Tissue Distribution and Biochemical Changes in Response to Copper Accumulation in Erica australis L.
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Method
4.1. Plant Culture and Cu Treatments
4.2. Growth Measurements and Elements Concentration
4.3. Determination of Biochemical Traits and Cu Localization by Scanning Electron Microscopy
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rehman, N.; Maqbool, Z.; Peng, D.; Liu, L. Morpho-physiological traits, antioxidant capacity and phytoextraction of copper by ramie (Boehmeria nivea L.) grown as fodder in copper-contaminated soil. Environ. Sci. Pollut. Res. 2019, 26, 5851–5861. [Google Scholar] [CrossRef]
- Kumar, V.; Pandita, S.; Sidhu, G.P.S.; Sharma, A.; Khanna, K.; Kaur, P.; Bali, A.S.; Setia, R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 2021, 262, 127810. [Google Scholar] [CrossRef] [PubMed]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1995. [Google Scholar]
- Monni, S.; Salemaa, M.; White, C.; Tuittila, E. Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter, in southwest Finland. Environ. Pollut. 2000, 109, 211–219. [Google Scholar] [CrossRef]
- Kupper, H.; Götz, B.; Mijovilovich, A.; Küpper, F.C.; Meyer-Klaucke, W.E. Complexation and toxicity of copper in higher plants I. Characterization of copper accumulation, speciation, and toxicity in Crassula hemsii as a new copper accumulator. Plant Physiol. 2009, 151, 702–714. [Google Scholar] [CrossRef] [Green Version]
- Angulo-Bejarano, P.; Puente-Rivera, J.; Cruiz-Ortega, R. Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants 2021, 10, 635. [Google Scholar] [CrossRef]
- Ernst, W.H.O.; Verkleij, J.A.C.; Schat, A. Metal tolerance in plants. Acta Bot. Neerl. 1992, 41, 229–248. [Google Scholar] [CrossRef]
- Punz, W.F.; Sieghard, H. The response of roots of herbaceous plant species to heavy metals. Environ. Exp. Bot. 1993, 33, 85–98. [Google Scholar] [CrossRef]
- Abreu, M.M.; Tavares, M.T.; Batista, M.J. Potential use of Erica andevalensis and Erica australis in phytoremediation of sulphide mine environments: São Domingos. Portugal. J. Geochem. Explor. 2008, 96, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, N.; Amils, R.; Jiménez-Ballesta, R.; Rufo, L.; de la Fuente, V. Heavy metal content in Erica andevalensis: An endemic plant from the extreme acidic environment of Tinto River and its soils. Arid. Land. Res. Manag. 2007, 21, 51–65. [Google Scholar] [CrossRef]
- Monaci, F.; Leidi, E.O.; Mingorance, M.D.; Valdés, B.; Rossini Oliva, S.; Bargagli, R. Selective Uptake of Major and Trace Elements in Erica andevalensis, an Endemic Species to Extreme Habitats in the Iberian Pyrite Belt. J. Environ. Sci. 2011, 23, 444–452. [Google Scholar] [CrossRef]
- Monaci, F.; Trigueros, D.; Mingorance, M.D.; Rossini Oliva, S. Phytostabilization potential of Erica australis L. and Nerium oleander L.: A comparative study in the Riotinto mining area (SW Spain). Environ. Geochem. Health 2020, 42, 2345–2360. [Google Scholar] [CrossRef] [PubMed]
- Chmielowska-Bąk, J.; Deckert, J. Plant recovery after metal stress—A review. Plants 2021, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Rossini-Oliva, S.; Mingorance, M.D.; Valdés, B.; Leidi, E.O. Uptake, localisation and physiological changes in response to copper excess in Erica andevalensis. Plant Soil 2010, 328, 411–420. [Google Scholar] [CrossRef]
