Exploiting the Potential in Water Cleanup from Metals and Nutrients of Desmodesmus sp. and Ampelodesmos mauritanicus
Abstract
:1. Introduction
2. Results
2.1. Preliminary Experiments with Microalgae
2.2. Sequential Tests A. mauritanicus/Desmodesmus sp.
3. Discussion
4. Materials and Methods
4.1. Microalgal Strains
4.2. Plant Materials
4.3. Preliminary Test with Microalgae
4.4. Sequential Test
4.5. Evaluation of Growth
4.6. Nutrient Analysis
4.7. Metal Analysis
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salt, D.E.; Smith, R.D.; Raskin, I. Phytoremediation. Annu. Rev. Plant. Physiol. 1998, 49, 643–668. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, S.D.; Anderson, T.A.; Schwab, P.; Hsu, F.C. Phytoremediation of soils contaminated with organic pollutants. Adv. Agron. 1996, 56, 55–114. [Google Scholar]
- Meagher, R.B. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant. Biol. 2000, 3, 153–162. [Google Scholar] [CrossRef]
- Clemens, S.; Palmgreen, M.G.; Kraemer, U. A long way ahead: Understanding and engineering plant metal accumulation. Trends Plant. Sci. 2002, 7, 309–315. [Google Scholar] [CrossRef]
- Karimi, N.; Ghaderian, S.M.; Raab, A.; Feldmann, J.; Meharg, A.A. An arsenic-accumulating, hypertolerant brassica, Isatis cappadocica. New Phytol. 2009, 184, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Banuelos, G.S.; Meek, D.W. Selenium accumulation in selected vegetables. J. Plant. Nutr. 1989, 12, 1255–1272. [Google Scholar] [CrossRef]
- Raskin, I.; Smith, R.D.; Salt, D.E. Phytoremediation of metals: Using plants to remove pollutants from the environment. Curr. Opin. Biotechnol. 1997, 8, 221–226. [Google Scholar] [CrossRef]
- Pignatti, S. La Flora d’Italia; Edagricole: Bologna, Italy, 1984; p. 3. [Google Scholar]
- Mingo, A.; Mazzoleni, S. Ecophysiology of five Mediterranean perennial grasses: I) Effects of shade, water stress and defoliation on growth and allocation. Plant. Biosyst. 1997, 131, 207–215. [Google Scholar] [CrossRef]
- Cuellar-Bermudez, S.P.; Aleman-Nava, G.S.; Chandra, R.; Garcia-Perez, S.; Contreras-Angulo, J.R.; Markou, G.; Muylaert, K.; Rittmann, B.E.; Parra-Saldivar, R. Nutrient utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Res. 2017, 24, 438–449. [Google Scholar] [CrossRef]
- Ahmad, S.; Pandey, A.; Pathak, V.V.; Tyagi, V.V.; Kothari, R. Phycoremediation: Algae as Eco-friendly Tools for the Removal of Heavy Metals from Wastewaters. In Bioremediation of Industrial Waste for Environmental Safety; Springer: Singapore, 2020; pp. 53–76. [Google Scholar]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibrahem, I.B.M. Microalgae and wastewater treatment. Saudi J. Aquat. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jais, N.M.; Mohamed, R.M.S.R.; Al-Gheethi, A.A.; Amir Hashim, M.K. The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Technol. Environ. Policy 2017, 19, 37–52. [Google Scholar] [CrossRef]
- Oswald, W.J.; Gotaas, H.B. Photosynthesis in sewage treatment. Trans. Am. Soc. Civ. Eng. 1957, 122, 73–105. [Google Scholar] [CrossRef]
- Pacheco, D.; Rocha, A.C.; Pereira, L.; Verdelhos, T. Microalgae Water Bioremediation: Trends and Hot Topics. Appl. Sci. 2020, 10, 1886. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Li, C.; Yang, Z.H.; Zeng, G.M.; Mu, J.; Liu, M.; Cui, W. Removal of nutrients, organic matter, and metal from domestic secondary effluent through microalgae cultivation in a membrane photobioreactor. J. Chem. Technol. Biotechnol. 2016, 91, 2713–2719. [Google Scholar] [CrossRef]
