5.1a | 5.5a | 94.3a | 93.1a | 7.8b | 8.2a | 48.5b | 47.0b | 64.2b | 61.6b | 13.4c | 10.8b | 13.3a | 16.2a | |
ARI | SR | 4.7b | 5.2b | 94.4a | 93.7a | 7.9a | 8.2a | 50.7a | 48.6b | 61.5c | 61.1b | 13.2c | 11.2a | 14.2a | 16.3a |
TR | 4.9b | 5.3b | 94.6a | 93.6a | 7.9a | 8.0b | 51.0a | 50.3a | 63.5b | 62.2b | 14.5a | 10.9b | 14.4a | 15.9a | |
RF | SR | 4.3d | 4.6c | 92.9a | 92.5a | 7.6c | 7.8c | 49.3b | 48.3b | 66.7a | 63.5a | 13.5bc | 10.6b | 13.9a | 17.0a |
TR | 4.4d | 4.7c | 93.3a | 92.4a | 7.5c | 7.7c | 50.2a | 47.9b | 67.2a | 64.2a | 13.5bc | 10.8b | 13.6a | 16.9a |
Treatment | PP | TDN (%) | NEL (%) | NEM (%) | NEG (%) | Ash (%) | RFV | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||
AI | SR | 44.9a | 48.2a | 0.25c | 0.36a | 0.27a | 0.31a | 0.05a | 0.07a | 6.1a | 6.4a | 74.3a | 80.5a |
TR | 44.8a | 47.8a | 026b | 0.35b | 0.27a | 0.29a | 0.06a | 0.05a | 6.2a | 5.6a | 74.1a | 81.6a | |
ARI | SR | 44.1a | 47.8a | 0.28a | 0.35b | 0.28a | 0.32a | 0.05a | 0.09a | 5.9a | 5.9a | 74.1a | 77.7b |
TR | 43.7b | 46.2b | 0.27b | 0.33c | 0.26a | 0.29a | 0.05a | 0.06a | 5.8a | 5.7a | 72.0b | 76.8b | |
RF | SR | 42.5c | 43.2d | 0.29a | 0.36a | 0.27a | 0.31a | 0.04a | 0.05a | 4.9b | 4.9b | 70.4d | 74.0c |
TR | 42.1c | 45.7c | 0.26b | 0.32c | 0.27a | 0.30a | 0.05a | 0.08a | 5.5a | 6.0a | 71.0c | 73.7c |
Crop Season | Soil Depth (cm) | pH | Organic Matter (%) | CEC (Meq 100 g−1) | Mehlich-3 Extractable Nutrients (mg Kg−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P | K | Ca | Mg | Zn | S | Cu | |||||
2018 | 0–15 | 6.75 | 1.23 | 9.2 | 32 | 156 | 1168 | 246 | 1.6 | 6.1 | 1.4 |
2018 | 15–30 | 6.79 | 1.20 | 13.4 | 19 | 142 | 1758 | 292 | 1.4 | 5.9 | 1.8 |
2019 | 0–15 | 6.83 | 1.23 | 8.2 | 27 | 119 | 1003 | 226 | 1.5 | 5.6 | 1.3 |
2019 | 15–30 | 6.77 | 1.21 | 12.9 | 17 | 133 | 1617 | 296 | 1.4 | 5.8 | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinnamaneni, S.R.; Anapalli, S.S. Assessing the Effects of Agronomic Management Practices on Soybean (Glycine max L.) Post-Grain Harvest Residue Quality in the Lower Mississippi Delta. Plants 2021, 10, 1337. https://doi.org/10.3390/plants10071337
Pinnamaneni SR, Anapalli SS. Assessing the Effects of Agronomic Management Practices on Soybean (Glycine max L.) Post-Grain Harvest Residue Quality in the Lower Mississippi Delta. Plants. 2021; 10(7):1337. https://doi.org/10.3390/plants10071337
Chicago/Turabian StylePinnamaneni, Srinivasa R., and Saseendran S. Anapalli. 2021. "Assessing the Effects of Agronomic Management Practices on Soybean (Glycine max L.) Post-Grain Harvest Residue Quality in the Lower Mississippi Delta" Plants 10, no. 7: 1337. https://doi.org/10.3390/plants10071337
APA StylePinnamaneni, S. R., & Anapalli, S. S. (2021). Assessing the Effects of Agronomic Management Practices on Soybean (Glycine max L.) Post-Grain Harvest Residue Quality in the Lower Mississippi Delta. Plants, 10(7), 1337. https://doi.org/10.3390/plants10071337