Improvement of Maize Productivity and N Use Efficiency in a No-Tillage Irrigated Farming System: Effect of Cropping Sequence and Fertilization Management
Abstract
:1. Introduction
2. Results
2.1. Crop Sequence-Related Effects
2.2. Fertilization Treatment-Related Effects
2.3. Interaction-Related Effects
2.4. Nitrogen Use Efficiency
3. Discussion
3.1. Influence of the Species and Order of the Preceding Crops in the Crop Sequence
3.2. Influence of the Integrated Use of Farmyard Manure with Variable Mineral Nitrogen Rates
4. Materials and Methods
4.1. Site Characteristics
4.2. Experimental Design and Treatments
4.3. Crop Establishment and Management Practices
4.4. Maize Harvesting and Measurements
4.5. Statistical Procedures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Salama, H.S.A. Mixture cropping of berseem clover with cereals to improve forage yield and quality under irrigated conditions of the Mediterranean basin. Ann. Agric. Sci. 2020, 65, 159–167. [Google Scholar] [CrossRef]
- Attia, A.; El-Hendawy, S.; Al-Suhaibani, N.; Tahir, M.U.; Mubushar, M.; dos Santos Vianna, M.; Datta, A. Sensitivity of the DSSAT model in simulating maize yield and soil carbon dynamics in arid Mediterranean climate: Effect of soil, genotype and crop management. Field Crop Res. 2021, 260, 107981. [Google Scholar] [CrossRef]
- Currie, T.E.; Bogaard, A.; Cesaretti, R.; Edwards, N.R.; Francois, P.; Holden, P.B.; Williams, A. Agricultural productivity in past societies: Toward an empirically informed model for testing cultural evolutionary hypotheses. Cliodynamics 2015, 6, 24–56. [Google Scholar] [CrossRef] [Green Version]
- Shaalan, A.M.; Ahmed, N.R.; Shams, A.S.H.; Khalil, H.E. Rotational crop sequences and N fertilization levels effect on maize growth and productivity. Alex. Sci. Exch. J. 2014, 35, 154–161. [Google Scholar] [CrossRef]
- Komarek, A.M.; Thierfelder, C.; Steward, P.R. Conservation agriculture improves adaptive capacity of cropping systems to climate stress in Malawi. Agric. Syst. 2021, 190, 103117. [Google Scholar] [CrossRef]
- Fischer, R.A.; Santiveri, F.; Vidal, I.R. Crop rotation, tillage and crop residue management for wheat and maize in the sub-humid tropical highlands: I. Wheat and legume performance. Field Crop Res. 2002, 79, 107–122. [Google Scholar] [CrossRef]
- Aschi, A.; Aubert, M.; Riah-Anglet, W.; Nélieu, S.; Dubois, C.; Akpa-Vinceslas, M.; Trinsoutrot-Gattin, I. Introduction of Faba bean in crop rotation: Impacts on soil chemical and biological characteristics. Appl. Soil Ecol. 2017, 120, 219–228. [Google Scholar] [CrossRef]
- Kollas, C.; Kersebaum, C.K.; Nendel, C.; Manevski, K.; Muller, C.; Palosuo, T.; Armas Herrera, C.M.; Beaudoin, N.; Bindi, M.; Charfeddine, M.; et al. Crop rotation modeling—A European model intercomparison. Eur. J. Agron. 2015, 70, 98–111. [Google Scholar] [CrossRef]
- Raphael, J.P.; Calonego, J.C.; Milori, D.M.B.; Rosolem, C.A. Soil organic matter in crop rotations under no-till. Soil Tillage Res. 2016, 155, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Voisin, A.; Novillo, B.; Chamorro, A.; Bezus, R.; Pellegrini, A.; Golik, S. Analysis of different crop sequences: Contributions to the production system. RIA Rev. Investig. Agropecu. 2018, 44, 105–112. [Google Scholar]
