Effects of Charcoal Rot on Soybean Seed Composition in Soybean Genotypes That Differ in Charcoal Rot Resistance under Irrigated and Non-Irrigated Conditions
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Growth Conditions
3.2. Seed Protein, Oil, and Fatty Acids
3.3. Experimental Design and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakthivelu, G.; Akitha-Devi, M.K.; Giridhar, P.; Rajasekaran, T.; Ravishankar, G.A.; Nikolova, M.T.; Angelov, G.B.; Todorova, R.M.; Kosturkova, G.P. Isoflavone composition, phenol content, and antioxidant activity of soybean seeds from India and Bulgaria. J. Agric. Food Chem. 2008, 56, 2090–2095. [Google Scholar] [CrossRef]
- Bellaloui, N.; Smith, J.R.; Ray, J.D.; Gillen, A.M. Effect of maturity on seed composition in the early soybean production system as measured on near-isogenic soybean lines. Crop Sci. 2009, 49, 608–620. [Google Scholar] [CrossRef] [Green Version]
- Bellaloui, N.; Smith, J.R.; Gillen, A.M.; Ray, J.D. Effect of maturity on seed sugars as measured on near-isogenic soybean (Glycine max) lines. Crop Sci. 2010, 50, 1978–1987. [Google Scholar] [CrossRef]
- Bellaloui, N.; Smith, J.R.; Gillen, A.M.; Ray, J.D. Effects of maturity, genotypic background, and temperature on seed mineral composition in near-isogenic soybean lines in the early soybean production system. Crop Sci. 2011, 51, 1161–1171. [Google Scholar] [CrossRef]
- Coser, S.M.; Reddy, R.V.C.; Zhang, J.; Mueller, D.S.; Mengistu, M.; Wise, K.A.; Allen, T.W.; Singh, A.; Singh, A.K. Genetic architecture of charcoal rot (Macrophomina phaseolina) resistance in soybean revealed using a diverse panel. Front. Plant Sci. 2017, 8, 1626. [Google Scholar] [CrossRef]
- Mengistu, A.; Ray, J.D.; Smith, J.R.; Arelli, P.R.; Bellaloui, N.; Chenc, P.; Shannonc, G.; Boykin, D. Effect of charcoal rot on selected putative drought tolerant soybean genotypes and yield. Crop Prot. 2018, 105, 90–101. [Google Scholar] [CrossRef]
- Bellaloui, N.; Mengistu, A.; Paris, R.L. Soybean seed composition in cultivars differing in resistance to charcoal rot (Macrophomina phaseolina). J. Agric. Sci. 2008, 146, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Bellaloui, N.; Mengistu, A.; Zobiole, L.H.S.; Shier, W.T. Resistance to toxin-mediated fungal infection: Role of lignins, isoflavones, other seed phenolics, sugars, and boron in the mechanism of resistance to charcoal rot disease in soybean. Toxin Rev. 2012, 31, 16–26. [Google Scholar] [CrossRef]
- Wrather, J.A. Soybean disease loss estimates for the Southern United States, 1974 to 1994. Plant Dis. 1995, 79, 1076–1079. [Google Scholar]
- Wrather, J.A.; Koenning, S.R. Estimates of disease effects on soybean yields in the United States 2003–2005. J. Nematol. 2006, 38, 173–180. [Google Scholar] [PubMed]
- Mengistu, A.; Ray, J.D.; Smith, J.R.; Paris, R.L. Charcoal rot disease assessment of soybean genotypes using a colony-forming unit index. Crop Sci. 2007, 47, 2453–2461. [Google Scholar] [CrossRef]
- Wyllie, T.D. Charcoal rot of soybean: Current status. In Soybean Diseases of the North Central Region; American Phytopathological Society, Wyllie, T.D., Scott, D.H., Eds.; American Phytopathological Society: St. Paul, MN, USA, 1988; pp. 106–113. [Google Scholar]
- Smith, G.S.; Wyllie, T.D. Charcoal rot. In Compendium of Soybean Disease, American Phytopathological Society; Hartman, G.L., Sinclair, J.B., Rupe, J.C., Eds.; APS Press: St. Paul, MN, USA, 1999; pp. 29–31. [Google Scholar]
