Effect of Mineral and Organic Fertilization on desi and kabuli Chickpea (Cicer arietinum L.): Plant Growth and Production, Hydration Properties, Bioactive Compounds, and Antioxidant Activity
Abstract
:1. Introduction
2. Results
Fertilization Type | Plant Height | Shoot Dry Biomass | Seed Yield | 100 Seed Weight |
---|---|---|---|---|
(cm) | (Mg ha−1) | (Mg ha−1) | g | |
Desi (cv. Senise) | ||||
Co | 72.67 ± 2.23 cdef | 3.01 ± 0.16 e | 1.22 ± 0.15 bcde | 24.15 ± 0.52 c |
M1 | 79.34 ± 2.12 abcd | 3.75 ± 0.26 a | 1.38 ± 0.21 ab | 25.28 ± 0.23 c |
M2 | 77.00 ± 3.25 abcde | 3.68 ± 0.21 ab | 1.39 ± 0.19 a | 24.50 ± 0.31 c |
B1 | 83.00 ± 5.70 a | 3.16 ± 0.34 cde | 1.30 ± 0.22 abcd | 24.47 ± 0.22 c |
B2 | 82.00 ± 3.86 abc | 3.29 ± 0.28 cde | 1.32 ± 0.18 abc | 24.58 ± 0.21 c |
B3 | 82.33 ± 2.39 ab | 3.35 ± 0.49 bcde | 1.35 ± 0.34 abc | 24.85 ± 0.28 c |
Kabuli (cv. Sultano) | ||||
Co | 64.34 ± 1.29 f | 2.64 ± 0.28f | 0.97 ± 0.12 f | 28.41 ± 0.18 b |
M1 | 72.00 ± 3.21 def | 3.39 ± 0.21 abcd | 1.27 ± 0.22 abcde | 31.14 ± 0.57 ab |
M2 | 67.00 ± 1.45 f | 3.49 ± 0.34 abc | 1.25 ± 0.32 cde | 32.04 ± 0.62 a |
B1 | 68.00 ± 2.24 ef | 3.11 ± 0.29 de | 1.09 ± 0.11 ef | 32.51 ± 0.74 a |
B2 | 68.34 ± 2.39 ef | 3.20 ± 0.32 cde | 1.11 ± 0.14 de | 31.37 ± 0.42 ab |
B3 | 73.00 ± 2.40 bcdef | 3.01 ± 0.25 e | 1.12 ± 0.16 de | 31.19 ± 0.29 ab |
p-value T*V | 0.285 | 0.115 | 0.721 | 0.066 |
Desi | 79.39 ± 4.78 a | 3.37 ± 0.29 a | 1.33 ± 0.06 a | 24.65 ± 0.47 b |
Kabuli | 68.83 ± 3.81 b | 3.14 ± 0.31 b | 1.13 ± 0.11 b | 31.11 ± 1.81 a |
p-value V | <0.001 | <0.001 | <0.001 | <0.001 |
Co | 68.50 ± 4.68 c | 2.82 ± 0.21 c | 1.09 ± 0.15 c | 26.28 ± 2.34 b |
M1 | 75.67 ± 4.76 ab | 3.57 ± 0.23 a | 1.31 ± 0.09 a | 28.21 ± 3.30 a |
M2 | 72.00 ± 5.76 bc | 3.59 ± 0.16 a | 1.29 ± 0.12 ab | 28.29 ± 4.22 a |
B1 | 75.5 ± 9.14 ab | 3.13 ± 0.05 b | 1.19 ± 0.12 b | 28.49 ± 4.46 a |
B2 | 75.33 ± 7.50 ab | 3.25 ± 0.17 b | 1.24 ± 0.11 ab | 27.97 ± 3.94 ab |
B3 | 77.67 ± 6.68 a | 3.18 ± 0.22 b | 1.24 ± 0.12 ab | 28.02 ± 3.69 ab |
p-value T | 0.001 | <0.001 | <0.001 | 0.016 |
Treatment | Biovegetal (Mg ha−1) | N (kg ha−1) | P2O5 (kg ha−1) | K2O (kg ha−1) |
---|---|---|---|---|
Co | 0 | 0 | 0 | 0 |
M1 | 0 | 30 (urea) | 80 (simple superphosphate) | 100 (potassium sulfate) |
M2 | 0 | 30 (urea) | 40 (simple superphosphate) | 100 (potassium sulfate) |
B1 | 10 | 160.0 | 68.8 | 112.0 |
B2 | 15 | 240.0 | 109.0 | 168.0 |
B3 | 20 | 320.0 | 137.6 | 224.0 |
3. Discussion
4. Materials and Methods
4.1. Plant Cultivation and Experimental Trials
4.2. Hydration Properties of Chickpea Seeds
4.3. Chickpea Milling
4.4. Moisture Content Determination
4.5. Determination of Total Phenolic Compounds
4.6. Determination of Total Anthocyanin Compounds
4.7. Determination of Antioxidant Activity
4.8. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Data of Crops Production (2019). 2019. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 11 June 2021).