- Kermah, M.; Franke, A.C.; Ahiabor, B.D.K.; Adjei-Nsiah, S.; Abaidoo, R.C.; Giller, K.E. Legume–maize rotation or relay? Options for ecological intensification of smallholder farms in the Guinea savanna of northern Ghana. Exp. Agric. 2019, 55, 673–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borase, D.N.; Nath, C.P.; Hazra, K.K.; Senthilkumar, M.; Singh, S.S.; Praharaj, C.S.; Kumar, N. Long-term impact of diversified crop rotations and nutrient management practices on soil microbial functions and soil enzymes activity. Ecol. Indic. 2020, 114, 106322. [Google Scholar] [CrossRef]
- FAOSTAT. Statistical Yearbook 2019; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Salama, H.S.A. Yield and nutritive value of maize (Zea mays L.) forage as affected by plant density, sowing date and age at harvest. Ital. J. Agron. 2019, 14, 114–122. [Google Scholar] [CrossRef]
- Grassini, P.; Thorburn, J.; Burr, C.; Cassman, K.G. High-yield irrigated maize in the Western US Corn Belt: I. On-farm yield, yield potential, and impact of agronomic practices. Field Crop Res. 2011, 120, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Ali, W.; Jan, A.; Hassan, A.; Abbas, A.; Hussain, A.; Ali, M.; Hussain, A. Residual effect of preceding legumes and nitrogen levels on subsequent maize. Intern. J. Agron. Agric. Res. 2015, 7, 78–85. [Google Scholar]
- Franke, A.C.; Van den Brand, G.J.; Vanlauwe, B.; Giller, K.E. Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: A review. Agric. Ecosyst. Environ. 2018, 261, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Huynh, H.T.; Hufnagel, J.; Wurbs, A.; Bellingrath-Kimura, S.D. Influences of soil tillage, irrigation and crop rotation on maize biomass yield in a 9-year field study in Müncheberg, Germany. Field Crop Res. 2019, 241, 107565. [Google Scholar] [CrossRef]
- Sher, A.; Basit, A.; Khan, A.; Ameen, A.; Hussain, S.; Ahmed, I.; Shakoor, A.; Abdullah, M. Nitrogen Use Efficiency in Maize (Zea mays L.) as Affected by Different Organic Amendments. J. Adv. Bot. Zool. 2016, 4, 1–5. [Google Scholar] [CrossRef]
- Liu, X.M.; GU, W.R.; LI, C.F.; Jing, L.I.; Shi, W.E.I. Effects of nitrogen fertilizer and chemical regulation on spring maize lodging characteristics, grain filling and yield formation under high planting density in Heilongjiang Province, China. J. Integr. Agric. 2021, 20, 511–526. [Google Scholar] [CrossRef]
- Iqbal, A.; Ali, A.; Fahad, S.; Parmar, B. Nitrogen source and rate management improve maize productivity of smallholders under semiarid climates. Front. Plant Sci. 2016, 7, 1773. [Google Scholar] [CrossRef] [Green Version]
- Demari, G.H.; Carvalho, I.R.; Nardino, M.; Szareski, V.J.; Dellagostin, S.M.; da Rosa, T.C.; Follmann, D.N.; Monteiro, M.A.; Basso, C.J.; Pedó, T.; et al. Importance of nitrogen in maize production. Int. J. Curr. Res. 2016, 8, 36629–36634. [Google Scholar]
- Shi, D.Y.; Li, Y.H.; Zhang, J.W.; Liu, P.; Zhao, B.; Dong, S.T. Effects of plant density and nitrogen rate on lodging-related stalk traits of summer maize. Plant Soil Environ. 2016, 62, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Dong, S.T.; Li, S.K.; Zhang, J.W. High nitrogen use efficiency of high-yielding maize. Sci. Agric. Sin. 2017, 50, 2232–2237. (In Chinese) [Google Scholar]