- Su, G.; Suh, S.O.; Schneider, R.W.; Russin, J.S. Host specialization in the charcoal rot fungus, Macrophomina phaseolina. Phytopathology 2001, 91, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Mengistu, A.; Smith, J.R.; Ray, J.D.; Bellaloui, N. Seasonal progress of charcoal rot and its impact on soybean productivity. Plant Dis. 2011, 95, 1155–1166. [Google Scholar] [CrossRef] [Green Version]
- Paris, R.L.; Mengistu, A.; Tyler, J.M.; Smith, J.R. Registration of Soybean Germplasm Line DT97–4290 with Moderate Resistance to Charcoal Rot. Crop Sci. 2006, 46, 2324–2325. [Google Scholar] [CrossRef] [Green Version]
- Fehr, W.R.; Caviness, C.E. Stages of Soybean Development; Special Report 80; Iowa State University Cooperative Extension Service: Ames, IA, USA, 1977; p. 11. [Google Scholar]
- Romero-Luna, M.P.; Mueller, D.; Mengistu, A.; Singh, A.K.; Hartman, G.L.; Wise, K.A. Advancing our understanding of charcoal rot in soybeans. J. Integr. Pest Manag. 2017, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gangopadhyay, S.; Wyllie, T.D.; Luedders, V.D. Charcoal rot disease of soybean transmitted by seeds. Plant Dis. Rep. 1970, 54, 1088–1091. [Google Scholar]
- Kendig, S.R.; Rupe, J.C.; Scott, H.D. Effect of irrigation and soil water stress on densities of Macrophomina phaseaolina in soil and roots of two soybean cultivars. Plant Dis. 2000, 84, 895–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, D.D.; Hartman, G.L.; Mueller, D.S.; Leitz, R.A.; Nickell, C.D.; Pedersen, W.L. Yield and seed quality of soybean cultivars infected with Sclerotinia sclerotiorum. Plant Dis. 1998, 82, 826–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziems, A.D.; Giesler, L.J.; Graef, G.L.; Redinbaugh, M.G.; Vacha, J.L.; Berry, S.A.; Madden, L.V.; Dorrance, A.E. Response of soybean cultivars to bean pod mottle virus infection. Plant Dis. 2007, 91, 719–726. [Google Scholar] [CrossRef] [Green Version]
- Brim, C.A.; Burton, J.W. Recurrent selection in soybeans. II. Selection for increased percent protein in seeds. Crop Sci. 1979, 19, 494–498. [Google Scholar] [CrossRef]
- Burton, J.W. Breeding soybean for improved protein quantity and quality. In World Soybean Research Conference III: Proceedings; Shibles, R., Ed.; Westview Press: Boulder, CO, USA; Ames, IA, USA, 1985; pp. 361–367. [Google Scholar]
- Wilson, R.F. Seed composition. In Soybeans: Improvement, Production, and Uses, 3rd ed.; Boerma, H., Specht, J.E., Eds.; American Society of Agronomy, Inc.; Crop Science Society of America; Soil Science Society of America Inc.: Madison, WI, USA, 2004; pp. 621–668. [Google Scholar]
- Egli, D.B.; Bruening, W.P. Accumulation of nitrogen and dry matter by soybean seeds with genetic differences in protein concentration. Crop Sci. 2007, 47, 359–366. [Google Scholar] [CrossRef]
- Bellaloui, N.; Reddy, N.K.; Zablotowicz, M.R.; Mengistu, A. Simulated glyphosate drift influences nitrate assimilation and nitrogen fixation in non-glyphosate-resistant soybean. J. Agric. Food Chem. 2006, 54, 3357–3364. [Google Scholar] [CrossRef] [PubMed]
- Carver, B.F.; Burton, J.W.; Carter, T.E., Jr.; Wilson, R.F. Response to environmental variation of soybean lines selected for altered unsaturated fatty acid composition. Crop Sci. 1986, 26, 1176–1180. [Google Scholar] [CrossRef]
