Salt and Drought Stress Responses in Cultivated Beets (Beta vulgaris L.) and Wild Beet (Beta maritima L.)
Abstract
:1. Introduction
2. Morpho-Physiological, Biochemical, and Molecular Changes under Salinity and Drought
2.1. A General Overview of Salt and Drought Stress Responses at Different Developmental Stages of Beets
2.2. Osmotic Adjustment through Accumulation of Compatible Solutes
2.3. Ion Transport
2.4. Antioxidative System
2.5. Selection of Salt- and Drought-Tolerant Beets Based on Different Parameters
2.6. An Overview of the Differences of Stress Responses in Cultivated Beets and Wild Beet
2.7. Molecular Mechanisms Mediating Salt or Drought Stress Response
2.7.1. Noncoding RNAs in Salt Stress Response of Beets
2.7.2. Beet Genes Known for Their Involvement in Response to Salt and Drought Stresses
Basic/Helix–Loop–Helix 93 (BvbHLH93)
Sucrose Non-Fermenting-1-Related Protein Kinase 2 (SnRK2)
Cystatin
S-Adenosylmethionine Decarboxylase (SAMDC)
S-Adenosylmethionine Synthetase (SAMS)
Glyoxalase I
BETA1
Serine O-Acetyltransferase (BvSAT)
Non-Symbiotic Hemoglobin (BvHb2)
Heat Shock Factor (BvHSF)
3. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lange, W.; Brandenburg, W.A.; De Bock, T.S.M. Taxonomy and cultonomy of beet (Beta vulgaris L.). Bot. J. Linn. Soc. 1999, 130, 81–96. [Google Scholar] [CrossRef]
- Henry, K. Fodder Beet. In Root and Tuber Crops. Handbook of Plant Breeding; Bradshaw, J.E., Ed.; Springer: New York, NY, USA, 2010; Volume 7, pp. 221–243. [Google Scholar]
- Biancardi, E.; Panella, L.; Lewellen, R. Beta Maritima: The Origin of Beets; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Bor, M.; Özdemir, F.; Türkan, I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci. 2003, 164, 77–84. [Google Scholar] [CrossRef]
- Lee, E.J.; An, D.; Nguyen, C.T.T.; Patil, B.S.; Kim, J.; Yoo, K.S. Betalain and Betaine Composition of Greenhouse- or Field-Produced Beetroot (Beta vulgaris L.) and Inhibition of HepG2 Cell Proliferation. J. Agric. Food Chem. 2014, 62, 1324–1331. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, T.; Baczek, N.; Wiczkowski, W. Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. J. Funct. Foods 2016, 27, 249–261. [Google Scholar] [CrossRef]
- Zhang, Y.; Nan, J.; Yu, B. OMICS Technologies and Applications in Sugar Beet. Front. Plant Sci. 2016, 7, 900. [Google Scholar] [CrossRef] [Green Version]
- Hussein, H.-A.A.; Mekki, B.B.; El-Sadek, M.E.A.; El Lateef, E.E. Effect of L-Ornithine application on improving drought tolerance in sugar beet plants. Heliyon 2019, 5, e02631. [Google Scholar] [CrossRef] [Green Version]
- Ghaffari, H.; Tadayon, M.R.; Nadeem, M.; Cheema, M.; Razmjoo, J. Proline mediated changes in antioxidant enzymatic activities and physiology of sugar beet under drought stress. Acta Physiol. Plant. 2019, 41. [Google Scholar] [CrossRef]
- Magaña, C.; Núñez-Sánchez, N.; Fernández-Cabanás, V.M.; García, P.; Serrano, A.; Pérez-Marín, D.; Peman, J.M.; Alcalde, E. Direct prediction of bioethanol yield in sugar beet pulp using near infrared spectroscopy. Bioresour. Technol. 2011, 102, 9542–9549. [Google Scholar] [CrossRef]
- Ghaffari, H.; Tadayon, M.R.; Bahador, M.; Razmjoo, J. Investigation of the proline role in controlling traits related to sugar and root yield of sugar beet under water deficit conditions. Agric. Water Manag. 2021, 243, 106448. [Google Scholar] [CrossRef]
- Ma, Y.; Dias, M.C.; Freitas, H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci. 2020, 11, 591911. [Google Scholar] [CrossRef]
- Nachshon, U. Cropland soil salinization and associated hydrology: Trends, processes and examples. Water 2018, 10, 1030. [Google Scholar] [CrossRef] [Green Version]
- Taghizadegan, M.; Toorchi, M.; Moghadam Vahed, M.; Khayamim, S. Evaluation of sugar beet breeding populations based morpho-physiological characters under salinity stress. Pak. J. Bot. 2019, 51. [Google Scholar] [CrossRef]
- Ober, E.S.; Rajabi, A. Abiotic Stress in Sugar Beet. Sugar Tech 2010, 12, 294–298. [Google Scholar] [CrossRef]
- Niazi, B.H.; Rozema, J.; Amin, R.; Salim, M.; Rashid, A. Physiological Characteristics of Fodderbeet Grown on Saline Sodic Soils of Pakistan. Pak. J. Biol. Sci. 1999, 2, 595–598. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, C.; Ribeiro, I.C.; Reisinger, V.; Planchon, S.; Veloso, M.M.; Renaut, J.; Eichacker, L.; Ricardo, C.P. Salinity effect on germination, seedling growth and cotyledon membrane complexes of a Portuguese salt marsh wild beet ecotype. Theor. Exp. Plant Physiol. 2018, 30, 113–127. [Google Scholar] [CrossRef]
- Wisniewska, A.; Andryka-Dudek, P.; Czerwinski, M.; Choluj, D. Fodder beet is a reservoir of drought tolerance alleles for sugar beet breeding. Plant Physiol. Biochem. 2019, 145, 120–131. [Google Scholar] [CrossRef]
- Niazi, B.H.; Rozema, J.; Broekman, R.A.; Salim, M. Dynamics of Growth and Water Relations of Fodderbeet and Seabeet in Response to Salinity. J. Agron. Crop Sci. 2000, 184, 101–109. [Google Scholar] [CrossRef]
- Romano, A.; Sorgonà, A.; Lupini, A.; Araniti, F.; Stevanato, P.; Cacco, G.; Abenavoli, M.R. Morpho-physiological responses of sugar beet (Beta vulgaris L.) genotypes to drought stress. Acta Physiol. Plant. 2013, 35, 853–865. [Google Scholar] [CrossRef]
- Lv, X.; Chen, S.; Wang, Y. Advances in Understanding the Physiological and Molecular Responses of Sugar Beet to Salt Stress. Front. Plant Sci. 2019, 10, 1431. [Google Scholar] [CrossRef] [Green Version]
- Khayamim, S.; Afshari, R.T.; Sadeghian, S.Y.; Poustini, K.; Rouzbeh, F.; Abbasi, Z. Seed Germination, Plant Establishment, and Yield of Sugar Beet Genotypes under Salinity Stress. J. Agric. Sci. Technol. 2014, 16, 779–790. [Google Scholar]