- Chang, E.H.; Wang, C.H.; Chen, C.L.; Chung, R.S. Effects of long-term treatments of different organic fertilizers complemented with chemical N fertilizer on the chemical and biological properties of soils. Soil Sci. Plant Nutr. 2014, 60, 499–511. [Google Scholar] [CrossRef]
- Gu, L.; Liu, T.; Wang, J.; Liu, P.; Dong, S.; Zhao, B.; Li, J. Lysimeter study of nitrogen losses and nitrogen use efficiency of Northern Chinese wheat. Field Crop Res. 2016, 188, 82–95. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Yu, R.; Li, F.; Li, K.; Cao, H.; Mao, H. Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. Agric. Ecosyst. Environ. 2016, 224, 1–11. [Google Scholar] [CrossRef]
- Subehia, S.K.; Sepehya, S.; Rana, S.S.; Negi, S.C.; Sharma, S.K. Long-term effect of organic and inorganic fertilizers on rice (Oryza sativa L.)-wheat (Triticum aestivum L.) yield, and chemical properties of an acidic soil in the western Himalayas. Exp. Agric. 2013, 49, 382. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Aihou, K.; Houngnandan, P.; Diels, J.; Sanginga, N.; Merckx, R. Nitrogen management inadequate input maize-based agriculture in the derived savanna benchmark zone of Benin Republic. Plant Soil 2001, 228, 61–71. [Google Scholar] [CrossRef]
- Kimetu, J.M.; Mugendi, D.N.; Palm, C.A.; Mutuo, P.K.; Gachengo, C.N.; Bationo, A.; Kungu, J.B. Nitrogen fertilizer equivalencies of organics of differing quality and optimum combination with inorganic nitrogen source in Central Kenya. Nutr. Cycl. Agroecosyst. 2004, 68, 127–135. [Google Scholar] [CrossRef]
- Wang, X.; Ren, Y.; Zhang, S.; Chen, Y.; Wang, N. Applications of organic manure increased maize (Zea mays L.) yield and water productivity in a semi-arid region. Agric. Water Manag. 2017, 187, 88–98. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Zhao, J.; Nie, J.; Zang, H.; Zeng, Z.; Olesen, J.E. Yield benefits from replacing chemical fertilizers with manure under water deficient conditions of the winter wheat–summer maize system in the North China Plain. Eur. J. Agron. 2020, 119, 126118. [Google Scholar] [CrossRef]
- Ewais, M.; Zakaria, S.; Mohamed, A. Effect of mineral fertilizer integration with organic manure on growth, yield and quality of maize (Zea mays L.). J. Soil Sci. Agric. Eng. 2015, 6, 165–179. [Google Scholar] [CrossRef]
- Soratto, R.P.; Costa, T.A.M.; Fernandes, A.M.; Pereira, M.; Maruyama, W.I. Installment of alternative nitrogen sources in winter maize in succession to soybeans. Rev. Ciências Agrar. 2012, 2, 179–188. [Google Scholar]
- Xia, L.; Lam, S.K.; Yan, X.; Chen, D. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environ. Sci. Technol. 2017, 51, 7450–7457. [Google Scholar] [CrossRef]
- Afshar, R.K.; Chaichi, M.R.; Assareh, M.H.; Hashemi, M.; Liaghat, A. Interactive effect of deficit irrigation and soil organic amendments on seed yield and flavonolignan production of milk thistle (Silybum marianum L. Gaertn.). Ind. Crop Prod. 2014, 58, 166–172. [Google Scholar] [CrossRef]