- Matamoros, V.; Gutiérrez, R.; Ferrer, I.; García, J.; Bayona, J.M. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: A pilot-scale study. J. Hazard. Mater. 2015, 288, 34–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rugnini, L.; Costa, G.; Congestri, R.; Antonaroli, S.; Sanità di Toppi, L.; Bruno, L. Phosphorus and metal removal combined with lipid production by the green microalga Desmodesmus sp.: An integrated approach. Plant. Physiol. Biochem. 2018, 125, 45–51. [Google Scholar] [CrossRef]
- Shahid, A.; Malik, S.; Zhu, H.; Xu, J.; Nawaz, M.Z.; Nawaz, S.; Alam, M.A.; Mehmood, M.A. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci. Total Environ. 2020, 135303. [Google Scholar] [CrossRef] [PubMed]
- Bruno, L.; Di Pippo, F.; Antonaroli, S.; Gismondi, A.; Valentini, C.; Albertano, P. Characterization for biofilm-forming cyanobacteria for biomass and lipid production. J. Appl. Microbiool. 2012, 113, 1052–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gismondi, A.; Di Pippo, F.; Bruno, L.; Antonaroli, S.; Congestri, R. Phosphorus removal coupled to bioenergy production by three cyanobacterial isolates in a biofilm dynamic growth system. Int. J. Phycol. 2016. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 15, 714–727. [Google Scholar] [CrossRef]
- Codignole Luz, F.; Cordiner, S.; Manni, A.; Mulone, V.; Rocco, V.; Braglia, R.; Canini, A. Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: Evaluation of the biogas yield. Energy 2018, 161, 663–669. [Google Scholar]
- Zhang, J.; Wang, X.; Zhou, Q. Co-cultivation of Chlorella spp. and tomato in a hydroponic system. Biomass Bioenergy 2017, 97, 132–138. [Google Scholar] [CrossRef]
- Barone, V.; Puglisi, I.; Fragalà, F.; Lo Piero, A.R.; Giuffrida, F.; Baglieri, A. Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. J. Appl. Phycol. 2019, 31, 465–470. [Google Scholar] [CrossRef]
- Kumar, K.S.; Dahms, H.U.; Won, E.J.; Lee, J.S.; Shin, K.H. Microalgae—A promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 2014, 113, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Supraja, K.V.; Behera, B.; Balasubramanian, P. Performance Evaluation of Hydroponic System for Co-cultivation of Microalgae and Tomato plant. J. Clean Prod. 2020, 122823. [Google Scholar] [CrossRef]
- Rugnini, L.; Costa, G.; Congestri, R.; Bruno, L. Testing of two different strains of green microalgae for Cu and Ni removal from aqueous media. Sci. Total Environ. 2017, 601–602, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.M.; Mazur, L.P.; Mayer, D.A.; Vilar, V.J.P.; Pires, J.C.M. Inhibition effect of zinc, cadmium, and nickel ions in microalgal growth and nutrient uptake from water: An experimental approach. Chem. Eng. J. 2019, 366, 358–367. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, J.; Hong, Y. Effects of metal ions on the cultivation of an oleaginous microalga Chlorella sp. Environ. Sci. Pollut. Res. 2017, 24, 26594–26604. [Google Scholar] [CrossRef] [PubMed]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Hippler, F.W.; Mattos-Jr, D.; Boaretto, R.M.; Williams, L.E. Copper excess reduces nitrate uptake by Arabidopsis roots with specific effects on gene expression. J. Plant. Physiol. 2018, 228, 158–165. [Google Scholar] [CrossRef]
- Weber, M.B.; Schat, H.; Ten Bookum-Van Der Maarel, W.M. The effect of copper toxicity on the contents of nitrogen compounds in Silene vulgaris (Moench) Garcke. Plant. Soil 1991, 133, 101–109. [Google Scholar] [CrossRef]
- Akmukhanova, N.R.; Zayadan, B.K.; Sadvakasova, A.K.; Bolatkhan, K.; Bauenova, M.O. Consortium of Higher Aquatic Plants and Microalgae Designed to Purify Sewage of Heavy Metal Ions. Russ. J. Plant. Physiol. 2018, 65, 143–149. [Google Scholar] [CrossRef]