- Sakr, H.O.; Awad, H.A.; Seadh, S.E.; Abido, W.A.E. Influence of irrigation withholding and potassium levels on forage yields and its quality of fodder beet. J. Crop Sci. 2014, 5, 116–125. [Google Scholar]
- Ober, E.S.; Luterbacher, M.C. Genotypic variation for drought tolerance in Beta vulgaris. Ann. Bot. 2002, 89, 917–924. [Google Scholar] [CrossRef] [Green Version]
- Mostafavi, K. Effect of Salt Stress on Germination and Early Seedling Growth Stage of Sugar Beet Cultivars. Am.-Eurasian J. Sustain. Agric. 2012, 6, 120–125. [Google Scholar]
- Kraft, T.; Fridlund, B.; Hjerdin, A.; Sall, T.; Tuvesson, S.; Hallden, C. Estimating genetic variation in sugar beets and wild beets using pools of individuals. Genome 1997, 40, 527–533. [Google Scholar] [CrossRef]
- Saccomani, M.; Stevanato, P.; Trebbi, D.; McGrath, J.; Biancardi, E. Molecular and morpho-physiological characterization of sea, ruderal and cultivated beets. Euphytica 2009, 169, 19–29. [Google Scholar] [CrossRef]
- Dohm, J.C.; Minoche, A.E.; Holtgrawe, D.; Capella-Gutierrez, S.; Zakrzewski, F.; Tafer, H.; Rupp, O.; Sorensen, T.R.; Stracke, R.; Reinhardt, R.; et al. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 2014, 505, 546–549. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez Del Rio, A.; Minoche, A.E.; Zwickl, N.F.; Friedrich, A.; Liedtke, S.; Schmidt, T.; Himmelbauer, H.; Dohm, J.C. Genomes of the wild beets Beta patula and Beta vulgaris ssp. maritima. Plant J. 2019, 99, 1242–1253. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.J.; Kim, J.W.; Begum, M.K.; Sohel, M.A.T.; Lim, Y.-S. Physiological and Biochemical Changes in Sugar Beet Seedlings to Confer Stress Adaptability under Drought Condition. Plants 2020, 9, 1511. [Google Scholar] [CrossRef]
- Skorupa, M.; Golebiewski, M.; Kurnik, K.; Niedojadlo, J.; Kesy, J.; Klamkowski, K.; Wojcik, K.; Treder, W.; Tretyn, A.; Tyburski, J. Salt stress vs. salt shock-the case of sugar beet and its halophytic ancestor. BMC Plant Biol. 2019, 19, 57. [Google Scholar] [CrossRef] [Green Version]
- Deveci, M.; Öztürk, Ş.; Altıntaş, S.; Arın, L. The effect of irrigation water salinity on the morphological and physiological traits of Swish Chard (Beta vulgaris L. var. cicla Moq.). Turk. J. Agric.-Food Sci. Technol. 2019, 7, 903–907. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Stevanato, P.; Yu, L.; Zhao, H.; Sun, X.; Sun, F.; Li, J.; Geng, G. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. J. Plant Res. 2017, 130, 1079–1093. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, Z. Evaluation of sugar beet monogerm O-type lines for salinity tolerance at vegetative stage. Afr. J. Biotechnol. 2020, 19, 602–612. [Google Scholar] [CrossRef]
- Tahjib-Ui-Arif, M.; Sohag, A.; Afrin, S.; Bashar, K.; Afrin, T.; Mahamud, A.G.M.; Polash, M.; Hossain, M.; Sohel, M.; Brestic, M.; et al. Differential Response of Sugar Beet to Long-Term Mild to Severe Salinity in a Soil–Pot Culture. Agriculture 2019, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Wang, G.; Kang, C.; Jia, S.; Liu, L. Studies on the interspecific crossing of cultivated sugar beet and Beta corolliflora Zoss. China Sugarbeet 1994, 3, 2–7. [Google Scholar]
- Yang, L.; Ma, C.; Wang, L.; Chen, S.; Li, H. Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14. J. Plant Physiol. 2012, 169, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, I.C.; Pinheiro, C.; Ribeiro, C.M.; Veloso, M.M.; Simoes-Costa, M.C.; Evaristo, I.; Paulo, O.S.; Ricardo, C.P. Genetic Diversity and Physiological Performance of Portuguese Wild Beet (Beta vulgaris spp. maritima) from Three Contrasting Habitats. Front. Plant Sci. 2016, 7, 1293. [Google Scholar] [CrossRef] [Green Version]
- Van Geyt, J.P.C.; Lange, W.; Oleo, M.; De Bock, T.S.M. Natural variation within the genus Beta and its possible use for breeding sugar beet: A review. Euphytica 1990, 49, 57–76. [Google Scholar] [CrossRef]
- Chołuj, D.; Wisniewska, A.; Szafranski, K.M.; Cebula, J.; Gozdowski, D.; Podlaski, S. Assessment of the physiological responses to drought in different sugar beet genotypes in connection with their genetic distance. J. Plant Physiol. 2014, 171, 1221–1230. [Google Scholar] [CrossRef]
- Rozema, J.; Cornelisse, D.; Zhang, Y.; Li, H.; Bruning, B.; Katschnig, D.; Broekman, R.; Ji, B.; van Bodegom, P. Comparing salt tolerance of beet cultivars and their halophytic ancestor: Consequences of domestication and breeding programmes. AoB Plants 2015, 7. [Google Scholar] [CrossRef] [Green Version]
- Shaw, B.; Thomas, T.H.; Cooke, D.T. Responses of sugar beet (Beta vulgaris L.) to drought and nutrient deficiency stress. Plant Growth Regul. 2002, 37, 77–83. [Google Scholar] [CrossRef]
- Yu, B.; Chen, M.; Grin, I.; Ma, C. Mechanisms of Sugar Beet Response to Biotic and Abiotic Stresses. In Mechanisms of Genome Protection and Repair; Zharkov, D.O., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 167–194. [Google Scholar]
- Gisbert, C.; Timoneda, A.; Porcel, R.; Ros, R.; Mulet, J.M. Overexpression of BvHb2, a Class 2 Non-Symbiotic Hemoglobin from Sugar Beet, Confers Drought-Induced Withering Resistance and Alters Iron Content in Tomato. Agronomy 2020, 10, 1754. [Google Scholar] [CrossRef]
- Ji, M.; Wang, K.; Wang, L.; Chen, S.; Li, H.; Ma, C.; Wang, Y. Overexpression of a S-Adenosylmethionine Decarboxylase from Sugar Beet M14 Increased Araidopsis Salt Tolerance. Int. J. Mol. Sci. 2019, 20, 1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, S.; Tian, Y.; Wang, Q.; Chen, S.; Li, H.; Ma, C.; Li, H. Functional Characterization of a Sugar Beet BvbHLH93 Transcription Factor in Salt Stress Tolerance. Int. J. Mol. Sci. 2021, 22, 3669. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Wheeler, R.M.; Levine, L.H.; Stutte, G.W. Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply. J. Plant Physiol. 2001, 158, 767–776. [Google Scholar] [CrossRef]