- Wood, J.A.; Knights, E.J.; Choct, M. Morphology of chickpea seeds (Cicer arietinum L.): Comparison of desi and kabuli types. Int. J. Plant Sci. 2011, 172, 632–643. [Google Scholar] [CrossRef]
- Pavan, S.; Lotti, C.; Marcotrigiano, A.R.; Mazzeo, R.; Bardaro, N.; Bracuto, V.; Ricciardi, F.; Taranto, F.; D’Agostino, N.; Schiavulli, A.; et al. A Distinct Genetic Cluster in Cultivated Chickpea as Revealed by Genome-wide Marker Discovery and Genotyping. Plant Genome 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- De Giovanni, C.; Pavan, S.; Taranto, F.; Di Rienzo, V.; Miazzi, M.M.; Marcotrigiano, A.R.; Mangini, G.; Montemurro, C.; Ricciardi, L.; Lotti, C. Genetic variation of a global germplasm collection of chickpea (Cicer arietinum L.) including Italian accessions at risk of genetic erosion. Physiol. Mol. Biol. Plants 2021, 23, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Summo, C.; De Angelis, D.; Rochette, I.; Mouquet-Rivier, C.; Pasqualone, A. Influence of the preparation process on the chemical composition and nutritional value of canned purée of kabuli and Apulian black chickpeas. Heliyon 2019, 5, e01361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasqualone, A.; De Angelis, D.; Squeo, G.; Difonzo, G.; Caponio, F.; Summo, C. The Effect of the Addition of Apulian black Chickpea Flour on the Nutritional and Qualitative Properties of Durum Wheat-Based Bakery Products. Foods 2019, 8, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pasquale, I.; Verni, M.; Verardo, V.; Gómez-Caravaca, A.M.; Rizzello, C.G. Nutritional and Functional Advantages of the Use of Fermented Black Chickpea Flour for Semolina-Pasta Fortification. Foods 2021, 10, 182. [Google Scholar] [CrossRef]
- Kaur, R.; Prasad, K. Technological, processing and nutritional aspects of chickpea (Cicer arietinum)—A review. Trends Food Sci. Technol. 2021, 109, 448–463. [Google Scholar] [CrossRef]
- Bhagyawant, S.S.; Narvekar, D.T.; Gupta, N.; Bhadkaria, A.; Gautam, A.K.; Srivastava, N. Chickpea (Cicer arietinum L.) Lectin Exhibit Inhibition of ACE-I, α-amylase and α-glucosidase Activity. Protein Pept. Lett. 2019, 26, 494–501. [Google Scholar] [CrossRef]
- Winham, D.M.; Hutchins, A.M.; Thompson, S.V. Glycemic response to black beans and chickpeas as part of a rice meal: A randomized cross-over trial. Nutrients 2017, 9, 1095. [Google Scholar] [CrossRef] [Green Version]
- Aisa, H.A.; Gao, Y.; Yili, A.; Ma, Q.; Cheng, Z. Beneficial Role of Chickpea (Cicer arietinum L.) Functional Factors in the Intervention of Metabolic Syndrome and Diabetes Mellitus. In Bioactive Food as Dietary Interventions for Diabetes; Academic Press: Cambridge, MA, USA, 2019; pp. 615–662. [Google Scholar]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108, S11–S26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summo, C.; De Angelis, D.; Ricciardi, L.; Caponio, F.; Lotti, C.; Pavan, S.; Pasqualone, A. Data on the chemical composition, bioactive compounds, fatty acid composition, physico-chemical and functional properties of a global chickpea collection. Data Brief 2019, 27, 104612. [Google Scholar] [CrossRef] [PubMed]
