Cut Flower Characteristics and Growth Traits under Salt Stress in Lily Cultivars
Abstract
:1. Introduction
2. Results
2.1. Summary of Cut Lily Growth Characteristics under Salt Stress
2.2. Characterestics of Cut Lily Cultivars
2.3. Analysis of Principal Components in Cut Lily Cultivars
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Salt Treatment and Plant Growth Measurement
4.3. Determination of Chlorophyll a Fluorescence
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, R.; Sun, Y.; Sun, H. Current status and future perspectives of somatic embryogenesis in Lilium. Plant Cell Tissue Organ Cult. 2020, 143, 229–240. [Google Scholar] [CrossRef]
- Van Tuyl, J.M.; Van Holsteijn, H.C. Lily breeding research in the Netherlands. In Proceedings of the International Symposium on the Genus Lilium 414, Taejon, Korea, 28 August–1 September 1994; pp. 35–46. [Google Scholar]
- Shahin, A.; Arens, P.; Van Heusden, A.W.; Van Der Linden, G.; Van Kaauwen, M.; Khan, N.; Schouten, H.J.; Van De Weg, W.E.; Visser, R.G.; Van Tuyl, J.M. Genetic mapping in Lilium: Mapping of major genes and quantitative trait loci for several ornamental traits and disease resistances. Plant Breed. 2011, 130, 372–382. [Google Scholar] [CrossRef]
- Benschop, M.; Kamenetsky, R.; Le Nard, M.; Okubo, H.; De Hertogh, A. 1 The global flower bulb industry: Production, utilization, research. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons: New Jersey, NJ, USA, 2010; Volume 36, pp. 1–115. [Google Scholar]
- CBS. Available online: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/71904ned/table?ts=1620000662910 (accessed on 1 June 2021).
- Yu, S.; Alders, A.; Yang, M. The PVP status of Lilium in China, the Netherlands and rest of the world. In Proceedings of the III International Symposium on the Genus Lilium 1027, Fujian, China, 1–3 April 2014; pp. 171–175. [Google Scholar]
- Minister of the Agriculture, Food and Rural. Statistics for Floricultural Industry in 2019. Available online: https://lib.mafra.go.kr/skyblueimage/4828.pdf. (accessed on 1 June 2021).
- Kang, Y.-I.; Joung, H.Y.; Goo, D.H.; Choi, Y.J.; Choi, M.P.; An, H.R.; Ko, J.-Y.; Choi, K.-J.; Lee, K.H.; Hong, K.W. A survey on cut flower cultivar trends and horticultural status of lilies (Lilium hybrids) in South Korea. HortTechnology 2013, 23, 629–634. [Google Scholar] [CrossRef]
- Mu, D.; Yi, M.; Xia, Y. Production and cultivation of lilies in China. In Proceedings of the III International Symposium on the Genus Lilium 1027, Fujian, China, 1–3 April 2014; pp. 97–103. [Google Scholar]
- LeCompte, J.S.; Wright, A.N.; LeBleu, C.M.; Kessler, J.R. Saline irrigation affects growth and leaf tissue nutrient concentration of three native landscape plant species. HortTechnology 2016, 26, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; An, M.; Han, L.; Yin, S. Foliar application of 24-epibrassinolide improved salt stress tolerance of perennial ryegrass. HortScience 2015, 50, 1518–1523. [Google Scholar] [CrossRef] [Green Version]