- Clarke, N.; Hetschkun, H.; Jones, C.; Boswell, E.; Marfaing, H. Identification of Stress Tolerance Traits in Sugar Beet. In Proceedings of the Interacting Stresses on Plants in a Changing Climate; Springer: Berlin/Heidelberg, Germany, 1993; pp. 511–524. [Google Scholar]
- Stagnari, F.; Galieni, A.; Speca, S.; Pisante, M. Water stress effects on growth, yield and quality traits of red beet. Sci. Hortic. 2014, 165, 13–22. [Google Scholar] [CrossRef]
- Liu, L.; Wang, B.; Liu, D.; Zou, C.; Wu, P.; Wang, Z.; Wang, Y.; Li, C. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots. BMC Plant Biol. 2020, 20, 138. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Stevanato, P.; Lv, C.; Li, R.; Geng, G. Comparative physiological and proteomic analysis of two sugar beet genotypes with contrasting salt tolerance. J. Agric. Food Chem. 2019, 67, 6056–6073. [Google Scholar] [CrossRef]
- Vitali, V.; Sutka, M.; Ojeda, L.; Aroca, R.; Amodeo, G. Root hydraulics adjustment is governed by a dominant cell-to-cell pathway in Beta vulgaris seedlings exposed to salt stress. Plant Sci. 2021, 306. [Google Scholar] [CrossRef]
- Li, J.; Cui, J.; Cheng, D.; Dai, C.; Liu, T.; Wang, C.; Luo, C. iTRAQ protein profile analysis of sugar beet under salt stress: Different coping mechanisms in leaves and roots. BMC Plant Biol. 2020, 20, 347. [Google Scholar] [CrossRef]
- AlKahtani, M.D.F.; Hafez, Y.M.; Attia, K.; Rashwan, E.; Husnain, L.A.; AlGwaiz, H.I.M.; Abdelaal, K.A.A. Evaluation of Silicon and Proline Application on the Oxidative Machinery in Drought-Stressed Sugar Beet. Antioxidants 2021, 10, 398. [Google Scholar] [CrossRef]
- Li, J.; Cui, J.; Dai, C.; Liu, T.; Cheng, D.; Luo, C. Whole-Transcriptome RNA Sequencing Reveals the Global Molecular Responses and CeRNA Regulatory Network of mRNAs, lncRNAs, miRNAs and circRNAs in Response to Salt Stress in Sugar Beet (Beta vulgaris). Int. J. Mol. Sci. 2021, 22, 289. [Google Scholar] [CrossRef]
- Chołuj, D.; Karwowska, R.; Jasińska, M.; Haber, G. Growth and dry matter partitioning in sugar beet plants (Beta vulgaris L.) under moderate drought. Plant Soil Environ. 2004, 50, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Bloch, D.; Hoffmann, C.M.; Märländer, B. Impact of water supply on photosynthesis, water use and carbon isotope discrimination of sugar beet genotypes. Eur. J. Agron. 2006, 24, 218–225. [Google Scholar] [CrossRef]
- Mehrandish, M.; Moeini, M.J.; Armin, M. Sugar beet (Beta vulgaris L.) response to potassium application under full and deficit irrigation. Eur. J. Exp. Biol. 2012, 2, 2113–2119. [Google Scholar]
- Daoud, S.; Harrouni, C.; Huchzermeyer, B.; Koyro, H.W. Comparison of salinity tolerance of two related subspecies of Beta vulgaris: The sea beet (Beta vulgaris ssp. maritima) and the sugar beet (Beta vulgaris ssp. vulgaris). In Biosaline Agriculture and High Salinity Tolerance; Abdelly, C., Öztürk, M., Ashraf, M., Grignon, C., Eds.; Birkhäuser Basel: Basel, Swtizerland, 2008. [Google Scholar]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Naguib, W.B.; Divte, P.R.; Chandra, A.; Sathee, L.; Singh, B.; Mandal, P.K.; Anand, A. Raffinose accumulation and preferential allocation of carbon (14 C) to developing leaves impart salinity tolerance in sugar beet. Physiol. Plant. 2021, 1–13. [Google Scholar] [CrossRef]
- Daoud, S.; Koyro, H.-W.; Harrouni, M.C.; Schmidt, A.; Papenbrock, J. Salinity Tolerance of Beta vulgaris ssp. maritima. Part II. Physiological and Biochemical Regulation; Springer: Dordrecht, The Netherlands, 2003; pp. 51–57. [Google Scholar]
- El-Sarag, E.I. Response of Fodder Beet Cultivars to Water Stress and Nitrogen Fertilization in Semi-Arid Regions. Am.-Eurasian J. Agric. Environ. Sci. 2013, 13, 1168–1175. [Google Scholar] [CrossRef]
- Rasouli, F.; Kiani-Pouya, A.; Li, L.; Zhang, H.; Chen, Z.; Hedrich, R.; Wilson, R.; Shabala, S. Sugar Beet (Beta vulgaris) guard cells responses to salinity stress: A proteomic analysis. Int. J. Mol. Sci. 2020, 21, 2331. [Google Scholar] [CrossRef] [Green Version]
- Bagatta, M.; Pacifico, D.; Mandolino, G. Evaluation of the osmotic adjustment response within the genus Beta. J. Sugar Beet Res. 2008, 45, 119–133. [Google Scholar] [CrossRef]
- Koyro, H.-W.; Daoud, S.; Harrouni, C.; Huchzermeyer, B. Strategies of a potential cash crop halophyte (Beta vulgaris ssp. maritima) to avoid salt injury. Trop. Ecol. 2006, 47, 191–200. [Google Scholar]
- Geng, G.; Lv, C.; Stevanato, P.; Li, R.; Liu, H.; Yu, L.; Wang, Y. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. Int. J. Mol. Sci. 2019, 20, 5910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, C.M. Sucrose Accumulation in Sugar Beet Under Drought Stress. J. Agron. Crop Sci. 2010. [Google Scholar] [CrossRef]
- Koyro, H.-W.; Huchzermeyer, B. The physiological response of Beta vulgaris ssp. maritima to sea water irrigation. In Water Management, Salinity and Pollution Control towards Sustainable Irrigation in the Mediterranean Region. Special Volume: Salinity Problems and Halophyte Use; Lieth, H., Hamdy, A., Koyro, H.-W., Eds.; Technomack: Bari, Italy, 1997; pp. 29–50. [Google Scholar]
- Ghoulam, C.; Foursy, A.; Fares, K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot. 2002, 47, 39–50. [Google Scholar] [CrossRef]
- Chołuj, D.; Karwowska, R.; Ciszewska, A.; Jasińska, M. Influence of long-term drought stress on osmolyte accumulation in sugar beet (Beta vulgaris L.) plants. Acta Physiol. Plant. 2008, 30, 679–687. [Google Scholar] [CrossRef]
- Kito, K.; Yamane, K.; Yamamori, T.; Matsuhira, H.; Tanaka, Y.; Takabe, T. Isolation, functional characterization and stress responses of raffinose synthase genes in sugar beet. J. Plant Biochem. Biotechnol. 2018, 27, 36–45. [Google Scholar] [CrossRef]