- Centrone, M.; Gena, P.; Ranieri, M.; Di Mise, A.; D’agostino, M.; Mastrodonato, M.; Venneri, M.; De Angelis, D.; Pavan, S.; Pasqualone, A.; et al. In vitro and in vivo nutraceutical characterization of two chickpea accessions: Differential effects on hepatic lipid over-accumulation. Antioxidants 2020, 9, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costantini, M.; Summo, C.; Centrone, M.; Rybicka, I.; D’agostino, M.; Annicchiarico, P.; Caponio, F.; Pavan, S.; Tamma, G.; Pasqualone, A. Macro-and Micro-Nutrient Composition and Antioxidant Activity of Chickpea and Pea Accessions. Pol. J. Food Nutr. Sci. 2021, 71, 2083–6007. [Google Scholar] [CrossRef]
- Chala, G.; Obsa, Z. Effect of Organic and Inorganic Fertilizers on Growth, Yield and Yield Components of Chick Pea (Cicer arietinum) and Enhancing Soil Chemical Properties on Vertisols at Ginchi, Central Highlands of Ethiopia. J. Biol. Agric. Healthc. 2017, 7, 28–34. [Google Scholar]
- McKenzie, B.A.; Hill, G.D. Growth and yield of two chickpea (Cicer arietinum L.) varieties in Canterbury, New Zealand. N. Z. J. Crop. Hortic. Sci. 1995, 23, 467–474. [Google Scholar] [CrossRef]
- Namvar, A.; Sharifi, R.S. Phenological and morphological response of chickpea (Cicer arietinum L.) to symbiotic and mineral nitrogen fertilization. Žemdirbystė 2011, 98, 121–130. [Google Scholar]
- Namvar, A.; Sharifi, R.S.; Khandan, T. Growth analysis and yield of chickpea (Cicer arietinum L.) in relation to organic and inorganic nitrogen fertilization. Ekologija 2011, 57, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Namvar, A.; Sharifi, R.S.; Sedghi, M.; Zakaria, R.A.; Khandan, T.; Eskandarpour, B. Study on the effects of organic and inorganic nitrogen fertilizer on yield, yield components, and nodulation state of Chickpea (Cicer arietinum L.). Commun. Soil Sci. Plant Anal. 2011, 42, 1097–1109. [Google Scholar] [CrossRef]
- Saleem, K.M.; Ali, K.A. Response of two Chickpea genotypes to different fertilizers composition and different application forms. Zanco J. Pure Appl. Sci. 2021, 33, 120–130. [Google Scholar] [CrossRef]
- Walley, F.L.; Boahen, S.K.; Hnatowich, G.; Stevenson, C. Nitrogen and phosphorus fertility management for desi and kabuli chickpea. Can. J. Plant Sci. 2005, 85, 73–79. [Google Scholar] [CrossRef]
- Namvar, A.; Sharifi, R.S.; Khandan, T.; Moghadam, M.J. Organic and Inorganic Nitrogen Fertilization Effects on Some Physiological and Agronomical Traits of Chickpea (Cicer arietinum L.) in Irrigated Condition. J. Cent. Eur. Agric. 2013, 14, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, A.S.; Abdelgani, M.E.; Osman, A.G. Effects of biological and mineral fertilization on yield, chemical composition and physical characteristics of chickpea (Cicer arietinum L.) seeds. Pakistan J. Nutr. 2013, 12, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Seleiman, M.F.; Abdelaal, M.S. Effect of Organic, Inorganic and Bio-fertilization on Growth, Yield and Quality Traits of Some Chickpea (Cicer arietinum L.) Varieties. Egypt. J. Agron. 2018, 40, 105–117. [Google Scholar] [CrossRef]