- Tuna, A.L.; Kaya, C.; Ashraf, M.; Altunlu, H.; Yokas, I.; Yagmur, B. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ. Exp. Bot. 2007, 59, 173–178. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Mansour, E.; Moustafa, E.S.; Desoky, E.-S.M.; Ali, M.; Yasin, M.A.; Attia, A.; Alsuhaibani, N.; Tahir, M.U.; El-Hendawy, S. Multidimensional evaluation for detecting salt tolerance of bread wheat genotypes under actual saline field growing conditions. Plants 2020, 9, 1324. [Google Scholar] [CrossRef]
- Lv, H.; Zhao, Y.; Wang, Y.; Wan, L.; Wang, J.; Butterbach-Bahl, K.; Lin, S. Conventional flooding irrigation and over fertilization drives soil pH decrease not only in the top-but also in subsoil layers in solar greenhouse vegetable production systems. Geoderma 2020, 363, 114156. [Google Scholar] [CrossRef]
- Lim, J.-E.; Ha, S.-K.; Lee, Y.-J.; Yun, H.-J.; Cho, M.-J.; Lee, D.-B.; Sung, J.-K. Effects of reduced additional fertilizer on tomato yield and nutrient contents in salt accumulated soil. Korean J. Agric. Sic. 2015, 42, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Balliu, A.; Sallaku, G.; Rewald, B. AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability 2015, 7, 15967–15981. [Google Scholar] [CrossRef] [Green Version]
- Maucieri, C.; Zhang, Y.; McDaniel, M.; Borin, M.; Adams, M. Short-term effects of biochar and salinity on soil greenhouse gas emissions from a semi-arid Australian soil after re-wetting. Geoderma 2017, 307, 267–276. [Google Scholar] [CrossRef]
- Wang, R.; Kang, Y.; Wan, S.; Hu, W.; Liu, S.; Jiang, S.; Liu, S. Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area. Agric. Water Manag. 2012, 110, 109–117. [Google Scholar] [CrossRef]
- Lee, C.-K.; Seo, K.-W.; Lee, G.-J.; Choi, S.-U.; Ahn, B.-K.; Ahn, M.-S.; Seo, D.-S.; Yun, S.-I. Nutrient uptake and growth of watermelons in DTPA-treated saline soil in a plastic film greenhouse. Hortic. Sci. Technol. 2019, 37, 32–41. [Google Scholar]
- Park, Y.G.; Muneer, S.; Kim, S.; Hwang, S.J.; Jeong, B.R. Foliar or subirrigational silicon supply modulates salt stress in strawberry during vegetative propagation. Hortic. Environ. Biotechnol. 2018, 59, 11–18. [Google Scholar] [CrossRef]
- Adem, G.D.; Roy, S.J.; Zhou, M.; Bowman, J.P.; Shabala, S. Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biol. 2014, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Oyiga, B.C.; Sharma, R.; Shen, J.; Baum, M.; Ogbonnaya, F.; Léon, J.; Ballvora, A. Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J. Agron. Crop Sci. 2016, 202, 472–485. [Google Scholar] [CrossRef]
- Singh, J.; Singh, V.; Sharma, P. Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea (Cicer arietinum L.) genotypes. Physiol. Mol. Biol. Plants 2018, 24, 441–453. [Google Scholar] [CrossRef]
- Ashraf, M.; Athar, H.; Harris, P.; Kwon, T. Some prospective strategies for improving crop salt tolerance. Adv. Agron. 2008, 97, 45–110. [Google Scholar]
- Arzani, A. Improving salinity tolerance in crop plants: A biotechnological view. In Vitro Cell. Dev. Biol. Plant 2008, 44, 373–383. [Google Scholar] [CrossRef]
- Mahmood, A.; Latif, T.; Khan, M.A. Effect of salinity on growth, yield and yield components in basmati rice germplasm. Pak. J. Bot. 2009, 41, 3035–3045. [Google Scholar]
- Wu, G.-Q.; Liang, N.; Feng, R.-J.; Zhang, J.-J. Evaluation of salinity tolerance in seedlings of sugar beet (Beta vulgaris L.) cultivars using proline, soluble sugars and cation accumulation criteria. Acta Physiol. Plant 2013, 35, 2665–2674. [Google Scholar] [CrossRef]