- Rebetzke, G.J.; Pantalone, V.R.; Burton, J.W.; Carver, B.F.; Wilson, R.F. Phenotypic variation for saturated fatty acid content in soybean. Euphytica 1996, 91, 289–295. [Google Scholar] [CrossRef]
- Rennie, B.D.; Tanner, J.W. Fatty acid composition of oil from soybean seeds grown at extreme temperatures. J. Am. Oil Chem. Soc. 1989, 66, 1622–1624. [Google Scholar] [CrossRef]
- Zhang, M.; Barg, R.; Yin, M.; Gueta-Dahan, Y.; Leikin-Frenkel, A.; Salts, Y.; Shabtai, S.; Ben-Hayyim, G. Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J. 2005, 44, 361–371. [Google Scholar] [CrossRef]
- Klinkenberg, J.; Faist, H.; Saupe, S.; Lambertz, S.; Krischke, M.; Stingl, N.; Fekete, A.; Mueller, M.J.; Feussner, I.; Hedrich, R.; et al. Two fatty acid desaturases, stearoyl-acyl carrier protein d9-desaturase6 and fatty acid desaturase3, are involved in drought and hypoxia stress signaling in arabidopsis crown galls. Plant Physiol. 2014, 164, 570–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, X.; Yang, Q.; Lu, Y.; Wang, J.; Zhang, Q.; Pan, L.; Chen, M.; He, Y.; Yu, S. Genome-wide analysis of fatty acid desaturases in soybean (Glycine max). Plant Mol. Biol. Rep. 2011, 29, 769–783. [Google Scholar] [CrossRef] [Green Version]
- Garba, L.; Mohamad-Ali, M.S.; Oslan, S.N.; Zaliha, R.N.; Abdul-Rahman, R.B. Review on fatty acid desaturases and their roles in temperature acclimatization. J. Appl. Sci. 2017, 17, 282–295. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.-Q.; Novitzky, W.P.; Griffin, H.C.; Huber, S.C.; Dewey, R.E. Oleate desaturase enzymes of soybean: Evidence of regulation through differential stability and phosphorylation. Plant J. 2005, 44, 433–446. [Google Scholar] [CrossRef]
- Dardanelli, J.L.; Balzarini, M.; Martinez, M.J.; Cuniberti, M.; Resnik, S.; Ramunda, S.F.; Herrero, R.; Baigorri, H. Soybean maturity groups, environments, and their interaction define mega-environments for seed composition in Argentina. Crop Sci. 2006, 46, 1939–1947. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: San Diego, CA, USA, 2012; pp. 135–243. [Google Scholar]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition, 3rd ed.; Int. Potash Inst.: Worblaufen-Bern, Switzerland, 1982. [Google Scholar]
- Ding, G.; Yang, M.; Hu, Y.; Liao, Y.; Shi, L.; Xu, F. Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies. Ann. Bot. 2010, 105, 1221–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piper, E.L.; Boote, K.J. Temperature and cultivar effects of soybean seed oil and protein concentration. J. Am. Oil Chem. Soc. 1999, 76, 1233–1241. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Appelqvist, L.A. Variation in fatty acid composition of the different acyl-lipids in seed oils from four Sesamun species. J. Am. Oil Chem. Soc. 1994, 71, 135–139. [Google Scholar] [CrossRef]
- May, W.E.; Hume, D.L.; Hale, B.A. Effects of agronomic practices on free fatty acid levels in the oil of Ontario-grown spring canola. Can. J. Plant Sci. 1993, 74, 267–274. [Google Scholar] [CrossRef]
- AOAC. Method 988.05. In Official Methods of Analysis, 15th ed.; Helrich, K., Ed.; AOAC: Arlington, VA, USA, 1990a. [Google Scholar]
- AOAC. Method 920.39. In Official Methods of Analysis, 15th ed.; Helrich, K., Ed.; AOAC: Arlington, VA, USA, 1990b. [Google Scholar]
- Statistical Analysis Systems (SAS); SAS Institute: Cary, NC, USA, 2002–2012.