- Cucci, G.; Lacolla, G.; Mastro, M.A.; Caranfa, D.; Monteforte, A.; De Corato, U. Green compost influences yield and quality of carrots (Daucus carota L.) by enhancing root rot suppression to Sclerotinia sclerotiorum (Lib. de bary). Eur. J. Hortic. Sci. 2020, 85, 411–421. [Google Scholar] [CrossRef]
- De Corato, U.; Salimbeni, R.; De Pretis, A.; Patruno, L.; Avella, N.; Lacolla, G.; Cucci, G. Microbiota from ‘next-generation green compost’ improves suppressiveness of composted Municipal-Solid-Waste to soil-borne plant pathogens. Biol. Control. 2018, 124, 1–17. [Google Scholar] [CrossRef]
- Cucci, G.; Lacolla, G.; Caranfa, G. Use of composted olive waste as soil conditioner and its effects on the soil. Int. J. Agric. Res. 2013, 8, 149–157. [Google Scholar] [CrossRef] [Green Version]
- López-Bellido, F.J.; López-Bellido, R.J.; Khalil, S.K.; López-Bellido, L. Effect of planting date on winter Kabuli chickpea growth and yield under rainfed Mediterranean conditions. Agron. J. 2008, 100, 957–964. [Google Scholar] [CrossRef]
- Bicer, B.T. The effect of phosphorus doses on chickpea cultivars under rainfall conditions. Cercet. Agron. Mold. 2014, 47, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Korbu, L.; Tafes, B.; Kassa, G.; Mola, T.; Fikre, A. Unlocking the genetic potential of chickpea through improved crop management practices in Ethiopia. A review. Agron. Sustain. Dev. 2020, 40, 1–20. [Google Scholar] [CrossRef]
- Patanè, C.; Iacoponi, E.; Raccuia, S.A. Physico-chemical characteristics, water absorption, soaking and cooking properties of some Sicilian populations of chickpea (Cicer arietinum L.). Int. J. Food Sci. Nutr. 2004, 55, 547–554. [Google Scholar] [CrossRef]
- El-Hady, E.A.A.; Habiba, R.A. Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT Food Sci. Technol. 2003, 36, 285–293. [Google Scholar] [CrossRef]
- Khan, M.A.; Akhtar, N.; Ullah, I.; Jaffery, S. Nutritional evaluation of desi and kabuli chickpeas and their products commonly consumed in Pakistan. Int. J. Food Sci. Nutr. 1995, 46, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Olika, E.; Abera, S.; Fikre, A. Physicochemical properties and effect of processing methods on mineral composition and antinutritional factors of improved chickpea (Cicer arietinum L.) Varieties Grown in Ethiopia. Int. J. Food Sci. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Cucci, G.; Lacolla, G.; Summo, C.; Pasqualone, A. Effect of organic and mineral fertilization on faba bean (Vicia faba L.). Sci. Hortic. 2019, 243, 338–343. [Google Scholar] [CrossRef]
- Magalhães, S.C.Q.; Taveira, M.; Cabrita, A.R.J.; Fonseca, A.J.M.; Valentão, P.; Andrade, P.B. European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chem. 2017, 215, 177–184. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef]
- Sreerama, Y.N.; Sashikala, V.B.; Pratape, V.M. Variability in the distribution of phenolic compounds in milled fractions of chickpea and horse gram: Evaluation of their antioxidant properties. J. Agric. Food Chem. 2010, 58, 8322–8330. [Google Scholar] [CrossRef]