- Zhu, X.; Dao, G.; Tao, Y.; Zhan, X.; Hu, H. A review on control of harmful algal blooms by plant-derived allelochemicals. J. Hazard. Mater. 2020, 123, 403. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Chen, G.; Cui, N.; Pan, Q.; Song, X.; Zou, G. Allelopathic effects on Microcystis aeruginosa and allelochemical identification in the culture solutions of typical artificial floating-bed plants. Bull. Environ. Contam. Toxicol. 2019, 102, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Liu, Y.G.; Yan, Z.L.; Zeng, G.M.; Liu, S.B.; Wang, W.J.; Wang, Q.P. Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa. Ecotoxicol. Environ. Saf. 2018, 148, 953–959. [Google Scholar] [CrossRef]
- Castenholz, R.W. Phylum BX. Cyanobacteria. Oxygenic Photosynthetic Bacteria. In Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Boone, D.R., Castenholz, R.W., Garrity, G.M., Eds.; Springer: New York, NY, USA, 2001; pp. 473–487. [Google Scholar]
- Rippka, R.; Deruelles, J.; Waterbury, J.; Herdman, M.; Stanier, R. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979, 111, 1–61. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Hadiyanto, A.G.; Pradana, L.; Buchori, C.; Budiyati, S. Biosorption of Heavy Metal Cu2+ and Cr2+ in Textile Wastewater by Using Immobilized Algae. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 3539–3543. [Google Scholar] [CrossRef]
- Wellburn, A.R.; Lichtenthaler, H. Formulae and Program to Determine Total Carotenoids and Chlorophylls A and B of Leaf Extracts in Different Solvents. Adv. Photosynth. Res. 1984, 2, 9–12. [Google Scholar]
- Langer, C.L.; Hendrix, P.F. Evaluation of a persulfate digestion method for particulate nitrogen and phosphorus. Water Res. 1982, 16, 1451–1454. [Google Scholar] [CrossRef]
- Zhou, G.J.; Peng, F.Q.; Zhang, L.J.; Ying, G.G. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environ. Sci. Pollut. Res. 2012, 19, 2918–2929. [Google Scholar] [CrossRef] [PubMed]
Initial [Cu] 1.15 mg L−1 | Initial [Ni] 1.86 mg L−1 | Mix 0.89 mgCu L−1 + 1.76 mgNi L−1 | ||||||
---|---|---|---|---|---|---|---|---|
Cf (mg L−1) | Removal (%) | Cf (mg L−1) | Removal (%) | Cf (mg L−1) | Removal (%) | |||
Cu | Ni | Cu | Ni | |||||
Desmodesmus sp. | 0.37 ± 0.04 | 67% | 0.33 ± 0.07 | 82% | 0.38 ± 0.09 | 1.22 ± 0.31 | 57% | 30% |
Nostoc sp. | 1.70 ± 0.41 | n.d. | 0.73 ± 0.09 | 61% | 0.63 ± 0.03 | 1.56 ± 0.19 | 28% | 11% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braglia, R.; Rugnini, L.; Malizia, S.; Scuderi, F.; Redi, E.L.; Canini, A.; Bruno, L. Exploiting the Potential in Water Cleanup from Metals and Nutrients of Desmodesmus sp. and Ampelodesmos mauritanicus. Plants 2021, 10, 1461. https://doi.org/10.3390/plants10071461
Braglia R, Rugnini L, Malizia S, Scuderi F, Redi EL, Canini A, Bruno L. Exploiting the Potential in Water Cleanup from Metals and Nutrients of Desmodesmus sp. and Ampelodesmos mauritanicus. Plants. 2021; 10(7):1461. https://doi.org/10.3390/plants10071461
Chicago/Turabian StyleBraglia, Roberto, Lorenza Rugnini, Sara Malizia, Francesco Scuderi, Enrico Luigi Redi, Antonella Canini, and Laura Bruno. 2021. "Exploiting the Potential in Water Cleanup from Metals and Nutrients of Desmodesmus sp. and Ampelodesmos mauritanicus" Plants 10, no. 7: 1461. https://doi.org/10.3390/plants10071461
APA StyleBraglia, R., Rugnini, L., Malizia, S., Scuderi, F., Redi, E. L., Canini, A., & Bruno, L. (2021). Exploiting the Potential in Water Cleanup from Metals and Nutrients of Desmodesmus sp. and Ampelodesmos mauritanicus. Plants, 10(7), 1461. https://doi.org/10.3390/plants10071461