- Hajiboland, R.; Joudmand, A. The K/Na replacement and function of antioxidant defence system in sugar beet (Beta vulgaris L.) cultivars. Acta Agric. Scand. 2009, 59, 246–259. [Google Scholar] [CrossRef]
- Yolcu, S.; Ozdemir, F.; Güler, A.; Bor, M. Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress. Plant Physiol. Biochem. 2016, 100, 37–46. [Google Scholar] [CrossRef]
- Koyro, H.-W. Study of Potential Cash Crop Halophytes by a Quick Check System: Determination of the Threshold of Salinity Tolerance and the Ecophysiological Demands; Springer: Dordrecht, The Netherlands, 2003; pp. 5–17. [Google Scholar]
- Guntur, S.V.; Mackowiak, C.; Wheeler, R.M. Recycling of sodium in advanced life support-strategies based on crop production systems. Life Support Biosph. Sci. 1999, 6, 153–160. [Google Scholar]
- Bloch, D.; Hoffman, C.M.; Märländer, B. Solute accumulation as a cause for quality losses in sugar beet submitted to continuous and temporary drought stress. J. Agron. Crop Sci. 2006, 192, 17–24. [Google Scholar] [CrossRef]
- Wakeel, A.; Sumer, A.; Hanstein, S.; Yan, F.; Schubert, S. In vitro effect of different Na+/K+ ratios on plasma membrane H+-ATPase activity in maize and sugar beet shoot. Plant Physiol. Biochem. 2011, 49, 341–345. [Google Scholar] [CrossRef]
- Durr, C.; Boiffin, J. Sugarbeet seedling growth from germination to first leaf stage. J. Agric. Sci. Camb. 1995, 124, 427–435. [Google Scholar] [CrossRef]
- Sadeghian, S.Y.; Yavari, N. Effect of Water-Deficit Stress on Germination and Early Seedling Growth in Sugar Beet. J. Agron. Crop Sci. 2004, 190, 138–144. [Google Scholar] [CrossRef]
- Ghoulam, C.; Fares, K. Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L.). Seed Sci. Technol. 2001, 29, 357–364. [Google Scholar]
- Piernik, A.; Hrynkiewicz, K.; Wojciechowska, A.; Szymanska, S.; Lis, M.I.; Muscolo, A. Effect of halotolerant endophytic bacteria isolated from Salicornia europaea L. on the growth of fodder beet (Beta vulgaris L.) under salt stress. Arch. Agron. Soil Sci. 2017, 63, 1404–1418. [Google Scholar] [CrossRef]
- Szymanska, S.; Tyburski, J.; Piernik, A.; Sikora, M.; Mazur, J.; Katarzyna, H. Raising Beet Tolerance to Salinity through Bioaugmentation with Halotolerant Endophytes. Agronomy 2020, 10, 1571. [Google Scholar] [CrossRef]
- Catusse, J.; Strub, J.M.; Job, C.; Dorsselaer, A.; Job, D. Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression. Proc. Natl. Acad. Sci. USA 2008, 105, 10262–10267. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Cui, J.; Lu, Z.; Cheng, D.; Luo, C. Screening of tolerance to NaCl in sugar beet germplasms. China Beet Sugar 2008, 4, 7–9. [Google Scholar]
- Shannon, M.C.; Grieve, C.M.; Lesch, S.M.; Draper, J.H. Analysis of salt tolerance in nine leafy vegetables irrigated with saline drainage water. J. Am. Soc. Hortic. Sci. 2000, 125, 658–664. [Google Scholar] [CrossRef] [Green Version]
- McGrath, J.M.; Derrico, C.A.; Morales, M.; Copeland, L.O.; Christenson, D.R. Germination of sugar beet (Beta vulgaris L.) seed submerged in hydrogen peroxide and water as a means to discriminate cultivar and seedlot vigor. Seed Sci. Technol. 2000, 28, 607–620. [Google Scholar]
- Monti, A.; Barbanti, L.; Venturi, G. Photosynthesis on individual leaves of sugar beet (Beta vulgaris) during the ontogeny at variable water regimes. Ann. Appl. Biol. 2007, 151, 155–165. [Google Scholar] [CrossRef]
- Skonieczek, P.; Nowakowski, M.; Piszczek, J.; Matyka, Ł.; Żurek, M.; Rychcik, B.; Kaźmierczak, M. Sensitivity of 24 sugar beet cultivars to water deficit during emergence. Acta Agrophys. 2018, 25, 409–419. [Google Scholar] [CrossRef]
- Munns, R.; Passioura, J.B.; Colmer, T.D.; Byrt, C.S. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol. 2020, 225, 1091–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Jiang, J.-G. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ. Rev. 2010, 18, 309–319. [Google Scholar] [CrossRef]
- Pakniyat, H.; Armion, M. Sodium and proline accumulation as osmoregulators in tolerance of sugar beet genotypes to salinity. Pak. J. Biol. Sci. 2007, 22, 4081–4086. [Google Scholar] [CrossRef] [Green Version]
- Sanders, D. The salinity challenge. New Phytol. 2020, 225, 1047–1048. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, N.; Hermans, C. Proline accumulation in plants: A review. Amino Acids 2008, 35, 753–759. [Google Scholar] [CrossRef]
- Göring, H.; Thien, B.H. Influence of Nutrient Deficiency on Proline Accumulation in the Cytoplasm of Zea mays L. Seedlings. Biochem. Physiol. Pflanz. 1979, 174, 9–16. [Google Scholar] [CrossRef]
- Yamada, N.; Takahashi, H.; Kitou, K.; Sahashi, K.; Tamagake, H.; Tanaka, Y.; Takabe, T. Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine. Plant Physiol. Biochem. 2015, 96, 217–221. [Google Scholar] [CrossRef]
- Yamada, N.; Promden, W.; Yamane, K.; Tamagake, H.; Hibino, T.; Tanaka, Y.; Takabe, T. Preferential accumulation of betaine uncoupled to choline monooxygenase in young leaves of sugar beet--importance of long-distance translocation of betaine under normal and salt-stressed conditions. J. Plant Physiol. 2009, 166, 2058–2070. [Google Scholar] [CrossRef]
- Li, Y.Y.; Geng, Q.Y.; Fei, C.; Fan, H. Physiological responses of sugar beet (Beta vulgaris) to drought stress during vegetative development period under drip irrigation. Ying Yong Sheng Tai Xue Bao 2016, 27, 201–206. [Google Scholar]