Genotype | Maturity Group | Drought Tolerant/Susceptible | Resistance/Susceptibility to Charcoal rot |
---|---|---|---|
DS-880 | MG V | Unknown | Moderately resistant |
DT97-4290 | MG IV | Unknown | Moderately resistant |
R07-7232 | MG V | Tolerant | Moderately resistant |
USG-75Z38 | MG V | Tolerant | Moderately resistant |
USG-Allen | MG V | Tolerant | Moderately resistant |
Osage | MG V | Tolerant | Moderately resistant |
Dyna-Gro36C44 | MG IV | Tolerant | Susceptible |
Progeny 4408 | MG IV | Tolerant | Susceptible |
R01-581F | MG V | Tolerant | Susceptible |
R02-1325 | MG V | Tolerant | Susceptible |
Trisoy-4788 | MG IV | Tolerant | Susceptible |
LS98-0358 | MG IV | Unknown | Susceptible |
Pharaoh | MG IV | Unknown | Susceptible |
2012 | 2013 | |||||||
---|---|---|---|---|---|---|---|---|
Genotype | Irrigated | Non-Irrigated | Irrigated | Non-Irrigated | ||||
DS-880 | 1572 | DC | 722 | GF | 1409 | E | 3175 | DC |
DT97-4290 | 212 | E | 590 | G | 1350 | E | 1278 | D |
R07-7232 | 1364 | DC | 1818 | EGF | 1976 | E | 5731 | C |
USG 75Z38 | 1158 | EDC | 2459 | EDF | 1643 | E | 3062 | DC |
USG Allen | 567 | ED | 986 | GF | 2257 | ED | 3826 | C |
Osage | 2249 | BDC | 4787 | EDC | 1953 | E | 3833 | C |
Dyna-Gro 36C44 | 11,427 | BA | 39,704 | BA | 7555 | BC | 43,326 | A |
Progeny 4408 | 1171 | EDC | 10,770 | BC | 6206 | BCD | 24,428 | BA |
R01-581F | 5195 | BAC | 10,431 | BC | 25,879 | A | 30,004 | BA |
R02-1325 | 3634 | BAC | 12,694 | BAC | 3491 | ECD | 39,340 | A |
Trisoy 4788 | 3104 | BDC | 9438 | DC | 3730 | ECD | 15,142 | B |
LS98-0358 | 6635 | BAC | 37,097 | BA | 15,528 | BA | 42,328 | A |
Pharaoh | 18,905 | A | 43,547 | A | 17,633 | BA | 32,183 | BA |
Effect | Protein | Oil | Palmitic | Stearic | Oleic | Linoleic | Linolenic |
---|---|---|---|---|---|---|---|
p Level | p Level | (C16:0) p Level | (C18:0) p Level | C18:1 p Level | (C18:2) p Level | (C18:3) p Level | |
Year | * | *** | ** | ** | ns | * | * |
Irr | * | * | ns | *** | *** | ** | *** |
Irr × Year | ns | *** | ns | ns | ns | ns | ns |
MG | *** | *** | ns | * | *** | *** | *** |
MG × Year | * | * | ns | ns | ns | ns | ns |
MG × Irr | ns | ns | ns | ns | ns | * | ns |
MG × Irr × Year | ns | ns | ns | ns | ns | ns | ns |
DT_S | *** | * | ns | *** | * | *** | ns |
DT-S × Year | ** | * | *** | *** | ns | ns | ns |
DT-S × Irr | *** | * | ns | ns | ns | ns | ns |
DT-S × Irr × Year | ns | * | ns | * | ns | ns | ns |
MG × DT-S | ns | *** | ns | ns | ns | ns | *** |
MG × DT-S × Year | ns | ns | ns | ns | ns | ns | ** |
MG × DT-S × Irr | ns | ns | ns | ns | * | ns | ns |