- Toğay, Y.; Toğay, N.; Çığ, F.; Akkoç, G. Determination of some quality criteria and nutrient contents of local black chickpea genotypes growth in different locations. Appl. Ecol. Environm. Res. 2019, 17, 10575–10585. [Google Scholar] [CrossRef]
- Chino, X.M.S.; Martínez, C.J.; Garzón, V.R.V.; González, I.Á.; Treviño, S.V.; Bujaidar, E.M.; Ortiz, G.D.; Hoyos, R.B. Cooked Chickpea Consumption Inhibits Colon Carcinogenesis in Mice Induced with Azoxymethane and Dextran Sulfate Sodium. J. Am. Coll. Nutr. 2017, 36, 391–398. [Google Scholar] [CrossRef]
- Monk, J.M.; Wu, W.; McGillis, L.H.; Wellings, H.R.; Hutchinson, A.L.; Liddle, D.M.; Graf, D.; Robinson, L.E.; Power, K.A. Chickpea supplementation prior to colitis onset reduces inflammation in dextran sodium sulfate-treated C57BL/6 male mice. Appl. Physiol. Nutr. Metab. 2018, 43, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Dadhich, A.; Bhardwaj, P.; Babu, J.N.; Kumar, V. Comparative analysis of metabolites in contrasting chickpea cultivars. J. Plant Biochem. Biotechnol. 2020, 29, 253–265. [Google Scholar] [CrossRef]
- Song, T.-H.; Han, O.-K.; Park, T.-I.; Kim, Y.-K.; Kim, K.-J.; Park, K.-H. Effect of Nitrogen Top Dressing Levels on Productivity, Feed Value, and Anthocyanin Content of Colored Barley. J. Korean Soc. Grassl. Forage Sci. 2012, 32, 149–156. [Google Scholar] [CrossRef]
- Bhasker, P.; Nandwal, A.S.; Kumar, N.; Chand, G.; Yadav, S.P.; Devi, S.; Singh, S. High Temperature Significance of Anthocyanins Accumulation Stress Responses in Chickpea (Cicer arietinum L.). Int. J. Agric. Innov. Res. 2018, 6, 2319–2473. [Google Scholar]
- Ahmed, N.U.; Park, J.I.; Jung, H.J.; Hur, Y.; Nou, I.S. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa. Funct. Integr. Genom. 2015, 15, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Cobbina, J.; Miller, M.H. Purpling in Maize Hybrids as Influenced by Temperature and Soil Phosphorus 1. Agron. J. 1987, 79, 576–582. [Google Scholar] [CrossRef]
- Hodges, D.M.; Nozzolillo, C. Anthocyanin and Anthocyanoplast Content of Cruciferous Seedlings Subjected to Mineral Nutrient Deficiencies. J. Plant Physiol. 1996, 147, 749–754. [Google Scholar] [CrossRef]
- Koh, K.; Youn, J.E.; Kim, H.S. Identification of anthocyanins in black soybean (Glycine max (L.) Merr.) varieties. J. Food Sci. Technol. 2014, 51, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Summo, C.; De Angelis, D.; Ricciardi, L.; Caponio, F.; Lotti, C.; Pavan, S.; Pasqualone, A. Nutritional, physico-chemical and functional characterization of a global chickpea collection. J. Food Compos. Anal. 2019, 84, 103306. [Google Scholar] [CrossRef]
- Violante, P. Metodi di Analisi Chimica del Suolo-Violante, P.-Libri; Franco Angeli Editore: Milan, Italy, 2000. (In Italian) [Google Scholar]
- ANPA–Agenzia Nazionale per la Protezione dell’Ambiente. Metodi di analisi del compost: Manuale e Linee Guida; ANPA: Rome, Italy, 2001; p. 130. (In Italian) [Google Scholar]
- Wood, J.A.; Harden, S. A method to estimate the hydration and swelling properties of chickpeas (Cicer arietinum L.). J. Food Sci. 2006, 71, E190–E195. [Google Scholar] [CrossRef]