- Godoy, F.; Olivos-Hernández, K.; Stange, C.; Handford, M. Abiotic Stress in Crop Species: Improving Tolerance by Applying Plant Metabolites. Plants 2021, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Wedeking, R.; Mahlein, A.K.; Steiner, U.; Oerke, E.C.; Goldbach, H.E.; Wimmer, M.A. Osmotic adjustment of young sugar beets (Beta vulgaris) under progressive drought stress and subsequent rewatering assessed by metabolite analysis and infrared thermography. Funct. Plant Biol. 2017, 44, 119–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, M.J.; Primavesi, L.F.; Jhurreea, D.; Zhang, Y. Trehalose metabolism and signaling. Annu. Rev. Plant Biol. 2008, 59, 417–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieberl, P.; Ehrl, C.; Pommerrenig, B.; Graus, D.; Marten, I.; Jung, B.; Ludewig, F.; Koch, W.; Harms, K.; Flügge, U.-I.; et al. Functional characterisation and cell specificity of BvSUT1, the transporter that loads sucrose into the phloem of sugar beet (Beta vulgaris L.) source leaves. Plant Biol. 2017, 19, 315–326. [Google Scholar] [CrossRef]
- Jung, B.; Ludewig, F.; Schulz, A.; Meißner, G.; Wöstefeld, N.; Flügge, U.-I.; Pommerrenig, B.; Wirsching, P.; Sauer, N.; Koch, W.; et al. Identification of the transporter responsible for sucrose accumulation in sugar beet taproots. Nat. Plants 2015, 1. [Google Scholar] [CrossRef]
- Mathan, J.; Singh, A.; Ranjan, A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice. Physiol. Plant. 2021, 171, 620–637. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, S.; Yunjuan, R.; Chen, S.; Liesche, J. Regulation of Sucrose Transporters and Phloem Loading in Response to Environmental Cues. Plant Physiol. 2018, 176, 930–945. [Google Scholar] [CrossRef] [Green Version]
- Pertl-Obermeyer, H.; Trentmann, O.; Duscha, K.; Neuhaus, H.E.; Schulze, W.X. Quantitation of Vacuolar Sugar Transporter Abundance Changes Using QconCAT Synthtetic Peptides. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.S.; Persicke, M.; ElSayed, A.I.; Kalinowski, J.; Dietz, K.J. Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. J. Exp. Bot. 2017, 68, 5961–5976. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, C.M.; Kenter, C. Yield Potential of Sugar Beet-Have We Hit the Ceiling? Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef]
- ElSayed, A.; Rafudeen, M.; Golldack, D. Physiological aspects of raffinose family oligosaccharides in plants: Protection against abiotic stress. Plant Biol. 2014, 16, 1–8. [Google Scholar] [CrossRef]
- Giri, J. Glycinebetaine and abiotic stress tolerance in plants. Plant Signal. Behav. 2011, 6, 1746–1751. [Google Scholar] [CrossRef]
- Liu, L.; Ueda, A.; Saneoka, H. Physiological responses of white Swiss chard (Beta vulgaris L. subsp. cicla) to saline and alkaline stresses. Aust. J. Crop Sci. 2013, 7, 1046–1052. [Google Scholar]
- Chen, T.H.H.; Murata, N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant Biol. 2002, 5, 250–257. [Google Scholar] [CrossRef]
- Brouquisse, R.; Weigel, P.; Rhodes, D.; Yocum, C.F.; Hanson, A.D. Evidence for a Ferredoxin-Dependent Choline Monooxygenase from Spinach Chloroplast Stroma. Plant Physiol. 1989, 90, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Tan, W.; Yang, X.H.; Zhang, H.X. Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep. 2008, 27, 1113–1124. [Google Scholar] [CrossRef]
- McCue, K.F.; Hanson, A.D. Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol. Biol. 1992, 18, 1–11. [Google Scholar] [CrossRef]
- Liu, L.; Nguyen, N.T.; Ueda, A.; Saneoka, H. Effects of 5-aminolevulinic acid on Swiss chard (Beta vulgaris L. subsp. cicla) seedling growth under saline conditions. Plant Growth Regul. 2014, 74, 219–228. [Google Scholar] [CrossRef]
- Takagi, H.; Yamada, S. Roles of enzymes in anti-oxidative response system on three species of chenopodiaceous halophytes under NaCl-stress condition. Soil Sci. Plant Nutr. 2013, 59, 603–611. [Google Scholar] [CrossRef]
- Goh, K.M.; Magat, S.S. Sodium chloride increases the yield of fodder beet (Beta vulgaris L.) in two New Zealand soils. N. Z. J. Agric. Res. 1989, 32, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Kapilan, R.; Vaziri, M.; Zwiazek, J.J. Regulation of aquaporins in plants under stress. Biol. Res. 2018, 51. [Google Scholar] [CrossRef] [PubMed]
- Assaha, D.V.M.; Ueda, A.; Saneoka, H.; Al-Yahyai, R.; Yaish, M.W. The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes. Front. Physiol. 2017, 8, 509. [Google Scholar] [CrossRef] [PubMed]
- Byrt, C.S.; Zhao, M.; Kourghi, M.; Bose, J.; Henderson, S.W.; Qiu, J.; Gilliham, M.; Schultz, C.; Schwarz, M.; Ramesh, S.A.; et al. Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca2+ and pH. Plant Cell Environ. 2017, 40, 802–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skorupa-Kłaput, M.; Szczepanek, J.; Kurnik, K.; Tretyn, A.; Tyburski, J. The expression patterns of plasma membrane aquaporins in leaves of sugar beet and its halophyte relative, Beta vulgaris ssp. maritima, in response to salt stress. Biologia 2015, 70. [Google Scholar] [CrossRef]
- Vysotskaya, L.; Hedley, P.E.; Sharipova, G.; Veselov, D.; Kudoyarova, G.; Morris, J.; Jones, H.G. Effect of salinity on water relations of wild barley plants differing in salt tolerance. AoB Plants 2010. [Google Scholar] [CrossRef]
- Kirsch, M.; Zhigang, A.; Viereck, R.; Löw, R.; Rausch, T. Salt stress induces an increased expression of V-type H +-ATPase in mature sugar beet leaves. Plant Mol. Biol. 1996, 32, 543–547. [Google Scholar] [CrossRef]
- Blumwald, E.; Poole, R.J. Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol. 1985, 78, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Pehlivan, N.; Sun, L.; Jarrett, P.; Yang, X.; Mishra, N.; Chen, L.; Kadioglu, A.; Shen, G.; Zhang, H. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants. Plant Cell Physiol. 2016, 57, 1069–1084. [Google Scholar] [CrossRef]