MG * DT-S * Irr * Year | ns | ns | ns | ns | ns | ns | ns |
Genotype (MG × DT-S) | *** | *** | *** | *** | *** | *** | *** |
Genotype × Year (MG × DT-S) | * | ** | ns | ns | *** | ns | ** |
Genotype × Irr (MG × DT-S) | *** | ns | ns | ns | ns | ns | ns |
Genotype × Irr × Year (MG × DT-S) | ns | ns | ns | ns | ns | ns | ns |
Residuals | 0.75 | 0.66 | 1.19 | 0.03 | 6.55 | 4.54 | 1.04 |
Irrigated | 2012 | |||||||
Genotype | Resistance | Protein | Oil | Palmitic | Stearic | Oleic | Linoleic | Linolenic |
DS-880 | MR | 42.15 | 22.20 | 12.50 | 4.08 | 17.35 | 56.58 | 9.40 |
DT97-4290 | MR | 42.43 | 21.95 | 11.90 | 4.00 | 21.98 | 54.95 | 8.03 |
R07-7232 | MR | 40.55 | 21.00 | 12.88 | 3.90 | 15.48 | 58.30 | 9.43 |
USG-75Z38 | MR | 40.93 | 21.78 | 11.63 | 3.90 | 20.50 | 56.48 | 8.35 |
USG-Allen | MR | 40.68 | 22.35 | 11.48 | 3.70 | 15.08 | 60.43 | 9.68 |
Osage | MR | 42.68 | 20.58 | 10.88 | 3.73 | 20.88 | 57.20 | 7.10 |
Dyna-Gro36C44 | S | 40.60 | 22.18 | 12.18 | 4.05 | 21.90 | 54.53 | 8.33 |
Progeny 4408 | S | 39.60 | 22.28 | 11.78 | 4.13 | 19.93 | 56.25 | 7.38 |
R01-581F | S | 39.40 | 21.73 | 11.90 | 4.18 | 16.93 | 58.53 | 8.25 |
R02-1325 | S | 38.85 | 21.85 | 12.43 | 4.10 | 16.65 | 57.18 | 9.45 |
Trisoy 4788 | S | 40.03 | 22.90 | 12.58 | 4.23 | 17.50 | 57.28 | 9.13 |
LS98-0358 | S | 41.83 | 22.65 | 10.93 | 3.78 | 19.73 | 56.53 | 9.13 |
Pharaoh | S | 42.05 | 21.88 | 10.98 | 3.78 | 19.65 | 58.43 | 9.05 |
LSD | 0.43 | 0.34 | 0.46 | 0.11 | 1.29 | 0.77 | 0.57 | |
Non-Irrigated | 2012 | |||||||
Genotype | Resistance | Protein | Oil | Palmitic | Stearic | Oleic | Linoleic | Linolenic |
DS-880 | MR | 42.23 | 22.08 | 12.83 | 4.15 | 21.43 | 56.28 | 8.13 |
DT97-4290 | MR | 42.00 | 21.28 | 12.45 | 4.25 | 23.50 | 54.60 | 6.73 |
R07-7232 | MR | 40.78 | 20.80 | 13.00 | 3.85 | 18.35 | 57.28 | 8.18 |
USG-75Z38 | MR | 41.05 | 21.15 | 11.50 | 3.90 | 24.23 | 57.38 | 6.63 |
USG-Allen | MR | 42.25 | 21.45 | 12.20 | 3.80 | 18.68 | 57.65 | 8.25 |
Osage | MR | 41.45 | 20.18 | 11.58 | 3.95 | 21.43 | 57.08 | 6.93 |
Dyna-Gro36C44 | S | 39.03 | 21.63 | 10.90 | 4.13 | 24.98 | 55.18 | 7.60 |
Progeny 4408 | S | 40.55 | 22.43 | 11.08 | 4.08 | 26.18 | 53.20 | 6.30 |
R01-581F | S | 39.23 | 22.08 | 12.10 | 4.13 | 19.35 | 57.30 | 7.08 |
R02-1325 | S | 39.55 | 21.10 | 12.75 | 4.15 | 18.13 | 57.15 | 7.80 |
Trisoy 4788 | S | 39.08 | 23.53 | 12.68 | 4.20 | 21.13 | 54.73 | 7.88 |
LS98-0358 | S | 40.18 | 22.28 | 11.93 | 4.08 | 22.00 | 56.10 | 7.38 |
Pharaoh | S | 40.98 | 21.43 | 11.70 | 4.03 | 20.00 | 57.03 | 7.60 |
