Evaluation of the Antidiabetic Potential of Extracts of Urtica dioica, Apium graveolens, and Zingiber officinale in Mice, Zebrafish, and Pancreatic β-Cell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Collection
2.3. Preparation of Extracts
2.4. Identification of Phytochemicals
2.5. Determination of Flavonoid Content
2.6. Experimental Mice
2.6.1. Induction of Diabetes in Mice
2.6.2. Experimental Design Mice
2.6.3. Serum Biochemical Analysis
2.7. Cell Culture
2.7.1. Measure of Cell Viability
2.7.2. Insulin Secretion Stimulated by Glucose in RINm5F Cells
2.7.3. Lipid Peroxidation (LPO) in RINm5F Cells
2.7.4. Measurement of Intracellular Reactive Oxygen Species (ROS) Level in RINm5F Cells
2.8. Experimental Zebrafish
2.8.1. Induction of Diabetes in Zebrafish
2.8.2. Experimental Design in Zebrafish
2.8.3. Effect of UAZ on Liver Enzymes and Thiobarbituric Reactive Species (TBARS) of Zebrafish
2.8.4. Effect of UAZ on Levels of Glucose, Total Cholesterol, and Triglycerides in Serum in Zebrafish
2.9. Statistical Analysis
3. Results
3.1. Phytochemicals
3.2. Plasma Glucose, Insulin, and Haemoglobin (HbA1c) in Mice
3.3. Effects of U, A, and Z Extracts and Their Combination (UZA) on Carbohydrate Metabolic Enzymes in Mice
3.4. Effects of U, A, and Z Extracts and Their Combination (UAZ) on Serum Lipid Profile in Mice
3.5. Liver Toxicity Markers, ALP, AST, ALT, Lipid Peroxidation (LPO), and Lipid Hydroperoxides (LOOH) Levels in the Mice Serum
3.6. Antioxidant Enzymes SOD, CAT, and Non-Enzymatic GSH in the Mice Liver
3.7. Polyherbal Formulation Effect on the Viability, ROS, LPO, and Stimulated Insulin Secretion of Pancreatic β Cells Exposed to High Glucose
3.8. Glucose Levels and Liver Enzymes in Zebrafish
3.9. Hypolipidemic Effect in Zebrafish
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation; World Health Organization: Geneva, Switherland, 2006; pp. 1–50. [Google Scholar]
- Sharabi, K.; Lin, H.; Tavares, C.D.J.; Dominy, J.E.; Camporez, J.P.; Perry, R.J.; Schilling, R.; Rines, A.K.; Lee, J.; Hickey, M. Selective chemical inhibition of PGC-1α gluconeogenic activity ameliorates type 2 diabetes. Cell 2017, 169, 148–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capiotti, K.M.; Junior, R.A.; Kist, L.W.; Bogo, M.R.; Bonan, C.D.; Da Silva, R.C. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2014, 171, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, M.A.; Hocht, C.; Puyo, A.; Taira, C.A. Recent advances in obesity pharmacotherapy. Curr. Clin. Pharm. 2009, 4, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, S.; Thing, G.S.; Dhanaraj, S.A. Polyherbal formulation: Concept of ayurveda. Pharmacog. Rev. 2014, 8, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Petlevski, R.; Hadzij, M.; Slijepcevic, M.; Juretic, D. Effect of ‘antidiabetis’ herbal preparation on serum glucose and fructosamine in NOD mice. J. Ethnopharmacol. 2001, 75, 181–184. [Google Scholar] [CrossRef]