- Blumwald, E.; Cragoe, E.J.; Poole, R.J. Inhibition of Na+/H+ antiport activity in sugar beet tonoplast by analogs of amiloride. Plant Physiol. 1987, 85, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Blumwald, E.; Poole, R.J. Salt tolerance in suspension cultures of sugar beet: Induction of Na+/H+ antiport activity at the tonoplast by growth in salt. Plant Physiol. 1987, 83, 884–887. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; Apse, M.P.; Aharon, G.S.; Blumwald, E. Identification and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter in Beta vulgaris. Physiol. Plant. 2002, 116, 206–212. [Google Scholar] [CrossRef]
- Wu, G.-Q.; Wang, J.-L.; Li, S.-J. Genome-wide identification of Na+/H+ antiporter (NHX) genes in sugar beet (Beta vulgaris L.) and their regulated expression under salt stress. Genes 2019, 10, 401. [Google Scholar] [CrossRef] [Green Version]
- Adler, G.; Blumwald, E.; Bar-Zvi, D. The sugar beet gene encoding the sodium/proton exchanger 1 (BvNHX1) is regulated by a MYB transcription factor. Planta 2010, 232, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.F.; Duan, X.G.; Gu, X.F.; Gao, F.; Zhang, J.R. Efficient transformation of beet (Beta vulgaris) and production of plants with improved salt-tolerance. Plant Cell Tissue Organ Cult. 2005, 83, 259–270. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Q.; Yu, M.; Zhang, Y.; Wu, Y.; Zhang, H. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Plant Cell Environ. 2008, 31, 1325–1334. [Google Scholar] [CrossRef]
- Wakeel, A.; Hanstein, S.; Pitann, B.; Schubert, S. Hydrolytic and pumping activity of H+-ATPase from leaves of sugar beet (Beta vulgaris L.) as affected by salt stress. J. Plant Physiol. 2010, 167, 725–731. [Google Scholar] [CrossRef]
- Lino, B.; Chagolla, A.; de la Vara, L.E.G. Membrane proteins involved in transport, vesicle traffic and Ca(2+) signaling increase in beetroots grown in saline soils. Planta 2016, 244, 87–101. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, Y.; Yang, Z.; Wang, X.; Guo, Y. VAMP711 Is Required for Abscisic Acid-Mediated Inhibition of Plasma Membrane H+-ATPase Activity. Plant Physiol. 2018, 178, 1332–1343. [Google Scholar] [CrossRef] [Green Version]
- Foyer, C.H.; Descourvieres, P.; Kunert, K.J. Protection against oxygen radicals: An important defence mechanism studied in transgenic plants. Plant Cell Environ. 1994, 17, 507–523. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Hossain, M.S.; ElSayed, A.I.; Moore, M.; Dietz, K.J. Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet. J. Exp. Bot. 2017, 68, 1283–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunajska-Ordak, K.; Skorupa-Kłaput, M.; Kurnik, K.; Tretyn, A.; Tyburski, J. Cloning and Expression Analysis of a Gene Encoding for Ascorbate Peroxidase and Responsive to Salt Stress in Beet (Beta vulgaris). Plant Mol. Biol. Rep. 2014, 32, 162–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Li, H.; Yang, N.; Jiang, S.; Ma, C.; Li, H. Overexpression of a Monodehydroascorbate Reductase Gene from Sugar Beet M14 Increased Salt Stress Tolerance. Sugar Tech 2020. [Google Scholar] [CrossRef]
- Shao, H.B.; Liang, Z.S.; Shao, M.A. LEA proteins in higher plants: Structure, function, gene expression and regulation. Colloids Surf. B Biointerfaces 2005, 45, 131–135. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, M.; Jia, J.; Zhao, X.; Huang, X.; Ji, E.; Ni, L.; Jiang, M. An atypical late embryogenesis abundant protein OsLEA5 plays a positive role in ABA-induced antioxidant defense in Oryza Sativa L. Plant Cell Physiol. 2018, 59, 916–929. [Google Scholar] [CrossRef]
- Ekinci, M.; Ors, S.; Yıldırım, E.; Turan, M.; Sahin, U.; Dursun, A.; Kul, R. Determination of physiological indices and some antioxidant enzymes of chard exposed to nitric oxide under drought stress. Russ. J. Plant Physiol. 2020, 67, 740–749. [Google Scholar] [CrossRef]
- Khorshid, A.; Rajabi, A. Investigation on quantity and quality characters of sugar beet advanced breeding populations in drought and salinity stress and non-stress conditions. Int. J. Agric. Crop Sci. 2014, 7, 532–536. [Google Scholar]
- Topak, R.; Süheri, S.; Acar, B. Effect of different drip irrigation regimes on sugar beet (Beta vulgaris L.) yield, quality and water use efficiency in Middle Anatolian, Turkey. Irrig. Sci. 2010, 29, 79–89. [Google Scholar] [CrossRef]
- Mahmoud, E.-S.A.; Hassanin, M.A.; Borham, T.I.; Emara, E.I.R. Tolerance of some sugar beet varieties to water stress. Agric. Water Manag. 2018, 201, 144–151. [Google Scholar] [CrossRef]
- Fasahat, P.; Aghaeezadeh, M.; Jabbari, L.; Sadeghzadeh Hemayati, S.; Townson, P. Sucrose accumulation in sugar beet: From fodder beet selection to genomic selection. Sugar Tech 2018, 20, 635–644. [Google Scholar] [CrossRef]
- Hemayati, S.S.; Akbar, M.R.J.E.; Ghaemi, A.R.; Fasahat, P. Efficiency of white mustard and oilseed radish trap plants against sugar beet cyst nematode. Appl. Soil Ecol. 2017, 119, 192–196. [Google Scholar] [CrossRef]
- Mohammadian, R.; Khoyi, F.R.; Rahimian, H.; Moghadam, M.; Ghassemi-Golezani, K.; Sadeghian, S.Y. The effects of early season drought on stomatal conductance, leaf-air temperature difference and proline accumulation in sugar beet genotypes. J. Agric. Sci. 2001, 3, 181–192. [Google Scholar]
- Stagnari, F.; Galieni, A.; Speca, S.; Cafiero, G.; Pisante, M. Effect of light and water supply on morphological and physiological leaf traits of red beet. Agron. J. 2014, 106. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Z.; Ge, S.; Peng, B.; Zhang, K.; Hu, M.; Mai, W.; Tian, C. Root Morphology and Rhizosphere Characteristics Are Related to Salt Tolerance of Suaeda salsa and Beta vulgaris L. Front. Plant Sci. 2021, 12, 677767. [Google Scholar] [CrossRef]
- Yamane, K.; Oi, T.; Enomoto, S.; Nakao, T.; Arai, S.; Miyake, H.; Taniguchi, M. Three-dimensional ultrastructure of chloroplast pockets formed under salinity stress. Plant Cell Environ. 2018, 41, 563–575. [Google Scholar] [CrossRef]