- Ali, S.; Jan, A.; Sohail, A.; Khan, A.; Khan, M.I.; Zhang, J.; Daur, I. Soil amendments strategies to improve water-use efficiency and productivity of maize under different irrigation conditions. Agric. Water Manag. 2018, 210, 88–95. [Google Scholar] [CrossRef]
- Lana, M.D.C.; Czycza, R.V.; Rosset, J.S.; Frandoloso, J.F. Maize nitrogen fertilization in two crop rotation systems under no-till. Rev. Ceres 2013, 60, 852–862. [Google Scholar] [CrossRef] [Green Version]
- Harries, M.; Anderson, G.C.; Hüberli, D. Crop sequences in Western Australia: What are they and are they sustainable? Findings of a four-year survey. Crop Pasture Sci. 2015, 66, 634–647. [Google Scholar] [CrossRef] [Green Version]
- Jensen, E.S.; Peoples, M.B.; Hauggaard-Nielsen, H. Faba bean in cropping systems. Field Crop Res. 2010, 115, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Nawar, A.I.; Salama, H.S.; Khalil, H.E. Additive intercropping of sunflower and soybean to improve yield and land use efficiency: Effect of thinning interval and nitrogen fertilization. Chil. J. Agric. Res. 2020, 80, 142–152. [Google Scholar] [CrossRef]
- Salama, H.S.; El-Zaiat, H.M.; Sallam, S.M.; Soltan, Y.A. Agronomic and qualitative characterization of multi-cut berseem clover (Trifolium alexandrinum L.) cultivars. J. Sci. Food Agric. 2020, 100, 3857–3865. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Jan, M.T.; Khan, M.J.; Saeed, M.; Munir, I.; Din, Z.; Khan, M.Z. Effect of cropping system and residue management on maize. Pak. J. Bot. 2011, 43, 915–920. [Google Scholar]
- Askegaard, M.; Eriksen, J. Growth of legume and nonlegume catch crops and residual-N effects in spring barley on coarse sand. J. Plant Nutr. Soil Sci. 2007, 170, 773–780. [Google Scholar] [CrossRef]
- King, A.E.; Blesh, J. Crop rotations for increased soil carbon: Perenniality as a guiding principle. Ecol. Appl. 2018, 28, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Hazra, K.K.; Nath, C.P.; Singh, U.; Praharaj, C.S.; Kumar, N.; Singh, S.S.; Singh, N.P. Diversification of maize-wheat cropping system with legumes and integrated nutrient management increases soil aggregation and carbon sequestration. Geoderma 2019, 353, 308–319. [Google Scholar] [CrossRef]
- Kamh, M.; Horst, W.J.; Amer, F.; Mostafa, H.; Maier, P. Mobilization of soil and fertilizer phosphate by cover crops. Plant Soil 1999, 211, 19–27. [Google Scholar] [CrossRef]
- Tamm, I.; Tamm, Ü.; Ingver, A.; Koppel, R.; Tupits, I.; Bender, A.; Koppel, M. Different leguminous pre-crops increased yield of succeeding cereals in two consecutive years. Acta Agric. Scand. Sect. B Soil Plant Sci. 2016, 66, 593–601. [Google Scholar] [CrossRef]
- McKenna, P.; Cannon, N.; Conway, J.; Dooley, J. The use of red clover (Trifolium pratense) in soil fertility-building: A Review. Field Crop Res. 2018, 221, 38–49. [Google Scholar] [CrossRef]
- Peoples, M.B.; Ladha, J.K.; Herridge, D.F. Enhancing legume N 2 fixation through plant and soil management. In Management of Biological Nitrogen Fixation for the Development of More Productive and Sustainable Agricultural Systems; Springer: Berlin/Heidelberg, Germany, 1995; pp. 83–101. [Google Scholar] [CrossRef]