- Luo, D.; Zhou, Q.; Wu, Y.; Chai, X.; Liu, W.; Wang, Y.; Yang, Q.; Wang, Z.; Liu, Z. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biol. 2019, 19, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Shillo, R.; Ding, M.; Pasternak, D.; Zaccai, M. Cultivation of cut flower and bulb species with saline water. Sci. Hortic. 2002, 92, 41–54. [Google Scholar] [CrossRef]
- De Lucia, B.; Mancini, L.; Ventrelli, A. Effects of nutrient solution salinity (NaCl) on the yield level and quality characteristics in Lilium soilless culture. In Proceedings of the International Symposium on Managing Greenhouse Crops in Saline Environment 609, Pisa, Italy, 30 May 2003; pp. 401–406. [Google Scholar]
- Bai, R.; Lin, Y.; Jiang, Y. Diverse genotypic variations of photosynthetic capacity, transpiration and antioxidant enzymes of lily hybrids to increasing salinity stress. Sci. Hortic. 2021, 280, 109939. [Google Scholar] [CrossRef]
- Grassotti, A. Economics and culture techniques of Lilium production in Italy. In Proceedings of the International Symposium on the Genus Lilium 414, Taejon, Korea, 28 August–1 September 1994; pp. 25–34. [Google Scholar]
- Omidian, M.; Roein, Z.; Shiri, M.A. Effect of Foliar Application of 24-Epibrassinolide on Water Use Efficiency and Morpho-Physiological Characteristics of Lilium LA Hybrid under Deficit Irrigation. J. Plant Growth Regul. 2021, 1–14. [Google Scholar] [CrossRef]
- Argo, W.R.; Biernbaum, J.A. Irrigation requirements, root-medium pH, and nutrient concentrations of Easter lilies grown in five peat-based media with and without an evaporation barrier. J. Am. Soc. Hortic. Sci. 1994, 119, 1151–1156. [Google Scholar] [CrossRef] [Green Version]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Pirasteh-Anosheh, H.; Ranjbar, G.; Pakniyat, H.; Emam, Y. Physiological mechanisms of salt stress tolerance in plants: An overview. In Plant-Environment Interaction: Responses and Approaches to Mitigate Stress, 1st ed.; Mohamed, M.A., Parvaiz, A., Eds.; John Wiley & Sons: New Jersey, NJ, USA, 2016; pp. 141–160. [Google Scholar]
- Akbarimoghaddam, H.; Galavi, M.; Ghanbari, A.; Panjehkeh, N. Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J. Sci. 2011, 9, 43–50. [Google Scholar]
- Sairam, R.; Tyagi, A. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 2004, 86, 407–421. [Google Scholar]
- Park, H.J.; Kim, W.-Y.; Yun, D.-J. A new insight of salt stress signaling in plant. Mol. Cells 2016, 39, 447–459. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Qayyum, M.F.; Ok, Y.S.; Ibrahim, M.; Riaz, M.; Arif, M.S.; Hafeez, F.; Al-Wabel, M.I.; Shahzad, A.N. Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environ. Sci. Pollut. Res. 2017, 24, 12700–12712. [Google Scholar] [CrossRef]
- Bai, Y.; Zuo, W.; Shao, H.; Mei, L.; Tang, B.; Gu, C.; Wang, X.; Guan, Y. Eastern China coastal mudflats: Salt-soil amendment with sewage sludge. Land Degrad. Dev. 2018, 29, 3803–3811. [Google Scholar] [CrossRef]