- Scoffoni, C.; Sack, L. The causes and consequences of leaf hydraulic decline with dehydration. J. Exp. Bot. 2017, 68, 4479–4496. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Meyer, R.S.; Purugganan, M.D. Evolution of crop species: Genetics of domestication and diversification. Nat. Rev. Genet. 2013, 14, 840–852. [Google Scholar] [CrossRef]
- Skorupa, M.; Golebiewski, M.; Domagalski, K.; Kurnik, K.; Abu Nahia, K.; Zloch, M.; Tretyn, A.; Tyburski, J. Transcriptomic profiling of the salt stress response in excised leaves of the halophyte Beta vulgaris ssp. maritima. Plant Sci. 2016, 243, 56–70. [Google Scholar] [CrossRef]
- Sharp, R.E.; Poroyko, V.; Hejlek, J.G.; Spollen, W.G.; Springer, G.K.; Bohnert, H.J.; Nguyen, H.T. Root growth maintenance during water deficits: Physiology to functional genomics. J. Exp. Bot. 2004, 55, 2343–2351. [Google Scholar] [CrossRef] [Green Version]
- Fénart, S.; Arnaud, J.-F.; DeCauwer, I.; Cuguen, J. Nuclear and cytoplasmic genetic diversity in weed beet and sugar beet accessions compared to wild relatives: New insights into the genetic relationships within the Beta vulgaris complex species. Theor. Appl. Genet. 2008, 116, 1063–1077. [Google Scholar] [CrossRef]
- Bartsch, D.; Cuguen, J.; Biancardi, E.; Sweet, J. Environmental implications of gene flow from sugar beet to wild beet-current status and future research needs. Environ. Biosaf. Res. 2003, 2, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Guo, Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef] [Green Version]
- Putnik-Delić, M.; Maksimović, I.; Nagl, N.; Lalić, B. Sugar Beet Tolerance to Drought: Physiological and Molecular Aspects, Plant, Abiotic Stress and Responses to Climate Change; IntechOpen: London, UK, 2017. [Google Scholar]
- Skorupa, M.; Szczepanek, J.; Mazur, J.; Domagalski, K.; Tretyn, A.; Tyburski, J. Salt stress and salt shock differently affect DNA methylation in salt-responsive genes in sugar beet and its wild, halophytic ancestor. PLoS ONE 2021, 16, e0251675. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Sunkar, R.; Chinnusamy, V.; Zhu, J.; Zhu, J.-K. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci. 2007, 12, 301–309. [Google Scholar] [CrossRef]
- Hu, J.; Jin, J.; Qian, Q.; Huang, K.; Ding, Y. Small RNA and degradome profiling reveals miRNA regulation in the seed germination of ancient eudicot Nelumbo nucifera. BMC Genom. 2016, 17. [Google Scholar] [CrossRef] [Green Version]
- Curaba, J.; Singh, M.B.; Bhalla, P.L. miRNAs in the crosstalk between phytohormone signalling pathways. J. Exp. Bot. 2014, 65, 1425–1438. [Google Scholar] [CrossRef]
- Llave, C.; Xie, Z.; Kasschau, K.D.; Carrington, J.C. Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 2002, 297, 2053–2056. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Sun, Z.; Li, J.; Cheng, D.; Luo, C.; Dai, C. Characterization of miRNA160/164 and Their Targets Expression of Beet (Beta vulgaris) Seedlings Under the Salt Tolerance. Plant Mol. Biol. Rep. 2018, 36, 790–799. [Google Scholar] [CrossRef]
- Li, J.L.; Cui, J.; Cheng, D.Y. Computational identification and characterization of conserved miRNAs and their target genes in beet (Beta vulgaris). Genet. Mol. Res 2015, 14, 9103–9108. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-Q.; Liu, Z.-X.; Xie, L.-L.; Wang, J.-L. Genome-Wide Identification and Expression Analysis of the BvSnRK2 Genes Family in Sugar Beet (Beta vulgaris L.) Under Salt Conditions. J. Plant Growth Regul. 2021, 40. [Google Scholar] [CrossRef]
- Wang, Y.; Zhan, Y.; Wu, C.; Gong, S.; Zhu, N.; Chen, S.; Li, H. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance. Plant Sci. 2012, 191–192, 93–99. [Google Scholar] [CrossRef]
- Mulet, J.M.; Alemany, B.; Ros, R.; Calvete, J.J.; Serrano, R. Expression of a plant serine O-acetyltransferase in Saccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast 2004, 21, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Wang, Y.; Gu, D.; Nan, J.; Chen, S.; Li, H. Overexpression of S-Adenosyl-l-Methionine Synthetase 2 from Sugar Beet M14 Increased Arabidopsis Tolerance to Salt and Oxidative Stress. Int. J. Mol. Sci. 2017, 18, 847. [Google Scholar] [CrossRef]
- Wu, C.; Ma, C.; Pan, Y.; Gong, S.; Zhao, C.; Chen, S.; Li, H. Sugar beet M14 glyoxalaseI gene can enhance plant tolerance to abiotic stresses. J. Plant Res. 2013, 126, 415–425. [Google Scholar] [CrossRef]
- Ismail, R.M.; Youssef, A.B.; EL-Assal, S.E.-D.; Tawfik, M.S.; Abdallah, N.A. Cloning and characterization of Heat shock factor (BvHSF) from Sugar Beet (Beta vulgaris). Plant Arch. 2020, 20, 3725–3733. [Google Scholar]
- Uysal, O.; Cakiroglu, C.; Koc, A.; Karakaya, H.C. Characterization of the BETA1 gene, which might play a role in Beta vulgaris subsp. maritima salt tolerance. Turk. J. Bot. 2017, 41, 552–558. [Google Scholar] [CrossRef]
- Mao, X.; Li, Y.; Rehman, S.U.; Miao, L.; Zhang, Y.; Chen, X.; Yu, C.; Wang, J.; Li, C.; Jing, R. The Sucrose Non-Fermenting 1-Related Protein Kinase 2 (SnRK2) Genes Are Multifaceted Players in Plant Growth, Development and Response to Environmental Stimuli. Plant Cell Physiol. 2020, 61, 225–242. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Takano, T. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol. Biol. 2008, 68, 131–143. [Google Scholar] [CrossRef]
- Chen, D.D.; Shao, Q.S.; Yin, L.H.; Younis, A.; Zheng, B.S. Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. Front. Plant Sci. 2019, 9. [Google Scholar] [CrossRef]
- Gong, B.; Li, X.; VandenLangenberg, K.M.; Wen, D.; Sun, S.; Wei, M.; Li, Y.; Yang, F.; Shi, Q.; Wang, X. Overexpression of S-adenosyl-l-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnol. J. 2014, 12, 694–708. [Google Scholar] [CrossRef]