- Alshathly, R.M. Efficacy of ginger (Zingiber officinale) in ameliorating streptozotocin-induced diabetic liver injury in rats: Histological and biochemical studies. J. Microsc. Ultrastruct. 2019, 7, 91–101. [Google Scholar] [CrossRef]
- Fang-yan, H.; Deng, T.; Meng, L.; Ma, X. Dietary ginger as a traditional therapy for blood sugar control in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Medicine 2019, 98, e15054. [Google Scholar] [CrossRef]
- Salehi, B.; Venditti, A.; Frezza, C.; Yücetepe, A.; Altuntas, U.; Uluata, S.; Butnariu, M.; Sarac, I.; Shaheen, S.; Petropoulos, S.A.; et al. Apium plants: Beyond simple food and phytopharmacological applications. J. Appl. Sci. 2019, 9, 3547. [Google Scholar] [CrossRef] [Green Version]
- Masiello, P.; Broca, C.; Gross, R.; Roye, M.; Manteghetti, M.; Hillaire-Buys, D. Experimental NIDDM: Development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 1998, 47, 224–229. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Jiang, A.C.; Woollard, S.P. Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids 1991, 26, 853–856. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.D.; Islam, M.S. Fructose-fed streptozotocin-injected rat: An alternative model for type 2 diabetes. Pharmacol. Rep. 2012, 64, 129–139. [Google Scholar] [CrossRef]
- Park, M.H.; Han, J.S. Phloroglucinol protects INS-1 pancreatic β-cells against glucotoxicity-induced apoptosis. Phytother. Res. 2015, 29, 1700–1706. [Google Scholar] [CrossRef]
- Benchoula, K.; Khatib, A.; Quzwain, F.M.C.; Mohamad, C.A.; Sulaiman, W.M.A.; Wahab, A.R.; Ahmed, Q.U.; Ghafar, A.M.; Saiman, M.Z.; Alajmi, M.F.; et al. Optimization of hyperglycemic induction in zebrafish and evaluation of its blood glucose level and metabolite fingerprint treated with Psychotria malayana Jack Leaf Extract. Molecules 2019, 17, 1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lushchak, V.I.; Bagnyukova, T.V.; Husak, V.V.; Luzhna, L.I.; Lushchak, V.; Storey, K.B. Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int. J. Biochem. Cell Biol. 2005, 37, 1670–1680. [Google Scholar] [CrossRef] [PubMed]
- Amor, A.J.; Gómez-Guerrero, C.; Ortega, E.; Sala-Vila, A.; Lázaro, I. Ellagic acid as a tool to limit the diabetes burden: Updated evidence. Antioxidants 2020, 9, 1226. [Google Scholar] [CrossRef]
- Wang, H.; Sun, X.; Zhang, N.; Ji, Z.; Ma, Z.; Fu, Q.; Ma, S. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway. Physiol. Behavior. 2017, 182, 93–100. [Google Scholar] [CrossRef]
- Adisakwattana, S. Cinnamic acid and its derivatives: Mechanisms for prevention and management of diabetes and its complications. Nutrients 2017, 9, 163. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Moneim, A.; El-Twab, S.M.A.; Yousef, A.I.; Reheim, E.S.A.; Ashour, M.B. Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p-coumaric acid: The role of adipocytokines and PPARgamma. Biomed. Pharmacother. 2018, 105, 1091–1097. [Google Scholar] [CrossRef]
- Yongwang, Y.; Zhou, X.; Guo, K.; Zhou, F.; Yang, H. Use of chlorogenic acid against diabetes mellitus and its complications. J. Immunol. Res. 2020, 2020, 9680508. [Google Scholar] [CrossRef]