- Dell’Aversana, E.; Hessini, K.; Ferchichi, S.; Fusco, G.M.; Woodrow, P.; Ciarmiello, L.F.; Abdelly, C.; Carillo, P. Salinity duration differently modulates physiological parameters and metabolites profile in roots of two contrasting barley genotypes. Plants 2021, 10, 307. [Google Scholar] [CrossRef]
- Fricke, W.; Akhiyarova, G.; Wei, W.; Alexandersson, E.; Miller, A.; Kjellbom, P.O.; Richardson, A.; Wojciechowski, T.; Schreiber, L.; Veselov, D. The short-term growth response to salt of the developing barley leaf. J. Exp. Bot. 2006, 57, 1079–1095. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, J.; Fidalgo, F. Salt stress affects glutamine synthetase activity and mRNA accumulation on potato plants in an organ-dependent manner. Plant Physiol. Biochem. 2009, 47, 807–813. [Google Scholar] [CrossRef]
- Nassar, R.; Kamel, H.A.; Ghoniem, A.E.; Alarcón, J.J.; Sekara, A.; Ulrichs, C.; Abdelhamid, M.T. Physiological and anatomical mechanisms in wheat to cope with salt stress induced by seawater. Plants 2020, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Shi, P.; Hui, C.; Miao, L.; Liu, C.; Zhang, Q.; Feng, C. Effects of salt stress on the leaf shape and scaling of Pyrus betulifolia Bunge. Symmetry 2019, 11, 991. [Google Scholar] [CrossRef] [Green Version]
- Bijanzadeh, E.; Kazemeini, S.A. Tissue architecture changes of expanding barley (Hordeum vulgare L.) leaf under salt stress. Aust. J. Crop Sci. 2014, 8, 1373–1379. [Google Scholar]
- Kim, W.-Y.; Ali, Z.; Park, H.J.; Park, S.J.; Cha, J.-Y.; Perez-Hormaeche, J.; Quintero, F.J.; Shin, G.; Kim, M.R.; Qiang, Z. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat. Commun. 2013, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Krasensky, J.; Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 2012, 63, 1593–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Wang, L.; Chen, J.; Liu, Z.; Park, C.-M.; Xiang, F. WRKY71 acts antagonistically against salt-delayed flowering in Arabidopsis thaliana. Plant Cell Physiol. 2018, 59, 414–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, L. Exploration of relationships between physiological parameters and growth performance of rice (Oryza sativa L.) seedlings under salinity stress using multivariate analysis. Plant Soil 2005, 268, 51–59. [Google Scholar] [CrossRef]
- Wu, Q.-S.; Zou, Y.-N.; He, X.-H. Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol. Plant 2010, 32, 297–304. [Google Scholar] [CrossRef]
- Cruz-Castillo, J.; Ganeshanandam, S.; MacKay, B.; Lawes, G.; Lawoko, C.; Woolley, D. Applications of canonical discriminant analysis in horticultural research. HortScience 1994, 29, 1115–1119. [Google Scholar] [CrossRef] [Green Version]
- Workneh, F.; Van Bruggen, A.; Drinkwater, L.; Shennan, C. Variables associated with corky root and Phytophthora root rot of tomatoes in organic and conventional farms. Phytopathology 1993, 83, 581–589. [Google Scholar] [CrossRef]
- Mondal, M.K.; Bhuiyan, S.I.; Franco, D.T. Soil salinity reduction and prediction of salt dynamics in the coastal ricelands of Bangladesh. Agric. Water Manag. 2001, 47, 9–23. [Google Scholar] [CrossRef]
- Hwang, K.; Park, J.; Yiem, M.; Ho, Q. Effect of high salt concentration on the growth of lily in plastic film house soil. RDA J. Agro-Environ. Sci. 1998, 40, 1–5. [Google Scholar]