- Rochester, I.J.; Peoples, M.B.; Hulugalle, N.R.; Gault, R.; Constable, G.A. Using legumes to enhance nitrogen fertility and improve soil condition in cotton cropping systems. Field Crop Res. 2001, 70, 27–41. [Google Scholar] [CrossRef]
- Pare, T.; Chalifour, F.P.; Bourassa, J.; Antoun, H. Residual effects of faba bean and soybean for a 2nd or 3rd succeeding forage-corn crop. Can. J. Plant Sci. 1993, 73, 495–507. [Google Scholar] [CrossRef]
- Wright, A.T. Yield effect of pulses on subsequent cereal crops in the northern prairies. Can. J. Plant Sci. 1990, 70, 1023–1032. [Google Scholar] [CrossRef]
- Lawes, R.A. Crop sequences in modern Australian farming systems. Crop Pasture Sci. 2015, 66, i–ii. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Clark, R. Physiology of Crop Production; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Havlin, J.H.; Beaton, J.D.; Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers, 7th ed.; PHI Learning Private Limited: Newdelhi, India, 2009. [Google Scholar]
- Shah, S.; Shah, Z.; Khalail, S.K.; Jan, A.; Jan, M.; Afzal, M.; Akbar, H.; Khan, H.; Nawab, K.; Muhammad, F. Effects of variable nitrogen source and rate on leaf area index and total dry matter accumulation in maize (Zea mays L.) genotypes under calcareous soil. Turk. J. Field Crop 2014, 19, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Shah, P.; Khan, A.; ur Rahman, H.; Shah, Z. Plant density and nitrogen effects on growth dynamics, light interception and yield of maize. Arch. Agron. Soil Sci. 2008, 54, 401–411. [Google Scholar] [CrossRef]
- Celik, I.; Gunal, H.; Budak, M.; Akpinar, C. Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma 2010, 160, 236–243. [Google Scholar] [CrossRef]
- Liu, E.; Yan, C.; Mei, X.; He, W.; Bing, S.H.; Ding, L.; Fan, T. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 2010, 158, 3–4, 173–180. [Google Scholar] [CrossRef]
- Salama, H.S.A.; Badry, H.H. Forage and grain yields of dual-purpose triticale as influenced by the integrated use of Azotobacter chroococcum and mineral nitrogen fertilizer. Ital. J. Agron. 2021, 16, 1719. [Google Scholar] [CrossRef]
- Baggs, E.M.; Watson, C.A.; Rees, R.M. The fate of nitrogen from incorporated cover crop and green manure residues. Nutr. Cycl. Agroecosyst. 2000, 56, 153–163. [Google Scholar] [CrossRef]
- Chivenge, P.; Vanlauwe, B.; Six, J. Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant Soil 2011, 342, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Yan, Y.; Cao, J.; Christie, P.; Zhang, F.; Fan, M. Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: An integrated analysis of long-term experiments. Agric. Ecosyst. Environ. 2016, 225, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Palm, C.A.; Gachengo, C.N.; Delve, R.J.; Cadisch, G.; Giller, K.E. Organic inputs for soil fertility management in tropical agroecosystems: Application of an organic resource database. Agric. Ecosyst. Environ. 2001, 83, 27–42. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Wendt, J.; Diels, J. Combined application of organic matter and fertilizer. Sustain. Soil Fertil. West Afr. 2001, 58, 247–279. [Google Scholar] [CrossRef]