- Rufo, L.; Rodríguez, N.; de la Fuente, V. Plant communities of extreme acidic waters: The Rio Tinto case. Aquat. Bot. 2011, 95, 129–139. [Google Scholar] [CrossRef]
- Rossini-Oliva, S.; Abreu, M.M.; Leidi, E.O. A review of hazardous elements tolerance in a metallophyte model species: Erica andevalensis. Geoderma 2018, 319, 43–51. [Google Scholar] [CrossRef]
- Liu, D.; Kottke, I. Subcellular localization of copper in the root cells of Allium sativum by electron energy loss spectroscopy (EELS). Bioresour. Technol. 2004, 94, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.S.; Dietz, K.J.; Mimura, T. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ. 2016, 39, 1112–1126. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, L.; Sebastiani, L. Copper toxicity in Prunus cerasifera: Growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci. 2005, 168, 797–802. [Google Scholar] [CrossRef]
- Vidal, C.; Larama, G.; Riveros, A.; Meneses, C.; Cornejo, P. Main molecular pathways associated with copper tolerance response in Imperata cylindrica by de novo transcriptome assembly. Plants 2021, 10, 357. [Google Scholar] [CrossRef]
- Chen, C.T.; Chen, T.H.; Lo, K.F.; Chiu, C.Y. Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Sci. 2004, 166, 103–111. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Lepp, N.W. Cycling of Copper in Woodland Ecosystem. In Copper in the Environment Part I: Ecological Cycling; Nriagu, J.O., Ed.; John Wiley & Sons: New York, NY, USA, 1979; pp. 289–323. [Google Scholar]
- Trigueros Vera, D. Respuesta de dos Especies Arbustivas (Erica australis y Nerium oleander) Frente a la Contaminación Derivada de la Actividad Minera en Riotinto. Ph.D. Thesis, Universidad de Sevilla, Seville, Spain, 2011. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=24663 (accessed on 25 May 2021). (In Spanish).
- Schreiber, L.; Hartmann, K.; Skabs, M.; Zeier, J. Apoplastic barrier in roots: Chemical composition of endodermal and hypodermal cell wall. J. Exp. Bot. 1999, 50, 1267–1280. [Google Scholar] [CrossRef] [Green Version]
- Nazir, F.; Hussain, A.; Fariduddin, Q. Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere 2019, 230, 544–558. [Google Scholar] [CrossRef] [PubMed]
- Nailo, A.; Meerdink, G.; Jayasena, V.; Sulaimn, A.Z.; Ajit, A.B.; Berta, G. A review on global metal accumulators-mechanism, enhancement, commercial application, and research trend. Environ. Sci. Pollut. Res. 2019, 26, 26449–26471. [Google Scholar] [CrossRef]
- Thounaojam, T.C.; Panda, P.; Mazumdar, P.; Kumar, S.; Sharma, G.; Sahoo, L.; Sanjib, P. Excess copper induces oxidative stress and response of antioxidants in rice. Plant Physiol. Biochem. 2012, 53, 33–39. [Google Scholar] [CrossRef]
- Shahid, M.; Pourrut, B.; Dumat, C.; Nadeem, M.; Aslam, M.; Pinelli, E. Heavy-metal-induced reactive oxygen species: Phytotoxicity and physico-chemical changes in plants. Rev. Environ. Contam. Toxicol. 2014, 232, 1–44. [Google Scholar]
- Przedpelska-Wasowicz, E.M.; Wierzbicka, M. Gating aquaporins by heavy metals in Allium cepa L. epidermal cells. Protoplasma 2011, 248, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Rucińska-Sobkowiak, R. Water relations in plants subjected to heavy metal stress. Acta Physiol. Plant. 2016, 38, 257. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 2002, 53, 1–11. [Google Scholar] [CrossRef]