- Wang, J.; Yang, Y.; Liu, X.; Huang, J.; Wang, Q.; Gu, J.; Lu, Y. Transcriptome profiling of the cold response and signaling pathways in Lilium lancifolium. BMC Genom. 2014, 15, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Lei, J.; Li, M. Study on cold tolerance of interspecific hybrids from crossing between Lilium dauricum and L cv. Brunello. J. Northeast Agric. Univ. 2011, 42, 109–113. [Google Scholar]
- Zhou, G.; Li, K.; Zhang, X.; Ren, G.; Guo, F.; Zhou, S. Studies on ploidy levels, pollen fertility and interploid hybridization of Asiatic lilies. Acta Hortc. Sin. 2011, 38, 733–739. [Google Scholar]
- Darandeh, N.; Hadavi, E. Effect of pre-harvest foliar application of citric acid and malic acid on chlorophyll content and post-harvest vase life of Lilium cv. Brunello. Front. Plant Sci. 2012, 2, 106. [Google Scholar] [CrossRef] [Green Version]
- Barnes, J.; Whipker, B.; McCall, I.; Frantz, J. Characterization of nutrient disorders of Lilium longiflorum ‘Nellie White’ and Lilium hybrid ‘Brunello’. In Proceedings of the II International Symposium on the Genus Lilium 900, Pescia, Italy, 1 July 2011; pp. 205–211. [Google Scholar]
- Yang, S.; Wang, Z.; Yuan, X.; Zhang, M.; Jia, G. The relationship of upper leaf necrosis with partial physiological traits of three oriental hybrid lily cultivars. J. Food Agric. Environ. 2012, 10, 1111–1117. [Google Scholar]
- Yan, F.-Y.; Jiang, N.; Pei, X.-H.; Zhu, P.-F. Research for the chill-resistance of bulb in Llily. North. Hortic. 2009, 09, 154–159. [Google Scholar]
- Lopez-Climent, M.F.; Arbona, V.; Pérez-Clemente, R.M.; Gómez-Cadenas, A. Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ. Exp. Bot. 2008, 62, 176–184. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995; pp. 658–673. [Google Scholar]
- Yokoi, S.; Bressan, R.A.; Hasegawa, P.M. Salt stress tolerance of plants. JIRCAS Work. Rep. 2002, 23, 25–33. [Google Scholar]
- Iezzoni, A.F.; Pritts, M.P. Applications of principal component analysis to horticultural research. HortScience 1991, 26, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Banda, T.D.; Kumarasamy, M. Application of multivariate statistical analysis in the development of a surrogate water quality index (WQI) for South African watersheds. Water 2020, 12, 1584. [Google Scholar] [CrossRef]
- Anderson, K.A.; Smith, B.W. Use of chemical profiling to differentiate geographic growing origin of raw pistachios. J. Agric. Food Chem. 2005, 53, 410–418. [Google Scholar] [CrossRef]
- Stellacci, A.M.; Castrignanò, A.; Diacono, M.; Troccoli, A.; Ciccarese, A.; Armenise, E.; Gallo, A.; De Vita, P.; Lonigro, A.; Mastro, M.A. Combined approach based on principal component analysis and canonical discriminant analysis for investigating hyperspectral plant response. Ital. J. Agron. 2012, 7, e34. [Google Scholar] [CrossRef] [Green Version]
- Karadaş, C.; Kara, D. Chemometric approach to evaluate trace metal concentrations in some spices and herbs. Food Chem. 2012, 130, 196–202. [Google Scholar] [CrossRef]
Variables | Plant Height | Middle Leaf Length | Middle Leaf Width | Days to Flowering | No. of Flowers Per Plant | First Flower Diameter | Petal Width | Sepal Width | Fv/Fm1 |
---|---|---|---|---|---|---|---|---|---|