- Muthukumaran, J.; Srinivasan, S.; Venkatesan, R.S.; Ramachandran, V.; Muruganathan, U. Syringic acid, a novel natural phenolic acid, normalizes hyperglycemia with special reference to glycoprotein components in experimental diabetic rats. J. Acute Dis. 2013, 2, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.; Swi-Bea, J.; Chen, W.C.; Kuo, P.; Chien, H.; Wang, Y.; Shen, S. Protective effect of vanillic acid against hyperinsulinemia, hyperglycemia and hyperlipidemia via alleviating hepatic insulin resistance and inflammation in high-fat diet (HFD)-Fed Rats. Nutrients 2015, 7, 9946–9959. [Google Scholar] [CrossRef] [Green Version]
- Alkhalidy, H.; Moore, W.; Wang, A.; Luo, J.; McMillan, R.P.; Wang, Y.; Zhen, W.; Hulver, M.; Liu, D. Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. J. Nutr. Biochem. 2018, 58, 90–101. [Google Scholar] [CrossRef]
- Chen, F.; Wei, G.; Xu, J.; Ma, X.; Wang, Q. Naringin ameliorates the high glucose- induced rat mesangial cell inflammatory reaction by modulating the NLRP3 Inflammasome. BMC Complement. Altern. Med. 2018, 18, 192. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Zhang, J.; Qin, M.; Yi, W.; Yu, S.; Chen, Y.; Guan, J.; Zhang, Y. Amelioration of streptozotocin-induced streptozotocin-induced pancreatic β cell damage by morin: Involvement of the AMPK-FOXO3-catalase signaling pathway. Int. J. Mol. Med. 2018, 41, 1409–1418. [Google Scholar] [CrossRef] [PubMed]
- Gan, Q.; Wang, J.; Hu, J.; Lou, G.; Xiong, H.; Peng, C.; Zheng, S.; Huang, Q. The role of diosgenin in diabetes and diabetic complications. J. Steroid Biochem. Mol. Biol. 2020, 198, 105575. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, K.M.; Vanitha, P.; Uma, C.; Suganya, N.; Bhakkiyalakshmi, E.; Sujatha, J. Antidiabetic activity of al coholic stem extract of Gymnema montanum in streptozotocin-induced diabetic rats. Food Chem. Toxicol. 2011, 49, 3390–3394. [Google Scholar] [CrossRef]
- Gao, T.; Jiao, Y.; Liu, Y.; Li, T.; Wang, Z.; Wang, D. Protective Effects of Konjac and Inulin Extracts on Type 1 and Type 2 Diabetes. J. Diabetes Res. 2019, 7, 3872182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huebschmann, A.G.; Regensteiner, J.G.; Vlassara, H.; Reusch, J.E. Diabetes and advanced glycoxidation end products. Diabetes Care 2006, 29, 1420–1432. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liew, C.W.; Handy, D.E.; Zhang, Y.; Leopold, J.A.; Hu, J.; Guo, L.; Kulkarni, R.N.; Loscalzo, J.; Stanton, R.C. High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis. J. Fed. Amer. Soc. Exper. Biol. 2010, 24, 1497–1505. [Google Scholar]
- Alemzadeh, R.; Holshouser, S.; Massey, P.; Koontz, J. Chronic suppression of insulin by diazoxide alters the activities of key enzymes regulating hepatic gluconeogenesis in Zucker rats. Eur. J. Endocrinol. 2002, 146, 871–879. [Google Scholar] [CrossRef] [Green Version]