- Pasqualone, A.; Delvecchio, L.N.; Mangini, G.; Taranto, F.; Blanco, A. Variability of total soluble phenolic compounds and antioxidant activity in a collection of tetraploid wheat. Agric. Food Sci. 2014, 23, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Pasqualone, A.; Makhlouf, F.Z.; Barkat, M.; Difonzo, G.; Summo, C.; Squeo, G.; Caponio, F. Effect of acorn flour on the physico-chemical and sensory properties of biscuits. Heliyon 2019, 5, e02242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fertilization Type | Hydration Capacity | Hydration Index | Swelling Capacity | Swelling Index |
---|---|---|---|---|
(g seed−1) | (mL seed−1) | |||
Desi (cv. Senise) | ||||
Co | 0.24 ± 0.01 d | 79.01 ± 1.00 d | 0.18 ± 0.01 f | 84.19 ± 2.01 f |
M1 | 0.29 ± 0.02 c | 86.79 ± 1.01 bc | 0.24 ± 0.02 de | 95.21 ± 1.95 cde |
M2 | 0.27 ± 0.01 cd | 85.88 ± 1.32 bc | 0.25 ± 0.01 cde | 94.50 ± 2.00 cde |
B1 | 0.28 ± 0.01 cd | 86.61 ± 2.10 bc | 0.26 ± 0.02 bcd | 91.78 ± 2.29 e |
B2 | 0.29 ± 0.02 c | 85.93 ± 0.73 bc | 0.24 ± 0.01 de | 94.52 ± 0.20 cde |
B3 | 0.30 ± 0.01 bc | 84.58 ± 1.49 c | 0.23 ± 0.01 de | 93.81 ± 0.65 de |
Kabuli (cv. Sultano) | ||||
Co | 0.27 ± 0.01 cd | 88.51 ± 1.36 b | 0.21 ± 0.02 ef | 91.93 ± 0.48 e |
M1 | 0.34 ± 0.02 ab | 96.92 ± 0.06 a | 0.27 ± 0.02 bcd | 98.12 ± 0.04 abc |
M2 | 0.36 ± 0.02 a | 97.83 ± 0.82 a | 0.29 ± 0.02 abc | 99.54 ± 0.17 ab |
B1 | 0.35 ± 0.01 a | 96.69 ± 0.54 a | 0.31 ± 0.01 a | 99.74 ± 0.11 ab |
B2 | 0.34 ± 0.02 ab | 95.92 ± 0.93 a | 0.30 ± 0.01 ab | 102.22 ± 2.35 a |
B3 | 0.36 ± 0.02 a | 97.55 ± 0.05 a | 0.27 ± 0.01 abcd | 97.80 ± 0.11 bcd |
p-value T*V | 0.059 | 0.076 | 0.352 | 0.012 |
Desi | 0.28 ± 0.02 b | 84.80 ± 2.99 b | 0.23 ± 0.03 b | 92.33 ± 4.16 b |
Kabuli | 0.34 ± 0.03 a | 95.57 ± 3.38 a | 0.27 ± 0.04 a | 98.22 ± 3.35 a |
p-value V | <0.001 | <0.001 | <0.001 | <0.001 |
Co | 0.26 ± 0.02 b | 83.76 ± 5.31 b | 0.20 ± 0.02 c | 88.06 ± 4.44 c |
M1 | 0.32 ± 0.03 a | 91.85 ± 5.59 a | 0.25 ± 0.02 b | 96.66 ± 2.02 ab |
M2 | 0.32 ± 0.05 a | 91.85 ± 6.62 a | 0.27 ± 0.03 ab | 97.02 ± 3.04 ab |
B1 | 0.32 ± 0.04 a | 91.65 ± 5.69 a | 0.29 ± 0.03 a | 95.76 ± 4.59 b |
B2 | 0.32 ± 0.03 a | 90.92 ± 5.52 a | 0.27 ± 0.03 ab | 98.37 ± 4.48 a |
B3 | 0.33 ± 0.04 a | 91.07 ± 7.17 a | 0.25 ± 0.02 b | 95.80 ± 2.22 b |
p-value T | <0.001 | <0.001 | <0.001 | <0.001 |
Sample | Total Phenolic Compounds (mg ferulic acid/g d.m.) | Total Anthocyanins (mg cyanidin 3-O-glucoside/kg d.m.) | Antioxidant Activity (μmol Trolox/g d.m.) |
---|---|---|---|
Desi (cv. Senise) | |||
Co | 1.33 ± 0.05 ab | 71.43 ± 1.08 b | 1.23 ± 0.04 a |
M1 | 1.25 ± 0.03 bc | 76.02 ± 8.24 ab | 1.13 ± 0.01 ab |
M2 | 1.30 ± 0.09 abc | 89.28 ± 11.93 a | 1.22 ± 0.06 a |
B1 | 1.32 ± 0.03 abc | 74.73 ± 9.77 ab | 1.22 ± 0.08 a |
B2 | 1.29 ± 0.01 abc | 70.87 ± 0.42 b | 1.16 ± 0.01 ab |
B3 | 1.23 ± 0.01 bc | 78.79 ± 1.30 ab | 1.23 ± 0.04 a |
Kabuli (cv. Sultano) | |||
Co | 1.38 ± 0.01 a | 12.21 ± 1.41 c | 1.10 ± 0.00 b |
M1 | 1.12 ± 0.00 de | 12.74 ± 1.51 c | 1.08 ± 0.06 b |
M2 | 1.31 ± 0.02 abc | 12.11 ± 0.53 c | 1.13 ± 0.03 ab |
B1 | 1.22 ± 0.01 cd | 12.57 ± 0.10 c | 1.12 ± 0.01 ab |
B2 | 1.32 ± 0.04 abc | 13.28 ± 1.14 c | 1.18 ± 0.03 ab |
B3 | 1.07 ± 0.02 e | 12.75 ± 1.38 c | 1.08 ± 0.01 b |
p-value T*V | <0.001 | 0.040 | 0.016 |