Cultivars (n = 26, C) | *** 2 | *** | *** | *** | *** | *** | *** | *** | *** |
NaCl treatment (n = 2; N) | *** | ** | ns | *** | *** | ** | ** | ns | *** |
C × N | ** | ns | ns | *** | *** | ns | ns | ns | *** |
Variables | Canonical Function I | |
---|---|---|
Standardized Coefficient | Pooled Within-Class Correlations | |
Plant height | 0.24 | 0.24 |
Middle leaf length | 0.16 | 0.16 |
Middle leaf width | 0.46 | 0.46 |
Days to flowering | −0.13 | −0.13 |
Number of flowers per plant | 0.58 | 0.58 |
First flower diameter | 0.44 | 0.44 |
Petal width | 0.31 | 0.31 |
Sepal width | −0.01 | −0.01 |
Fv/Fm 1 | 1.01 | 0.94 |
Cultivars | Treatment | Plant Height (cm) | Middle Leaf Length (cm) | Middle Leaf Width (cm) | Days to Flowering (d) | Flowers Per Plant (no.) | First Flower Diameter (cm) | Petal Width (cm) | Sepal Width (cm) | Fv/Fm |
---|---|---|---|---|---|---|---|---|---|---|
Brunello(A) | Con. | 74.7 | 11.6 | 1.3 | 53.0 | 4.3 | 14.1 | 3.5 | 2.3 | 0.608 |
NaCl | 65.2 | 11.6 | 1.3 | 53.0 | 3.8 | 14.2 | 3.0 | 2.2 | 0.552 | |
Navona(A) | Con. | 56.3 | 11.6 | 1.4 | 53.0 | 4.3 | 14.1 | 3.4 | 2.8 | 0.596 |
NaCl | 55.5 | 10.5 | 1.3 | 53.0 | 4.0 | 12.0 **, 1 | 3.2 | 2.6 | 0.589 | |
Albufeira(LA) | Con. | 66.9 | 8.8 | 1.6 | 58.0 | 4.3 | 10.7 | 3.5 | 3.0 | 0.624 |
NaCl | 54.9 * | 8.7 | 1.5 | 58.0 | 3.0 * | 10.9 | 3.4 | 2.9 | 0.622 | |
Eyeliner(LA) | Con. | 80.5 | 10.7 | 2.4 | 53.0 | 4.5 | 13.0 | 3.7 | 3.0 | 0.673 |
NaCl | 64.9 ** | 9.7 ** | 2.0 ** | 53.0 | 4.3 | 11.2 | 3.4 | 2.9 | 0.511 | |
Merluza(LA) | Con. | 85.5 | 13.2 | 1.9 | 53.0 | 3.5 | 13.1 | 4.4 | 3.4 | 0.649 |
NaCl | 73.7 | 13.0 | 1.8 | 53.0 | 3.5 | 13.7 | 4.3 | 3.3 | 0.584 | |
All Choice(O) | Con. | 121.9 | 17.6 | 4.0 | 71.0 | 6.0 | 11.9 | 3.6 | 2.1 | 0.554 |
NaCl | 128.7 | 18.7 | 3.9 | 75.0 *** | 6.3 | 11.0 | 3.1 | 2.2 | 0.380 * | |
Body Guard(O) | Con. | 92.0 | 17.2 | 4.3 | 75.0 | 5.5 | 13.9 | 3.5 | 3.0 | 0.305 |
NaCl | 78.2 * | 15.9 | 4.0 | - | 0.0 ** | - | - | - | 0.237 | |
Cadenza(O) | Con. | 81.8 | 17.3 | 4.7 | 79.0 | 3.8 | 20.3 | 6.3 | 4.8 | 0.653 |
NaCl | 72.4 | 15.7 | 4.9 | 75.0 *** | 3.0 | 17.6 | 5.1 | 4.1 | 0.598 | |
Clear Water(O) | Con. | 84.8 | 20.5 | 4.7 | 75.0 | 1.5 | 16.0 | 6.5 | 4.6 | 0.363 |
NaCl | 87.3 | 19.8 | 4.6 | 78.0 *** | 1.5 | 15.6 | 6.4 | 4.6 | 0.132 *** | |
Dynamite(O) | Con. | 61.5 | 12.2 | 4.0 | 75.0 | 5.3 | 12.7 | 3.5 | 2.3 | 0.625 |
NaCl | 60.0 | 12.4 | 4.2 | 75.0 | 4.0 | 11.6 | 3.6 | 2.3 | 0.584 | |
Fenice(O) | Con. | 68.0 | 16.0 | 4.2 | 75.0 | 3.0 | 15.5 | 5.1 | 3.7 | 0.522 |
NaCl | 66.1 | 15.7 | 3.8 | 75.0 | 2.7 | 15.5 | 4.9 | 3.0 | 0.580 | |
Gerona(O) | Con. | 70.0 | 13.8 | 4.3 | 75.0 | 2.8 | 14.6 | 4.9 | 3.4 | 0.543 |
NaCl | 70.1 | 13.7 | 4.0 | 75.0 | 3.3 | 15.0 | 4.8 | 3.4 | 0.420 | |
Glendale(O) | Con. | 71.2 | 13.1 | 3.6 | 75.0 | 3.0 | 16.7 | 3.9 | 3.1 | 0.443 |
NaCl | 71.4 | 14.5 | 3.5 | 75.0 | 3.0 | 14.6 | 3.9 | 3.2 | 0.548 | |
Kayenta(O) | Con. | 95.0 | 18.7 | 3.9 | 79.0 | 3.3 | 20.2 | 6.5 | 4.2 | 0.451 |
NaCl | 88.2 | 19.1 | 4.0 | 82.0 ***, 1 | 2.3 | 17.7 | 5.6 | 3.9 | 0.268 ** | |
Lingerie(O) | Con. | 74.8 | 14.2 | 5.4 | 75.0 | 2.0 | 16.4 | 4.9 | 3.2 | 0.556 |
NaCl | 65.7 | 15.8 | 5.6 | 75.0 | 1.0 | 15.1 | 4.7 | 3.0 | 0.421 | |