- Ait Ali, N.M.; Bernal, P.; Ater, B. Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 2002, 239, 103–111. [Google Scholar] [CrossRef]
- Reichman, S.M. The Responses of Plants to Metal Toxicity: A Review Focusing on Copper, Manganese and Zinc; Australian Minerals & Energy Environment Foundation: Melbourne, Australia, 2002; pp. 1–54. [Google Scholar]
- Freeman, J.L.; Zhang, L.H.; Marcus, M.A.; Fakra, S.; McGrath, S.P.; Pilon-Smits, E.A.H. Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol. 2006, 1425, 124–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemenes, S.; Ma, J.F. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu. Rev. Plant Biol. 2016, 67, 489–512. [Google Scholar] [CrossRef] [Green Version]
- Krämer, U.; Grime, G.W.; Smith, J.A.C.; Hawes, C.R.; Baker, A.J.M. Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl. Instrum. Methods Phys. Res. Sect. B 1997, 130, 346–350. [Google Scholar] [CrossRef]
- Broadhurst, C.L.; Bauchan, G.R.; Murphy, C.A.; Tang, Y.-T.; Pooley, C.; Davis, A.P.; Chaney, R.L. Accumulation of zinc and cadmium and localization of zinc in Picris divaricata Vant. Environ. Exp. Bot. 2013, 87, 1–9. [Google Scholar] [CrossRef]
- Macfarlane, G.R.; Burchett, M.D. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Mar. Poll. Bull. 2001, 42, 233–240. [Google Scholar] [CrossRef]
- Giannakoula, A.; Therios, I.; Chatzissavvidis, C. Effect of lead and copper on photosynthetic apparatus in Citrus (Citrus aurantium L.) plants. The role of antioxidants in oxidative damage as a response to heavy metal stress. Plants 2021, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Luna, C.M.; Gonzalez, C.A.; Trippi, V.S. Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol. 1994, 35, 11–15. [Google Scholar]
- Mazhoudi, S.; Chaoui, A.; Ghorbal, M.H.; El Ferjani, E. Response of antioxidant enzymes to excess copper in tomate (Lycopersicon esculentum, Mill.). Plant Sci. 1997, 127, 129–137. [Google Scholar] [CrossRef]
- Schützendübel, A.; Polle, A. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorhization. J. Exp. Bot. 2002, 53, 1351–1365. [Google Scholar] [CrossRef]
- Alí, M.B.; Hahn, E.J.; Paek, K.Y. Copper-induced changes in the growth, oxidative metabolism, and saponin production in suspension culture roots of Panax ginseng in bioreactors. Plant Cell Rep. 2006, 25, 1122–1132. [Google Scholar] [CrossRef]
- del Río, L.A.; Corpas, F.J.; López-Huertas, E.; Palma, J.M. Plant Superoxide Dismutases: Function under Abiotic Stress Conditions. In Antioxidants and Antioxidant Enzymes in Higher Plants; Gupta, D., Palma, J., Corpas, F., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–26. [Google Scholar] [CrossRef]
- Chaoui, A.; El Ferjani, E. Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. Comptes Rendus Biol. 2005, 328, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, E.J. Sand and water culture methods used in the study of plant nutrition. In Commonwealth Bureau of Horticulture and Plantation Crops, 2nd revised ed.; Technical Communication No. 22; East Malling, CAB: Farnham Royal, UK, 1966. [Google Scholar]