- Zingore, S.; Delve, R.J.; Nyamangara, J.; Giller, K.E. Multiple benefits of manure: The key to maintenance of soil fertility and restoration of depleted sandy soils on African smallholder farms. Nutr. Cycl. Agroecosyst. 2008, 80, 267–282. [Google Scholar] [CrossRef]
- Lv, F.; Song, J.; Giltrap, D.; Feng, Y.; Yang, X.; Zhang, S. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize cropping system. Sci. Total Environ. 2020, 732, 139321. [Google Scholar] [CrossRef] [PubMed]
- Berry, P.M.; Sylvester-Bradley, R.; Philipps, L.; Hatch, D.J.; Cuttle, S.P.; Rayns, F.W.; Gosling, P. Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manag. 2002, 18, 248–255. [Google Scholar] [CrossRef]
- Büchi, L.; Gebhard, C.A.; Liebisch, F.; Sinaj, S.; Ramseier, H.; Charles, R. Accumulation of biologically fixed nitrogen by legumes cultivated as cover crops in Switzerland. Plant Soil 2015, 393, 163–175. [Google Scholar] [CrossRef]
- Collino, D.J.; Salvagiotti, F.; Perticari, A.; Piccinetti, C.; Ovando, G.; Urquiaga, S.; Racca, R.W. Biological nitrogen fixation in soybean in Argentina: Relationships with crop, soil, and meteorological factors. Plant Soil 2015, 392, 239–252. [Google Scholar] [CrossRef]
- Quemada, M.; Cabrera, M.L. Carbon and nitrogen mineralized from leaves and stems of four cover crops. Soil Sci. Soc. Am. J. 1995, 59, 471–477. [Google Scholar] [CrossRef]
- Enrico, J.M.; Piccinetti, C.F.; Barraco, M.R.; Agosti, M.B.; Eclesia, R.P.; Salvagiotti, F. Biological nitrogen fixation in field pea and vetch: Response to inoculation and residual effect on maize in the Pampean region. Eur. J. Agron. 2020, 115, 126016. [Google Scholar] [CrossRef]
- Barbieri, P.A.; Echeverría, H.E.; Saínz Rozas, H.R.; Andrade, F.H. Nitrogen use efficiency in maize as affected by nitrogen availability and row spacing. Agron. J. 2008, 100, 1094–1100. [Google Scholar] [CrossRef]
- Guang-hao, L. Differences of yield and nitrogen use efficiency under different applications of slow release fertilizer in spring maize. J. Integr. Agric. 2021, 20, 554–564. [Google Scholar] [CrossRef]
- Qiu, S.J.; He, P.; Zhao, S.C.; Li, W.J.; Xie, J.G.; Hou, Y.P.; Jin, J.Y. Impact of nitrogen rate on maize yield and nitrogen use efficiencies in northeast China. Agron. J. 2015, 107, 305–313. [Google Scholar] [CrossRef]
- Gai, X.; Liu, H.; Liu, J.; Zhai, L.; Yang, B.; Wu, S.; Wang, H. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain. Agric. Water Manag. 2018, 208, 384–392. [Google Scholar] [CrossRef]
- Kankam-Boadu, I.; Sarkodie-Addo, J.; Amagloh, F.K. Nitrogen use efficiency and maize productivity in the Guinea Savanna Agro-ecological Zone of Ghana. J. Exp. Agric. Int. 2018, 1–15. [Google Scholar] [CrossRef]
- Jug, D.; Đurđević, B.; Birkás, M.; Brozović, B.; Lipiec, J.; Vukadinović, V.; Jug, I. Effect of conservation tillage on crop productivity and nitrogen use efficiency. Soil Tillage Res. 2019, 194, 104327. [Google Scholar] [CrossRef]
- Statistical Analysis System, SAS PC Windows Version 9.4; SAS Institute Inc.: Cary, NC, USA, 2012.
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
Source of Variations | d.f | Plant Height | Ear Height | Ear Leaf Area | Leaf Area Index | ||||