Monteneu(O) | Con. | 70.7 | 14.5 | 3.9 | 79.0 | 4.8 | 12.6 | 4.3 | 2.7 | 0.598 |
NaCl | 66.9 | 12.7 | 3.8 | - | 0.0 ** | - | - | - | 0.295 *** | |
Patagonia(O) | Con. | 84.1 | 14.4 | 4.4 | 75.0 | 1.8 | 12.3 | 5.5 | 3.7 | 0.678 |
NaCl | 81.4 | 14.0 | 4.5 | 75.0 | 1.5 | 12.6 | 5.5 | 4.0 | 0.586 * | |
Seine(O) | Con. | 65.7 | 14.9 | 4.0 | 82.0 | 5.5 | 14.7 | 4.4 | 3.5 | 0.496 |
NaCl | 50.1 | 11.5 ** | 3.6 | - | 0.0 *** | - | - | - | 0.200 ** | |
Siberia(O) | Con. | 81.5 | 18.2 | 4.2 | 79.0 | 3.5 | 14.5 | 4.1 | 2.9 | 0.542 |
NaCl | 66.3 * | 15.5 | 3.8 | 86.0 *** | 2.7 | 12.8 | 3.6 | 2.3 | 0.287 ** | |
Universe(O) | Con. | 74.5 | 18.7 | 3.4 | 75.0 | 4.8 | 16.3 | 3.8 | 2.7 | 0.584 |
NaCl | 76.3 | 17.5 | 3.5 | 78.0 *** | 3.3 | 16.7 | 3.8 | 2.8 | 0.467 ** | |
X Factor(O) | Con. | 77.3 | 15.7 | 3.3 | 75.0 | 3.0 | 16.7 | 4.2 | 3.0 | 0.591 |
NaCl | 71.8 | 14.1 | 2.9 | 78.0 *** | 3.0 | 15.0 | 3.8 | 2.7 | 0.465 ** | |
Palazzo(OT) | Con. | 93.0 | 19.4 | 4.7 | 58.0 | 2.3 | 20.0 | 6.0 | 4.1 | 0.469 |
NaCl | 86.7 | 18.5 | 4.2 | 62.0 *** | 2.3 | 18.4 | 5.4 ** | 4.1 | 0.151 *** | |
Pink Mist(OT) | Con. | 91.8 | 19.3 | 3.7 | 69.0 | 4.7 | 14.7 | 4.5 | 3.6 | 0.640 |
NaCl | 82.2 * | 18.9 | 4.0 | 65.0 *** | 4.5 | 14.5 | 4.5 | 3.7 | 0.277 ** | |
Sensi(OT) | Con. | 110.6 | 19.7 | 3.2 | 69.0 | 3.5 | 17.7 | 3.9 | 3.2 | 0.563 |
NaCl | 97.1 | 19.7 | 3.2 | 65.0 *** | 3.5 | 15.1 | 3.7 | 3.3 | 0.457 * | |
Stentor(OT) | Con. | 90.2 | 17.7 | 3.6 | 69.0 | 2.5 | 15.2 | 5.4 | 4.1 | 0.535 |
NaCl | 75.4 | 17.4 | 3.7 | 69.0 | 1.5 * | 13.2 | 5.9 | 4.1 | 0.533 | |
Zambesi(OT) | Con. | 91.6 | 17.5 | 4.5 | 65.0 | 1.5 | 17.3 | 5.3 | 4.5 | 0.572 |
NaCl | 65.9 ** | 16.1 * | 4.0 * | 69.0 *** | 1.3 | 14.6 | 4.4 * | 3.9 | 0.333 * |
Trait | PC1 | PC 2 | PC 3 | PC 4 | PC 5 |
---|---|---|---|---|---|
Plant height | 0.16 | 0.47 | 0.49 | 0.69 | 0.17 |
Middle leaf length | 0.29 | 0.41 | −0.14 | −0.04 | −0.85 |
Middle leaf width | 0.17 | 0.48 | 0.39 | −0.70 | 0.26 |
Days to flowering | 0.40 | −0.24 | −0.01 | −0.01 | 0.09 |
No. of flowers per plant | 0.39 | −0.25 | 0.03 | 0.12 | −0.05 |
No. of flowers per plant | 0.41 | −0.16 | 0.05 | 0.02 | 0.13 |
Petal width | 0.41 | −0.12 | −0.08 | −0.06 | 0.11 |
Sepal width | 0.42 | −0.10 | 0.08 | −0.04 | −0.01 |
Fv/Fm | 0.17 | 0.47 | −0.76 | 0.11 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.-I.; Choi, Y.J.; Lee, Y.R.; Seo, K.H.; Suh, J.-N.; Lee, H.-R. Cut Flower Characteristics and Growth Traits under Salt Stress in Lily Cultivars. Plants 2021, 10, 1435. https://doi.org/10.3390/plants10071435
Kang Y-I, Choi YJ, Lee YR, Seo KH, Suh J-N, Lee H-R. Cut Flower Characteristics and Growth Traits under Salt Stress in Lily Cultivars. Plants. 2021; 10(7):1435. https://doi.org/10.3390/plants10071435
Chicago/Turabian StyleKang, Yun-Im, Youn Jung Choi, Young Ran Lee, Kyung Hye Seo, Jung-Nam Suh, and Hye-Rim Lee. 2021. "Cut Flower Characteristics and Growth Traits under Salt Stress in Lily Cultivars" Plants 10, no. 7: 1435. https://doi.org/10.3390/plants10071435
APA StyleKang, Y. -I., Choi, Y. J., Lee, Y. R., Seo, K. H., Suh, J. -N., & Lee, H. -R. (2021). Cut Flower Characteristics and Growth Traits under Salt Stress in Lily Cultivars. Plants, 10(7), 1435. https://doi.org/10.3390/plants10071435