LSD | 0.40 | 0.39 | 0.46 | 0.09 | 1.37 | 0.78 | 0.47 |
Irrigated | 2013 | |||||||
Genotype | Resistance | Protein | Oil | Palmitic | Stearic | Oleic | Linoleic | Linolenic |
DS-880 | MR | 40.98 | 20.08 | 11.63 | 4.00 | 20.68 | 55.13 | 9.50 |
DT97-4290 | MR | 40.90 | 20.20 | 11.83 | 4.00 | 20.88 | 55.53 | 6.65 |
R07-7232 | MR | 40.78 | 21.33 | 12.78 | 3.95 | 21.30 | 53.43 | 9.50 |
USG-75Z38 | MR | 40.78 | 20.58 | 10.48 | 3.85 | 22.38 | 56.48 | 6.53 |
USG-Allen | MR | 39.90 | 19.43 | 11.65 | 3.83 | 17.45 | 59.95 | 8.83 |
Osage | MR | 43.68 | 18.78 | 11.83 | 3.75 | 19.00 | 57.10 | 7.88 |
Dyna-Gro36C44 | S | 41.18 | 21.95 | 12.25 | 4.13 | 20.73 | 54.03 | 8.20 |
Progeny 4408 | S | 38.45 | 21.65 | 13.00 | 4.38 | 18.18 | 55.68 | 7.80 |
R01-581F | S | 39.35 | 21.20 | 13.13 | 4.13 | 18.98 | 55.85 | 7.20 |
R02-1325 | S | 38.78 | 21.18 | 11.83 | 3.95 | 22.68 | 53.93 | 8.25 |
Trisoy 4788 | S | 39.90 | 22.93 | 12.05 | 4.05 | 22.75 | 55.65 | 6.15 |
LS98-0358 | S | 40.75 | 22.68 | 13.50 | 4.30 | 17.65 | 57.08 | 8.45 |
Pharaoh | S | 41.28 | 19.53 | 12.33 | 4.23 | 18.33 | 57.18 | 7.23 |
LSD | 0.56 | 0.38 | 0.59 | 0.08 | 1.63 | 1.42 | 0.65 | |
Non-Irrigated | 2013 | |||||||
Genotypes | Resistance | Protein | Oil | Palmitic | Stearic | Oleic | Linoleic | Linolenic |
DS-880 | MR | 42.10 | 20.55 | 13.00 | 4.10 | 23.75 | 54.35 | 8.40 |
DT97-4290 | MR | 40.83 | 20.65 | 12.98 | 4.23 | 24.38 | 53.33 | 5.70 |
R07-7232 | MR | 42.25 | 20.75 | 12.55 | 3.95 | 27.85 | 58.00 | 8.78 |
USG-75Z38 | MR | 42.25 | 20.95 | 11.50 | 3.93 | 26.63 | 54.73 | 5.80 |
USG-Allen | MR | 41.68 | 20.28 | 11.80 | 3.88 | 20.80 | 58.90 | 6.90 |
Osage | MR | 41.08 | 20.35 | 12.28 | 3.98 | 19.18 | 57.10 | 7.03 |
Dyna-Gro36C44 | S | 39.83 | 21.85 | 12.10 | 4.30 | 23.70 | 53.63 | 7.85 |
Progeny 4408 | S | 39.55 | 21.80 | 12.95 | 4.43 | 23.63 | 54.13 | 6.05 |
R01-581F | S | 39.78 | 20.83 | 12.78 | 4.30 | 18.70 | 57.78 | 7.10 |
R02-1325 | S | 40.13 | 20.50 | 12.93 | 4.25 | 17.98 | 55.43 | 8.18 |
Trisoy 4788 | S | 39.58 | 22.98 | 13.33 | 4.43 | 25.18 | 51.43 | 5.45 |
LS98-0358 | S | 39.58 | 22.63 | 13.38 | 4.20 | 19.90 | 54.68 | 7.83 |
Pharaoh | S | 39.40 | 21.78 | 12.88 | 4.28 | 21.15 | 55.78 | 5.88 |
LSD | 0.48 | 0.53 | 0.58 | 0.12 | 1.21 | 1.10 | 0.61 |
IRR Year 2012 | |||||||
Nutrient | Protein | Oil | Palmitic | Stearic | Oleic | Linoleic | |
Oil | ns | ||||||
Palmitic | r = −0.29 | ns | |||||
p = * | |||||||
Stearic | −0.47 | ns | 0.59 | ns | |||
*** | *** | ||||||
Oleic | 0.36 | ns | −0.44 | ns | |||
** | *** | ||||||
Linoleic | ns | ns | ns | ns | −0.64 | ||