Desi | 1.29 ± 0.05 a | 76.85 ± 8.76 a | 1.20 ± 0.06 a |
Kabuli | 1.24 ± 0.12 b | 12.61 ± 1.03 b | 1.11 ± 0.04 b |
p-value V | <0.001 | <0.001 | <0.001 |
Co | 1.36 ± 0.04 a | 41.82 ± 32.46 | 1.16 ± 0.08 |
M1 | 1.19 ± 0.07 c | 44.38 ± 35.06 | 1.11 ± 0.05 |
M2 | 1.30 ± 0.06 ab | 50.70 ± 42.94 | 1.17 ± 0.07 |
B1 | 1.27 ± 0.06 b | 43.65 ± 34.60 | 1.17 ± 0.07 |
B2 | 1.31 ± 0.03 ab | 42.08 ± 31.56 | 1.17 ± 0.02 |
B3 | 1.15 ± 0.09 c | 45.77 ± 36.19 | 1.16 ± 0.08 |
p-value T | <0.001 | 0.064 | 0.063 |
Parameter | Value |
---|---|
Particle size distribution: | |
Total sand (2 > ∅ > 0.02 mm) (g kg−1) | 506 |
Silt (%) (0.02 > ∅ > 0.002 mm) (g kg−1) | 260 |
Clay (%) (∅ < 0.002 mm) (g kg−1) | 234 |
Chemical properties: | |
Total nitrogen (Kjeldahl method) (g kg−1) | 1.2 |
Available phosphorus (Olsen method) (mg kg−1) | 18.5 |
Exchangeable potassium (BaCl2 method) (mg kg−1) | 231 |
Organic matter (Walkley Black method) (g 100 g−1) | 1.7 |
Total limestone (g 100 g−1) | 2.6 |
Active limestone (g 100 g−1) | 4.6 |
pH | 7.4 |
ECe (dS m−1) | 0.5 |
ESP | 0.7 |
CEC (BaCl2 method) (meq 100 g−1 of soil d.m.) | 23.4 |
Hydrologic properties: | |
Field capacity (g kg−1 of soil d.m.) | 252 |
Wilting point (−1.5 MPa) (g kg−1 of soil d.m.) | 145 |
Bulk density (t m−3) | 13.6 |
Parameter | Value |
---|---|
Moisture (g 100 g−1) | 20 |
pH | 7.5 |
ECe (dS m−1) | 1.57 |
Total carbon (C) (g kg−1) | 300 |
Total nitrogen (N) (g kg−1) | 20 |
Organic nitrogen (g 100 g−1) | 90 |
C/N | 15 |
Total phosphorus (P) (g kg−1) | 8.6 |
Total potassium (K) (g kg−1) | 14 |
Calcium (Ca) (g kg−1) | 3.5 |
Magnesium (Mg) (g kg−1) | 1.2 |
Zinc (Zn) (mg kg−1) | 164 |
Copper (Cu) (mg kg−1) | 97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasqualone, A.; Summo, C.; De Angelis, D.; Cucci, G.; Caranfa, D.; Lacolla, G. Effect of Mineral and Organic Fertilization on desi and kabuli Chickpea (Cicer arietinum L.): Plant Growth and Production, Hydration Properties, Bioactive Compounds, and Antioxidant Activity. Plants 2021, 10, 1441. https://doi.org/10.3390/plants10071441
Pasqualone A, Summo C, De Angelis D, Cucci G, Caranfa D, Lacolla G. Effect of Mineral and Organic Fertilization on desi and kabuli Chickpea (Cicer arietinum L.): Plant Growth and Production, Hydration Properties, Bioactive Compounds, and Antioxidant Activity. Plants. 2021; 10(7):1441. https://doi.org/10.3390/plants10071441
Chicago/Turabian StylePasqualone, Antonella, Carmine Summo, Davide De Angelis, Giovanna Cucci, Davide Caranfa, and Giovanni Lacolla. 2021. "Effect of Mineral and Organic Fertilization on desi and kabuli Chickpea (Cicer arietinum L.): Plant Growth and Production, Hydration Properties, Bioactive Compounds, and Antioxidant Activity" Plants 10, no. 7: 1441. https://doi.org/10.3390/plants10071441
APA StylePasqualone, A., Summo, C., De Angelis, D., Cucci, G., Caranfa, D., & Lacolla, G. (2021). Effect of Mineral and Organic Fertilization on desi and kabuli Chickpea (Cicer arietinum L.): Plant Growth and Production, Hydration Properties, Bioactive Compounds, and Antioxidant Activity. Plants, 10(7), 1441. https://doi.org/10.3390/plants10071441