---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||
Crop sequence (CS) | 5 | 425.08 ns | 524.18 ns | 299.42 ns | 273.78 ns | 1210.91 ** | 1420.81 ** | 0.22 ns | 0.25 ns |
Fertilization treatment (FT) | 5 | 950.84 * | 1011.54 * | 287.14 ns | 340.77 ns | 1413.12 ** | 1723.66 ** | 0.39 * | 0.35 * |
CS * FT | 25 | 274.70 ns | 490.20 ns | 298.40 ns | 322.16 ns | 550.20 ns | 644.33 ns | 0.21 * | 0.23 * |
Error | 70 | 392.45 | 420.15 | 250.23 | 310.42 | 420.18 | 510.36 | 0.13 | 0.14 |
Source of Variations | d.f | Ear Grain Weight | 1000-Grain Weight | Grain Yield | Harvest Index | ||||
---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||
Crop sequence (CS) | 5 | 31.20 ** | 40.18 ** | 56.14 ** | 80.08 ** | 10.12 ** | 9.44 ** | 255.10 ** | 312.33 ** |
Fertilization treatment (FT) | 5 | 33.15 ** | 51.02 ** | 60.34 ** | 79.12 ** | 12.88 ** | 13.40 ** | 195.17 ** | 298.54 ** |
CS*FT | 25 | 17.44 ** | 18.56 ** | 20.12 ns | 30.45 ns | 5.52 ** | 4.20 ** | 41.21 ns | 50.18 ns |
Error | 70 | 9.30 | 9.99 | 18.60 | 23.55 | 0.32 | 0.16 | 33.71 | 45.25 |
Crop Sequence | Fertilization Treatment | |||||
---|---|---|---|---|---|---|
Growing Season 2018 | ||||||
FT1 | FT2 | FT3 | FT4 | FT5 | FT6 | |
CS1 | 3.09 cAB | 3.20 cAB | 3.60 cA | 2.85 dB | 3.11 cAB | 3.40 dAB |
CS2 | 3.14 cBC | 3.25 cABC | 3.79 cA | 3.00 cdC | 3.15 cBC | 3.70 dAB |
CS3 | 3.59 bcA | 3.72 bcA | 4.08 bcA | 3.50 bcA | 3.70 bcA | 3.90 cdA |
CS4 | 3.80 abB | 4.10 abAB | 4.57 abA | 3.78 abB | 4.00 abAB | 4.44 abcA |
CS5 | 4.11 aA | 4.40 aA | 4.66 abA | 4.08 abA | 4.37 aA | 4.59 abA |
CS6 | 4.30 aC | 4.49 aBC | 5.12 aA | 4.20 aC | 4.45 aBC | 4.93 aAB |
L.S.D.0.05 | 0.59 | |||||
Growing Season 2019 | ||||||
FT1 | FT2 | FT3 | FT4 | FT5 | FT6 | |
CS1 | 3.10 cB | 3.33 dAB | 3.77 dA | 2.95 dB | 3.23 cAB | 3.56 cAB |
CS2 | 3.18 cBC | 3.23 dABC | 3.80 dAB | 3.10 cdC | 3.20 cABC | 3.82 cA |
CS3 | 3.66 bcA | 3.85 cdA | 4.10 cdA | 3.64 bcA | 3.82 bcA | 4.01 bcA |
CS4 | 3.94 abBC | 4.13 abcABC | 4.64 abcA | 3.80 abC | 4.10 abABC | 4.52 abAB |
CS5 | 4.21 abA | 4.53 abA | 4.74 abA | 4.13 abA | 4.44 abA | 4.65 aA |
CS6 | 4.43 aBC | 4.59 aBC | 5.23 aA | 4.33 aC | 4.54 aBC | 4.98 aAB |
L.S.D.0.05 | 0.62 |
Crop Sequence | Fertilization Treatment | |||||
---|---|---|---|---|---|---|
Growing Season 2018 | ||||||
FT1 | FT2 | FT3 | FT4 | FT5 | FT6 | |
CS1 | 92.30 dB | 95.41 eAB | 100.11 dA | 80.04 dC | 97.13 dAB | 96.71 eAB |
CS2 | 95.67 cdC | 100.39 dABC | 104.00 dA | 83.08 cdD | 101.19 cdAB | 101.82 dAB |
CS3 | 100.44 cC | 105.21 cdABC | 110.00 cA | 86.66 cD | 104.21 cBC | 107.21 cAB |
CS4 | 115.31 bC | 121.84 bB | 127.34 bA | 100.14 bD | 121.34 bB | 125.11 bAB |
CS5 | 120.74 aD | 127.13 aBC | 133.25 aA | 105.00 abE | 126.42 aBC | 130.30 aAB |
CS6 | 125.22 aC | 131.08 aAB | 135.68 aA | 109.30 aD | 130.08 aBC | 133.12 aAB |
L.S.D.0.05 | 4.93 | |||||
Growing Season 2019 | ||||||
FT1 | FT2 | FT3 | FT4 | FT5 | FT6 | |
CS1 | 93.11 dB | 97.15 dAB | 100.54 cA | 79.76 dC | 100.34 cA | 96.42 cAB |
CS2 | 95.89 cdC | 98.78 dBC | 104.14 bcA | 85.53 cD | 101.67 cAB | 99.66 cABC |
CS3 | 98.85 cC | 105.66 cAB | 109.21 bA | 88.86 cD | 103.65 cB | 106.59 bAB |
CS4 | 118.60 bC | 125.32 bB | 132.61 aA | 102.74 bD | 128.44 bAB | 129.64 aAB |