*** | |||||||
Linolenic | ns | ns | 0.40 | 0.32 | −0.60 | 0.28 | |
** | * | *** | * | ||||
NIRR Year 2012 | |||||||
Nutrient | Protein | Oil | Palmitic | Stearic | Oleic | Linoleic | Linolenic |
Oil | r = −0.48 | ||||||
p = *** | |||||||
Palmitic | ns | ns | |||||
Stearic | −0.29 | ns | 0.34 | ||||
* | ** | ||||||
Oleic | ns | 0.26 | −0.6384 | ||||
* | *** | ||||||
Linoleic | ns | −0.44 | −0.52 | ||||
** | *** | ||||||
Linolenic | ns | ns | ns | −0.32 | ns | ns | |
* |
IRR 2013 | ||||||
Nutrient | Protein | Oil | Palmitic | Stearic | Oleic | Linoleic |
Oil | r = −0.3757 | |||||
p = *** | ||||||
Palmitic | ns | ns | ||||
Stearic | −0.29 | 0.38 | 0.53 | |||
* | *** | *** | ||||
Oleic | ns | ns | −0.40 | ns | ||
*** | ||||||
Linoleic | ns | ns | ns | ns | −0.56 | |
*** | ||||||
Linolenic | ns | ns | 0.49 | ns | −0.28 | ns |
*** | * | |||||
NIRR Year 2013 | ||||||
Nutrient | Protein | Oil | Palmitic | Stearic | Oleic | Linoleic |
Oil | r = −0.38 | |||||
p = *** | ||||||
Palmitic | ns | ns | ||||
Stearic | −0.39 | ns | 0.55 | |||
** | *** | |||||
Oleic | ns | 0.34 | −0.29 | ns | ||
** | * | |||||
Linoleic | ns | −0.28 | −0.32 | −0.29 | −0.59 | |
* | * | * | *** | |||
Linolenic | ns | −0.27 | 0.36 | ns | −0.50 | ns |
* | ** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellaloui, N.; Mengistu, A.; Smith, J.R.; Abbas, H.K.; Accinelli, C.; Shier, W.T. Effects of Charcoal Rot on Soybean Seed Composition in Soybean Genotypes That Differ in Charcoal Rot Resistance under Irrigated and Non-Irrigated Conditions. Plants 2021, 10, 1801. https://doi.org/10.3390/plants10091801
Bellaloui N, Mengistu A, Smith JR, Abbas HK, Accinelli C, Shier WT. Effects of Charcoal Rot on Soybean Seed Composition in Soybean Genotypes That Differ in Charcoal Rot Resistance under Irrigated and Non-Irrigated Conditions. Plants. 2021; 10(9):1801. https://doi.org/10.3390/plants10091801
Chicago/Turabian StyleBellaloui, Nacer, Alemu Mengistu, James R. Smith, Hamed K. Abbas, Cesare Accinelli, and W. Thomas Shier. 2021. "Effects of Charcoal Rot on Soybean Seed Composition in Soybean Genotypes That Differ in Charcoal Rot Resistance under Irrigated and Non-Irrigated Conditions" Plants 10, no. 9: 1801. https://doi.org/10.3390/plants10091801
APA StyleBellaloui, N., Mengistu, A., Smith, J. R., Abbas, H. K., Accinelli, C., & Shier, W. T. (2021). Effects of Charcoal Rot on Soybean Seed Composition in Soybean Genotypes That Differ in Charcoal Rot Resistance under Irrigated and Non-Irrigated Conditions. Plants, 10(9), 1801. https://doi.org/10.3390/plants10091801