- Aljamal, J.A.; Badawneh, M.J. In vitro inhibition of human erythrocyte hexokinase by various hyperglycemic drugs. Biochem. Mol. Toxicol. 2017, 31. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, D.; Qin, L.; Yang, X.; Gao, C. Comparative investigation for hypoglycemic effects of polysac charides from four substitutes of Lonicera japonica in Chinese medicine. Int. J. Biol. Macromol. 2018, 109, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Saggu, S.; Sakeran, M.I.; Zidan, N.; Tousson, E.M.; Rehman, H. Ameliorating effect of chicory (Chichorium intybus L.) fruit extract against 4-tert-octylphenol induced liver injury and oxidative stress in male rats. Food Chem. Toxicol. 2014, 72, 138–146. [Google Scholar] [CrossRef]
- Sharifudin, S.A.; Fakurazi, S.; Hidayat, M.T.; Hairuszah, I.; Moklas, A.M.; Arulselvan, P. Therapeutic potential of Moringa oleifera extracts against acetaminophen induced hepatotoxicity in rats. Pharm. Biol. 2012, 51, 279–288. [Google Scholar] [CrossRef] [Green Version]
- McCarty, M.F. A chlorogenic acid-induced increase in GLP-production may mediate the impact of heavy coffee consumption on diabetes risk. Med. Hypotheses 2005, 64, 848–853. [Google Scholar] [CrossRef]
- Ranawat, L.; Bhatt, J.; Patel, J. Hepatoprotective activity of ethanolic extracts of bark of Zanthoxylum armatum DC in CCl4 induced hepatic damage in rats. J. Ethnopharmacol. 2010, 127, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Onyema, O.O.; Farombi, O.E.; Emerole, G.O.; Ukoha, A.I.; Onyeze, G.O. Effect of vitamin E on monosodium glutamate induced hepatotoxicity and oxidative stress in rats. Indian J. Biochem. Biophys. 2006, 43, 20–24. [Google Scholar] [PubMed]
- Park, C.M.; Kim, K.T.; Rhyu, D.Y. Low-concentration exposure to organochlorine pesticides (OCPs) in L6 myotubes and RIN-m5F pancreatic beta cells induces disorders glucose metabolism. Toxicol. In Vitro 2020, 65, 104767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic b-cell viability and insulin secretory function. Eur. J. Pharmacol. 2011, 670, 325–332. [Google Scholar] [CrossRef]
- Yousef, A.I.; Shawki, H.H.; El-Shahawy, A.A.; El-Twab, S.M.A.; Abdel-Moneim, A.; Oishi, H. Polydatin mitigates pancreatic beta-cell damage through its antioxidant activity. Biomed. Pharmacother. 2021, 133, 111027. [Google Scholar] [CrossRef]
- Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef] [PubMed]
U. dioica | |||
Total flavonoids RE/100 g 0.26 ± 0.007 | |||
Characterization | |||
Compound | RT min | λmax (nm) | [M+H]+ m/z |
Ellagic acid | 39.9 | 254, 368 | 302, 257, 249, 125 |
Ferulic acid | 33.5 | 235,322 | 193, 177, 148, 133 |
Isorhamnetin-3-O-rutinoside | 23.4 | 250, 268, 342 | 623, 471, 363, 447, 315, 271, 227, 150 |
Kaempferol-3-O-glucoside (astragalin) | 25.3 | 265, 346 | 447, 285, 256, 211, 151, 117 |
Myricetin | 26.2 | 208, 253, 368 | 369, 319, 193, 147, 133 |
Naringin | 28.5 | 227, 283 | 579, 459, 339, 271, 235, 151, 134 |
Quercetin-3-O-glucoside | 24.9 | 256, 344 | 465, 303, 300, 214, 154 |
Rutin | 32.1 | 254, 354 | 610, 509, 343, 302, 300, 271, 151 |
Z. officinale | |||