- Mingorance, M.D.; Pérez-Vázquez, L.; Lachica, M. Microwave digestion method for the atomic determination of some elements in biological samples. J. Anal. Atom. Spectrom. 1993, 8, 853–858. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by US-VIS spectrometry. Curr. Protoc. Food. Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Jiménez, A.; Hernández, J.A.; de1 Rio, L.A.; Sevilla, F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 1997, 114, 275–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aebi, H. Catalase in vitro. Method Enzym. 1984, 105, 121–126. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplast: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 126, 189–198. [Google Scholar] [CrossRef]
- León, V.; Rabier, J.; Notonier, R.; Barthélemy, R.; Moreau, X.; Bouraïma-Madjèbi, S.; Viano, J.; Pineau, R. Effects on three nickel salts on germinating sedes of Grevillea exul var. rubiginosa, an endemic serpentine Proteaceae. Ann. Bot. 2005, 95, 605–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cu (µM) | Biomass (g) | MDA (nmol/g Fw) | EA Root (U/mg Proteins) | Pigments (µg/g Fw) | ||||
---|---|---|---|---|---|---|---|---|
Leaf | Root | CAT | POD | Chl.a | Chl.b | Carotenoids | ||
1 (Control) | 3.05 ± 0.85 a | 295 ± 24.1 a | 45.4 ± 31.4 a | <l.d. | 3.20 ± 0.17 a | 1548 ± 598 a | 480 ± 232 a | 317 ± 59.2 ab |
50 | 1.15 ± 0.73 b | 425 ± 284 a | 24.5 ± 20.8 a | <l.d. | 1.25 ± 0.23 b | 1101 ± 38 a | 341 ± 11.3 a | 225 ± 6.20 bc |
100 | −0.17 ± 0.73 c | 366 ± 51.4 a | 5.59 ± 5.0 a | 59.7 ± 16.6 a | 3.91 ± 0.10 c | 1623 ± 23 a | 536 ± 13.8 a | 400 ± 41.1 a |
200 | −0.32 ± 0.25 c | 1668 ± 483 b | 11.7 ± 0.32 a | 91.6 ± 5.65 b | 0.49 ± 0.14 d | 1071 ± 362 a | 694 ± 172 a | 105 ± 70.2 c |
Cu Treatments (µM) | Regression (1–100 µM) | ||||||
---|---|---|---|---|---|---|---|
1 (Control) | 50 | 100 | 200 | R2 | a | b | |
Leaf | 4.55 ± 1.41 | 24.9 ± 4.47 | 58.3 ± 17.8 | 50.5 ± 26.5 | 0.913 | 5.0 ± 0.8 | 0.026 ± 0.003 |
Stem | 3.94 ± 0.30 | 27.8 ± 5.80 | 182 ± 98.1 | 170 ± 115 | 0.954 | 4.0 ± 0.7 | 0.037 ± 0.003 |
Root | 22.5 ± 4.55 | 804 ± 196 | 3738 ± 288 | 5978 ± 1380 | 0.943 | 30 ± 8 | 0.052 ± 0.004 |
Cu Treatments (µM) | Organs | B (mg/kg) | Ca (%) | Fe (mg/kg) | K (%) | Mg (%) | Mn (mg/kg) | Na (mg/kg) | P (%) | S (%) | Zn (mg/kg) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Leaves | Mean | 74.0 | 0.20 | 81.0 | 1.65 | 0.20 | 114.5 | 327.00 | 0.50 | 0.17 | 13.5 |
Median | 74.0 | 0.22 | 88.0 | 1.59 | 0.20 | 119.5 | 336.50 | 0.48 | 0.17 | 13.5 | ||
St. Dev | 14.8 | 0.06 | 21.0 | 0.25 | 0.03 | 18.6 | 49.27 | 0.21 | 0.02 | 0.6 | ||
Stems | Mean | 27.5 | 0.14 | 45.5 | 1.99 | 0.14 | 113.3 | 378.00 | 0.47 | 0.07 | 10.5 | |
Median | 28.5 | 0.15 | 44.0 | 1.98 | 0.14 | 113.5 | 360.50 | 0.46 | 0.07 | 10.5 | ||
St. Dev. | 6.1 | 0.03 | 13.6 | 0.04 | 0.02 | 26.0 | 57.18 | 0.09 | 0.00 | 1.3 | ||
Roots | Mean | 16.7 | 0.17 | 2831.5 | 1.59 | 0.11 | 86.8 | 706.00 | 0.69 | 0.16 | 33.3 | |
Median | 15.0 | 0.16 | 2828.5 | 1.56 | 0.11 | 83.5 | 670.00 | 0.68 | 0.17 | 34.0 | ||
St. Dev. | 2.9 | 0.05 | 316.1 | 0.14 | 0.02 | 13.9 | 148.84 | 0.09 | 0.02 | 7.7 | ||
50 | Leaves | Mean | 63.3 | 0.25 | 74.3 | 1.77 | 0.21 | 109.5 | 444.00 | 0.39 | 0.22 | 19.0 |
Median | 64.0 | 0.25 | 67.0 | 1.79 | 0.21 | 111.5 | 444.50 | 0.39 | 0.22 | 18.0 | ||
St. Dev. | 5.9 | 0.03 | 16.6 | 0.16 | 0.02 | 13.7 | 83.45 | 0.05 | 0.02 | 2.0 | ||