CS5 | 122.00 bB | 132.67 aA | 133.85 aA | 108.43 aC | 131.01 bA | 131.30 aA |
CS6 | 130.54 aB | 134.59 aAB | 137.62 aA | 112.66 aC | 137.50 aA | 134.42 aAB |
L.S.D.0.05 | 5.11 |
Crop Sequence | Fertilization Treatment | |||||
---|---|---|---|---|---|---|
Growing Season 2018 | ||||||
FT1 | FT2 | FT3 | FT4 | FT5 | FT6 | |
CS1 | 6.03 bA* | 6.04 cA | 6.28 cA | 5.72 cA | 5.97 dA | 6.30 dA |
CS2 | 6.14 abA | 6.28 cA | 6.43 cA | 5.84 bcA | 6.15 cdA | 6.50 cdA |
CS3 | 6.33 abA | 6.51 bcA | 6.83 bcA | 5.94 abcA | 6.58 bcdA | 6.77 cdA |
CS4 | 7.01 aA | 7.37 abA | 7.46 abA | 6.57 abcA | 6.89 abcdA | 7.30 abcA |
CS5 | 7.12 aA | 7.41 abA | 7.52 abA | 6.69 abA | 7.11 abA | 7.43 abA |
CS6 | 7.23 aAB | 7.65 aAB | 7.96 aA | 6.82 aB | 7.80 aA | 7.90 aA |
L.S.D.0.05 | 0.92 | |||||
Growing Season 2019 | ||||||
FT1 | FT2 | FT3 | FT4 | FT5 | FT6 | |
CS1 | 5.85 cBC | 6.19 cABC | 6.55 bA | 5.71 dC | 6.33 bABC | 6.43 bAB |
CS2 | 6.03 cAB | 6.27 cAB | 6.59 bA | 5.91 dB | 6.39 bAB | 6.38 bAB |
CS3 | 6.17 bcAB | 6.49 bcAB | 6.75 bA | 6.02 cdB | 6.59 bAB | 6.61 bAB |
CS4 | 6.74 abB | 7.11 bB | 8.02 aA | 6.60 bcB | 7.84 aA | 7.83 aA |
CS5 | 7.21 aB | 7.90 aA | 8.29 aA | 7.10 abB | 8.10 aA | 8.15 aA |
CS6 | 7.33 aB | 8.10 aA | 8.35 aA | 7.30 aB | 8.27 aA | 8.30 aA |
L.S.D.0.05 | 0.66 |
Soil Texture | Sand% | Silt % | Clay % | pH | EC (dS/m) | CaCO3 (%) | OM (%) | Available N mg/kg | Available P mg/kg | Available K mg/kg |
---|---|---|---|---|---|---|---|---|---|---|
Sandy loam | 62.3 | 20.0 | 17.7 | 8.30 | 2.10 | 9.87 | 0.50 | 100 | 9.61 | 31.98 |
Crop Sequence | Planting Order of the Different Crop Components | Terminal Crop | Contribution Percentage in Each Crop Sequence | |||
---|---|---|---|---|---|---|
Legumes | Non Legumes | |||||
CS1 | FB | M | W | M | 25 | 75 |
CS2 | FB | M | FB | M | 50 | 50 |
CS3 | FB | M | EC | M | 50 | 50 |
CS4 | FB | SB | W | M | 50 | 50 |
CS5 | FB | SB | FB | M | 75 | 25 |
CS6 | FB | SB | EC | M | 75 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salama, H.S.A.; Nawar, A.I.; Khalil, H.E.; Shaalan, A.M. Improvement of Maize Productivity and N Use Efficiency in a No-Tillage Irrigated Farming System: Effect of Cropping Sequence and Fertilization Management. Plants 2021, 10, 1459. https://doi.org/10.3390/plants10071459
Salama HSA, Nawar AI, Khalil HE, Shaalan AM. Improvement of Maize Productivity and N Use Efficiency in a No-Tillage Irrigated Farming System: Effect of Cropping Sequence and Fertilization Management. Plants. 2021; 10(7):1459. https://doi.org/10.3390/plants10071459
Chicago/Turabian StyleSalama, Heba S. A., Ali I. Nawar, Hassan E. Khalil, and Ahmed M. Shaalan. 2021. "Improvement of Maize Productivity and N Use Efficiency in a No-Tillage Irrigated Farming System: Effect of Cropping Sequence and Fertilization Management" Plants 10, no. 7: 1459. https://doi.org/10.3390/plants10071459
APA StyleSalama, H. S. A., Nawar, A. I., Khalil, H. E., & Shaalan, A. M. (2021). Improvement of Maize Productivity and N Use Efficiency in a No-Tillage Irrigated Farming System: Effect of Cropping Sequence and Fertilization Management. Plants, 10(7), 1459. https://doi.org/10.3390/plants10071459