Total flavonoids RE/100 g 4.59 ± 0.97 | |||
Characterization | |||
Ferulic acid, naringenin, rutin | |||
trans-cinnamic acid | 22.6 | 203, 273 | 148, 141, 131, 03, 102, 91, 77 |
Epicatechin | 17.54 | 220, 280 | 291, 245, 212, 87, 151, 123, 109 |
Fisetin | 15.3 | 360 | 286, 285, 257, 163, 135 |
Gallic acid | 9.6 | 209, 266 | 170, 169, 153, 125 |
Kaempferol | 26.7 | 265, 365 | 287, 258, 213, 185, 183, 137, 121 |
Morin | 8.7 | 260, 360 | 303, 285, 229, 213, 177, 121 |
Quercetin | 42 | 258, 380 | 303, 286, 257, 229, 201, 165, 153, 137 |
Vanillic acid | 17.1 | 259, 252 | 312, 297, 282, 223, 193, 165, 126 |
A. graveolens | |||
Total flavonoids RE/100 g 0.824 ± 0.039 | |||
Characterization | |||
Compound | RT min | λmax (nm) | [M+H]+ m/z |
Ferulic acid, gallic acid, quercetin, rutin, vanillic acid | |||
Caffeic acid | 18.4 | 210, 240, 325 | 181, 163, 145, 135, 107 |
Chlorogenic acid | 14.6 | 325, 294, 216 | 353, 221,191, 161, 178, 134 |
p-Coumaric acid | 23.7 | 212, 283 | 165, 147, 133, 119, 91 |
Luteolin | 21 | 264, 356 | 285, 175, 167, 133 |
Syringic acid | 19.2 | 275 | 198, 183, 127 |
Group | First Day | Week 2 | Week 4 |
---|---|---|---|
Control | 90 ± 4.13 | 91 ± 3.78 | 89 ± 5.12 |
Diabetic Control | 279 ± 6.74 | 310 ± 9.47 | 350 ± 9.38 |
Diabetic + U | 285 ± 8.25 | 225 ± 5.38 a,b | 161.7 ± 3.41 a,b |
Diabetic + A | 275 ± 6.61 | 215 ± 7.09 a,b | 155.4 ± 2.52 a,b |
Diabetic + Z | 278 ± 7.40 | 200 ± 6.21 a,b | 145.6 ± 1.97 a,b |
Diabetic + UAZ | 271 ± 5.33 | 191 ± 4.88 b | 112 ± 4.88 b |
Diabetic + Mtf | 280 ± 4.98 | 186 ± 5.64 b | 90 ± 5.64 b |
Groups | Hexokinase (U*/g Protein) | Phosphofructokinase (mMol/min/mg Protein) | Fructose-1, 6-Bisphosphatase (U**/g Protein) | Glucose-6-Phosphatase (U*/g Protein) | Glucose-6-Phosphatase Dehydrogenase (X10−4 mIU/mg Protein) |
---|---|---|---|---|---|
Normal control | 107.16 ± 3.28 a | 29.43 ± 3.67 a | 0.386 ± 0.07 a | 0.136 ± 0.04 a | 3.710 ± 0.13 a |
Diabetic control | 67.23 ± 5.41 b | 20.97 ± 2.12 b | 0.642 ± 0.08 b | 0.281 ± 0.03 b | 2.689 ± 0.22 b |
Diabetic + U | 80.40 ± 4.98 c | 26.36 ± 1.98 c | 0.538 ± 0.09 d | 0.182 ± 0.04 d | 2.903 ± 0.45 c |
Diabetic + A | 89.35 ± 3.95 c | 27.10 ± 4.19 c | 0.476 ± 0.05 c | 0.175 ± 0.04 c | 2.981 ± 0.32 c |
Diabetic + Z | 91.65 ± 4.56 d | 28.17 ± 1.24 c | 0.435 ± 0.06 c | 0.168 ± 0.04 c | 3.124 ± 0.15 a |
Diabetic + UAZ | 101.87 ± 6.31 a | 32.25 ± 3.28 a | 0.397 ± 0.05 a | 0.151 ± 0.06 a | 3.372 ± 0.38 a |
Diabetic + Mtf | 98.54 ± 4.87 d | 30.12 ± 3.28 a | 0.400 ± 0.02 a | 0.159 ± 0.07 a | 3.418 ± 0.45 a |
Groups | TG (mmol/L) | TC (mmol/L) | LDL-C (mmol/L) | HDL-C (mmol/L) |
---|---|---|---|---|
Normal control | 1.8 ± 0.4 | 1.7 ± 0.3 | 0.47 ± 0.13 | 0.78 ± 0.07 |
Diabetic control | 3.4 ± 0.3 a | 3.3 ± 0. 4 a | 1.67 ± 0.12 a | 0.69 ± 0.05 a |
Diabetic + U | 2.6 ± 0.1 d | 2.8 ± 0.2 b | 0.98 ± 0.10 d | 0.72 ± 0.01 b |
Diabetic + A | 2.4 ± 0.3 b | 2.5 ± 0.3 b | 0.87 ± 0.09 b | 0.74 ± 0.06 b |
Diabetic + Z | 2.1 ± 0.2 b | 2.0 ± 0.2 c | 0.72 ± 0.13 b | 0.76 ± 0.03 c |