- Yadav, S.K.; Singla-Pareek, S.L.; Ray, M.; Reddy, M.K.; Sopory, S.K. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem. Biophys. Res. Commun. 2005, 337, 61–67. [Google Scholar] [CrossRef]
- Garrocho-Villegas, V.; Gopalasubramaniam, S.K.; Arredondo-Peter, R. Plant hemoglobins: What we know six decades after their discovery. Gene 2007, 398, 78–85. [Google Scholar] [CrossRef]
- Guo, M.; Liu, J.-H.; Ma, X.; Luo, D.-X.; Gong, Z.-H.; Lu, M.-H. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Yolcu, S.; Alavilli, H.; Lee, B.H. Natural Genetic Resources from Diverse Plants to Improve Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2020, 21, 8567. [Google Scholar] [CrossRef]
Salinity Stress | Drought Stress | References | ||
---|---|---|---|---|
Beta vulgaris L. | Beta maritima L. | Beta vulgaris L. | Beta maritima L. | |
A dramatic decline in germination and seedling growth | Capability of germination and seedling growth | A dramatic decline in germination and seedling growth | Capability of germination and seedling growth | [17,22,25,30,38] |
Decline in the root weight and root length | Higher root/shoot ratio | Decline in the root weight and root length | Higher root growth | [8,34,38,61] |
Low water content and small leaf area | Higher water content availability and smaller leaf area | Low water content and a dramatic decline in leaf area | Decrease in soil relative water content | [31,38,40,62,63] |
High leaf temperature due to the reduction of transpiration | Low leaf temperature | High leaf temperature due to the reduction of transpiration | Low leaf temperature | [18,38,42,61,64] |
- | Increments in specific leaf weight | Increments in specific leaf weight | Higher increments in specific leaf weight | [18,40,59,65,66] |
Decrease in chlorophyll content, photosynthetic rate, and stomatal conductance | Decrease in photosynthetic rate, and stomatal conductance | A dramatic decrease in chlorophyll content, photosynthetic rate, and stomatal conductance | Decrease in photosynthetic rate, and stomatal conductance | [30,31,40,52,59,67] |
High leaf succulence | Higher leaf succulence and higher volume of the palisade and spongy parenchyma cells | High leaf succulence in tolerant genotypes | Higher leaf succulence and higher volume of the palisade and spongy parenchyma cells | [62,65,68,69] |
Accumulation of compatible solutes | Higher osmotic adjustment ability by compatible solutes | Accumulation of compatible solutes | Higher osmotic adjustment ability by compatible solutes | [18,31,70,71,72] |
ROS accumulation and oxidative stress | Lower ROS accumulation and oxidative stress | Imbalance between ROS accumulation and antioxidants | - | [4,18,30,33,73,74] |
Increase or decrease in the activities of antioxidant enzymes | Increased activities of antioxidant enzymes | Increase or decrease in the activities of antioxidant enzymes | Increased activities of antioxidant enzymes | [4,54,74] |
Differences in the distribution of Na+ among leaf fractions | Preventing the internal accumulation of Na+ and Cl− ions in young organs | Accumulation of Na+, K+ and Cl− ions | - | [70,73,75,76,77] |
Decline in plasma membrane (PM) H+-ATPase activity in the tolerant genotype | - | - | - | [78] |
Gene Symbol | Gene Product/Full Name | References |
---|---|---|
Bet/ProT1 | Betaine/Proline transporter1 | [18,96,97] |
Bet/ProT2 | Betaine/Proline transporter2 | |
BADH | Betaine aldehyde dehydrogenase | [18,31,61,64,67,72,96,114,115] |
CMO | Choline monooxygenase | |
P5CS | δ-1-pyrroline-5-carboxylate synthase | |
BvRS1/2 | Raffinose synthase 1 | |
BvRS2 | Raffinose synthase 2 | |
BvGolS1 | Galactinol synthase 1 | |
Cu-Zn-SOD | Copper-zinc superoxide dismutase | [18,50,74,140,141,142] |
Mn-SOD | Manganese superoxide dismutase | |
Fe-SOD3 | Iron superoxide dismutase | |
POX | Peroxidase | |
APX | Ascorbate peroxidase | |
MDHAR | Monodehydroascorbate reductase | |
AOX | Alternative oxidase | |
Prx | Peroxiredoxins | |
LEA | Late embryogenesis abundant | |
HKT1 | High affinity K+ transporter | [31,122,124,129,130,131,132] |
KAT1 | Potassium channel | |
NHXs | Na+/H+ antiporters | |
SOS1 | Salt-overly-sensitive1 | |
PIPs | Plasma membrane aquaporins | |
V-ATPase | Vacuolar H+-ATPase | |
SnRK2 | The sucrose non-fermenting-1-related protein kinase 2 | [172] |
Cystatin | Cysteine protease inhibitor | [173] |
SAT | Serine O-acetyltransferase | [174] |
SAMDC | S-adenosylmethionine decarboxylase | [45,175] |
SAMS | S-adenosylmethionine synthetase | |
bHLH93 | Basic/helix-loop-helix93 | [46] |
Glyoxalase I | Methylglyoxal detoxification | [176] |
Hb2 | Class 2 non-symbiotic hemoglobin | [44] |
HSF | Heat shock factor | [177] |
BETA1 | - | [178] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yolcu, S.; Alavilli, H.; Ganesh, P.; Panigrahy, M.; Song, K. Salt and Drought Stress Responses in Cultivated Beets (Beta vulgaris L.) and Wild Beet (Beta maritima L.). Plants 2021, 10, 1843. https://doi.org/10.3390/plants10091843
Yolcu S, Alavilli H, Ganesh P, Panigrahy M, Song K. Salt and Drought Stress Responses in Cultivated Beets (Beta vulgaris L.) and Wild Beet (Beta maritima L.). Plants. 2021; 10(9):1843. https://doi.org/10.3390/plants10091843
Chicago/Turabian StyleYolcu, Seher, Hemasundar Alavilli, Pushpalatha Ganesh, Madhusmita Panigrahy, and Kihwan Song. 2021. "Salt and Drought Stress Responses in Cultivated Beets (Beta vulgaris L.) and Wild Beet (Beta maritima L.)" Plants 10, no. 9: 1843. https://doi.org/10.3390/plants10091843
APA StyleYolcu, S., Alavilli, H., Ganesh, P., Panigrahy, M., & Song, K. (2021). Salt and Drought Stress Responses in Cultivated Beets (Beta vulgaris L.) and Wild Beet (Beta maritima L.). Plants, 10(9), 1843. https://doi.org/10.3390/plants10091843