Stems | Mean | 21.3 | 0.19 | 24.3 | 1.62 | 0.12 | 87.8 | 434.00 | 0.44 | 0.09 | 10.8 | |
Median | 21.0 | 0.17 | 24.0 | 1.66 | 0.12 | 86.5 | 417.50 | 0.43 | 0.09 | 11.0 | ||
St. Dev. | 5.5 | 0.04 | 3.5 | 0.21 | 0.02 | 18.8 | 47.66 | 0.07 | 0.01 | 0.5 | ||
Roots | Mean | 22.8 | 0.36 | 14291 | 1.14 | 0.13 | 89.0 | 950.75 | 1.05 | 0.21 | 47.7 | |
Median | 23.5 | 0.26 | 13720 | 1.15 | 0.13 | 91.0 | 886.00 | 1.05 | 0.20 | 48.0 | ||
St. Dev. | 3.6 | 0.26 | 3189 | 0.13 | 0.01 | 7.2 | 344.99 | 0.20 | 0.02 | 0.6 | ||
100 | Leaves | Mean | 80.8 | 0.55 | 118.5 | 2.73 | 0.30 | 169.8 | 751.00 | 0.51 | 0.43 | 20.8 |
Median | 78.5 | 0.56 | 117.5 | 2.69 | 0.30 | 169.5 | 705.50 | 0.50 | 0.42 | 20.5 | ||
St. Dev. | 11.4 | 0.14 | 18.9 | 0.46 | 0.03 | 14.1 | 160.32 | 0.02 | 0.12 | 2.1 | ||
Stems | Mean | 21.0 | 0.23 | 40.7 | 2.06 | 0.11 | 85.5 | 750.25 | 0.46 | 0.19 | 18.8 | |
Median | 21.0 | 0.20 | 37.0 | 2.00 | 0.12 | 87.5 | 718.50 | 0.45 | 0.19 | 18.0 | ||
St. Dev. | 7.5 | 0.07 | 7.2 | 0.39 | 0.02 | 10.7 | 219.64 | 0.07 | 0.03 | 7.9 | ||
Roots | Mean | 48.8 | 0.63 | 37239 | 0.73 | 0.21 | 157.5 | 1579.25 | 1.87 | 0.24 | 53.0 | |
Median | 49.0 | 0.67 | 36855 | 0.69 | 0.21 | 155.5 | 1605.50 | 1.99 | 0.24 | 52.0 | ||
St. Dev. | 3.8 | 0.23 | 2403 | 0.11 | 0.07 | 49.3 | 242.39 | 0.44 | 0.03 | 5.3 | ||
200 | Leaves | Mean | 75.2 | 0.27 | 80.7 | 1.62 | 0.20 | 110.0 | 650.17 | 0.46 | 0.22 | 20.8 |
Median | 87.0 | 0.26 | 73.5 | 1.52 | 0.20 | 98.5 | 628.00 | 0.45 | 0.21 | 16.5 | ||
St. Dev. | 20.7 | 0.05 | 20.0 | 0.29 | 0.02 | 34.3 | 165.09 | 0.09 | 0.03 | 9.6 | ||
Stems | Mean | 40.7 | 0.16 | 124.2 | 1.60 | 0.09 | 81.0 | 852.40 | 0.48 | 0.14 | 19.7 | |
Median | 43.0 | 0.15 | 124.0 | 1.62 | 0.09 | 60.5 | 864.00 | 0.49 | 0.15 | 20.0 | ||
St. Dev. | 7.2 | 0.02 | 15.2 | 0.40 | 0.04 | 52.1 | 91.30 | 0.06 | 0.05 | 6.4 | ||
Roots | Mean | 90.0 | 0.51 | 62856 | 0.92 | 0.17 | 191.0 | 2752.50 | 3.73 | 0.37 | 132.0 | |
Median | 90.0 | 0.49 | 63189 | 0.89 | 0.14 | 167.0 | 2551.50 | 3.47 | 0.31 | 116.0 | ||
St. Dev. | 0.0 | 0.12 | 8651 | 0.31 | 0.07 | 71.1 | 489.14 | 0.81 | 0.12 | 48.5 |
Macronutrients | Micronutrients | ||||||||
---|---|---|---|---|---|---|---|---|---|
P | K | S | Mg | Ca | Fe | Mn | B | Zn | |
Leaves | - | 0.607 | 0.751 | 0.643 | 0.696 | 0.484 | 0.641 | - | 0.550 |
Stems | - | - | 0.848 | - | - | - | - | 0.605 | |
Roots | 0.960 | −0.558 | 0.889 | 0.591 | 0.577 | 0.982 | 0.843 | 0.939 | 0.809 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trigueros, D.; Rossini-Oliva, S. Tissue Distribution and Biochemical Changes in Response to Copper Accumulation in Erica australis L. Plants 2021, 10, 1428. https://doi.org/10.3390/plants10071428
Trigueros D, Rossini-Oliva S. Tissue Distribution and Biochemical Changes in Response to Copper Accumulation in Erica australis L. Plants. 2021; 10(7):1428. https://doi.org/10.3390/plants10071428
Chicago/Turabian StyleTrigueros, Daniel, and Sabina Rossini-Oliva. 2021. "Tissue Distribution and Biochemical Changes in Response to Copper Accumulation in Erica australis L." Plants 10, no. 7: 1428. https://doi.org/10.3390/plants10071428
APA StyleTrigueros, D., & Rossini-Oliva, S. (2021). Tissue Distribution and Biochemical Changes in Response to Copper Accumulation in Erica australis L. Plants, 10(7), 1428. https://doi.org/10.3390/plants10071428