Diabetic + UAZ | 1.7 ± 0.4 c | 1.7 ± 0.3 d | 0.48± 0.11 c | 0.78± 0.01 c |
Diabetic + Mtf | 1.8 ± 0.2 c | 1.8 ± 0.2 d | 0.49± 0.10 c | 0.79± 0.04 c |
Groups | Serum Liver | |||
---|---|---|---|---|
LOOH (1 × 10−5 mmol/dL) | SOD (U/mg Protein) | CAT (U/mg Protein) | GSH (mg/g Protein) | |
Normal control | 10.4 ± 0.9 | 285.1 ± 8.96 | 90.1 ± 6.41 | 10.9 ± 1.34 |
Diabetic control | 15.9 ± 1.1 a | 157.2 ± 7.66 a | 32.4 ± 2.85 a | 4.8 ± 0.87 a |
Diabetic + U | 12.2 ± 1.8 c | 180.4 ± 9.32 b | 64.8 ± 5.12 b | 5.64 ± 1.56 c |
Diabetic + A | 11.36 ± 2.3 d | 201.6 ± 6.85 d | 70.1 ± 3.56 c | 6.12 ± 0.87 d |
Diabetic + Z | 10.52 ± 1.6 d | 220.3 ± 8.63 d | 74.5 ± 4.89 d | 6.48 ± 0.99 d |
Diabetic + UAZ | 9.76 ± 0.7 c | 281.3 ± 10.0 c | 87.1 ± 4.61 e | 8.12 ± 1.10 e |
Diabetic + Mtf | 9.78 ± 1.5 c | 279.4 ± 9.21 c | 85.2 ± 2.16 e | 6.99 ± 0.87 d |
Groups | Serum | Liver | ||||
---|---|---|---|---|---|---|
Glucose mg/dL | TG (mmol/L) | TC (mmol/L) | ALP (IU/L) | ALT (IU/L) | AST (IU/L) | |
Normal control | 60 ± 2.3 | 1.6 ± 0.01 | 2.6 ± 0.04 | 0.05 ± 0.003 | 115 ± 5.36 | 36.2 ± 2.04 |
Diabetic control | 187 ± 5.4 a | 4.3 ± 0.03 a | 5.1 ± 0.08 a | 0.34 ± 0.004 a | 243 ± 7.21 a | 49.6 ± 3.42 a |
Diabetic + U | 80 ± 3.6 c | 2.0 ± 0.02 c | 4.0 ± 0.06 b | 0.16 ± 0.001 b | 205 ± 6.48 c | 40.5 ± 1.56 b |
Diabetic + A | 75 ± 5.5 d | 1.9 ± 0.04 b | 3.5 ± 0.07 c | 0.13 ± 0.003 c | 200 ± 7.36 d | 36.1 ± 2.50 c |
Diabetic + Z | 70 ± 2.8 d | 1.7 ± 0.03 b | 3.2 ± 0.02 c | 0.10 ± 0.005 d | 196 ± 4.94 b | 34.7 ± 1.83 c |
Diabetic + UAZ | 64 ± 4.3 b | 1.4 ± 0.02 d | 2.9 ± 0.01 d | 0.07 ± 0.002 e | 185 ± 4.76 e | 30.5 ± 2.57 d |
Diabetic + Mtf | 62 ± 3.6 b | 1.4 ± 0.0.4 d | 3.0 ± 0.04 c | 0.06 ± 0.003 e | 199 ± 5.28 b | 28.5 ± 1.90 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez Gutiérrez, R.M.; Muñiz-Ramirez, A.; Garcia-Campoy, A.H.; Mota Flores, J.M. Evaluation of the Antidiabetic Potential of Extracts of Urtica dioica, Apium graveolens, and Zingiber officinale in Mice, Zebrafish, and Pancreatic β-Cell. Plants 2021, 10, 1438. https://doi.org/10.3390/plants10071438
Pérez Gutiérrez RM, Muñiz-Ramirez A, Garcia-Campoy AH, Mota Flores JM. Evaluation of the Antidiabetic Potential of Extracts of Urtica dioica, Apium graveolens, and Zingiber officinale in Mice, Zebrafish, and Pancreatic β-Cell. Plants. 2021; 10(7):1438. https://doi.org/10.3390/plants10071438
Chicago/Turabian StylePérez Gutiérrez, Rosa Martha, Alethia Muñiz-Ramirez, Abraham Heriberto Garcia-Campoy, and José María Mota Flores. 2021. "Evaluation of the Antidiabetic Potential of Extracts of Urtica dioica, Apium graveolens, and Zingiber officinale in Mice, Zebrafish, and Pancreatic β-Cell" Plants 10, no. 7: 1438. https://doi.org/10.3390/plants10071438
APA StylePérez Gutiérrez, R. M., Muñiz-Ramirez, A., Garcia-Campoy, A. H., & Mota Flores, J. M. (2021). Evaluation of the Antidiabetic Potential of Extracts of Urtica dioica, Apium graveolens, and Zingiber officinale in Mice, Zebrafish, and Pancreatic β-Cell. Plants, 10(7), 1438. https://doi.org/10.3390/plants10071438