Characterization and Antimicrobial Activity of a Halophyte from the Asturian Coast (Spain): Limonium binervosum (G.E.Sm.) C.E.Salmon
Abstract
:1. Introduction
2. Results
2.1. Elemental Analysis and Calorific Values Calculation
2.2. Thermal Analyses
2.3. Vibrational Characterization
2.4. Hydromethanolic Extracts Characterization
2.4.1. Phenolic Contents
2.4.2. Analysis of Hydromethanolic Extracts by GC–MS
2.5. Antimicrobial Activity
2.5.1. In Vitro Antibacterial Activity
2.5.2. In Vitro Antifungal Activity
3. Discussion
3.1. Elemental Analysis and Calorific Values Calculation
3.2. Phytochemical Composition
3.3. Antimicrobial Activity of Limonium spp. Extracts
3.4. Antimicrobial Activity of the Main Identified Phytochemicals
3.5. On the Synergistic Behavior Observed for the Conjugate Complexes
4. Material and Methods
4.1. Reagents
4.2. Plant Material and Extraction Procedure
4.3. Bacterial and Fungal Isolates
4.4. Physicochemical Characterization
4.5. In Vitro Antibacterial Activity Assessment
4.6. In Vitro Antifungal Activity Assessment
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caperta, A.D.; Castro, S.; Loureiro, J.; Róis, A.; Conceição, S.; Costa, J.; Rhazi, L.; Santo, D.E.; Arsénio, P. Biogeographical, ecological and ploidy variation in related asexual and sexual Limoniumtaxa (Plumbaginaceae). Bot. J. Linn. Soc. 2016, 183, 75–93. [Google Scholar] [CrossRef]
- Lledó, M.D.; Crespo, M.B.; Fay, M.F.; Chase, M.W. Molecular phylogenetics of Limonium and related genera (Plumbaginaceae): Biogeographical and systematic implications. Am. J. Bot. 2005, 92, 1189–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmon, C.E. Limonium binervosum Salm. In Reports of the Botanical Society and Exchange Club; Report for 1922; Druce, G.C., Ed.; T. Buncle & Co.: Arbroath, UK, 1923; Volume 7, p. 1054. [Google Scholar]
- Ingrouille, M.J.; Stace, C.A. The Limonium binervosum aggregate (Plumbaginaceae) in the British Isles. Bot. J. Linn. Soc. 1986, 92, 177–217. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Soszynski, A.; Martins, A.; Rauter, A.; Neng, N.R.; Nogueira, J.M.; Varela, J.; Barreira, L.; Custódio, L. Unravelling the antioxidant potential and the phenolic composition of different anatomical organs of the marine halophyte Limonium algarvense. Ind. Crop. Prod. 2015, 77, 315–322. [Google Scholar] [CrossRef]
- Blainski, A.; Gionco, B.; Oliveira, A.G.; Andrade, G.; Scarminio, I.S.; Silva, D.B.; Lopes, N.P.; Mello, J.C. Antibacterial activity of Limonium brasiliense (Baicuru) against multidrug-resistant bacteria using a statistical mixture design. J. Ethnopharmacol. 2017, 198, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Geng, D.; Chi, X.; Dong, Q.; Hu, F. Antioxidants screening in Limonium aureum by optimized on-line HPLC–DPPH assay. Ind. Crop. Prod. 2015, 67, 492–497. [Google Scholar] [CrossRef]
- Ruiz-Riaguas, A.; Zengin, G.; Sinan, K.; Salazar-Mendías, C.; Llorent-Martínez, E. Phenolic Profile, Antioxidant Activity, and Enzyme Inhibitory Properties of Limonium delicatulum (Girard) Kuntze and Limonium quesadense Erben. J. Chem. 2020, 2020, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef]
- Willems, A.; Gillis, M.; Kersters, K.; Broecke, L.V.D.; De Ley, J. Transfer of Xanthomonas ampelina Panagopoulos 1969 to a New Genus, Xylophilus gen. nov., as Xylophilus ampelinus (Panagopoulos 1969) comb. nov. Int. J. Syst. Bacteriol. 1987, 37, 422–430. [Google Scholar] [CrossRef]
- Szegedi, E.; Civerolo, E.L. Bacterial diseases of grapevine. Int. J. Hortic. Sci. 2011, 17, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Donat, V.; Biosca, E.; Peñalver, J.; Lopez, M. Exploring diversity among Spanish strains of Erwinia amylovora and possible infection sources. J. Appl. Microbiol. 2007, 103, 1639–1649. [Google Scholar] [CrossRef] [PubMed]
- Larignon, P.; Fulchic, R.; Cere, L.; Dubos, B. Observation on Black Dead Arm in French Vineyards. Phytopathol. Mediterr. 2001, 40, 336–342. [Google Scholar] [CrossRef]
- Mondello, V.; Songy, A.; Battiston, E.; Pinto, C.; Coppin, C.; Trotel-Aziz, P.; Clément, C.; Mugnai, L.; Fontaine, F. Grapevine Trunk Diseases: A Review of Fifteen Years of Trials for Their Control with Chemicals and Biocontrol Agents. Plant Dis. 2018, 102, 1189–1217. [Google Scholar] [CrossRef] [Green Version]
- Stevens, N.E. Two Apple Black Rot Fungi in the United States. Mycologia 1933, 25, 536–548. [Google Scholar] [CrossRef]
- Brown-Rytlewski, D.E.; McManus, P.S. Virulence of Botryosphaeria dothidea and Botryosphaeria obtusa on Apple and Management of Stem Cankers with Fungicides. Plant Dis. 2000, 84, 1031–1037. [Google Scholar] [CrossRef] [Green Version]
- Ii, E.A.B. BotryosphaeriaDiseases of Apple and Peach in the Southeastern Unites Stated. Plant Dis. 1986, 70, 480. [Google Scholar] [CrossRef]
- Kanakiya, A.; Padalia, H.; Pande, J.; Chanda, S. Physicochemical, phytochemical and pharmacognostic study of Limonium stocksii. A halophyte from Gujarat. J. Phytopharm. 2018, 7, 312–318. [Google Scholar]
- da Luz, B.R. Attenuated total reflectance spectroscopy of plant leaves: A tool for ecological and botanical studies. New Phytol. 2006, 172, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; Wiley: Chichester, NY, USA, 2001; p. 347. [Google Scholar]
- Mot, A.; Silaghi-Dumitrescu, R.; Sarbu, C. Rapid and effective evaluation of the antioxidant capacity of propolis extracts using DPPH bleaching kinetic profiles, FT-IR and UV–vis spectroscopic data. J. Food Compos. Anal. 2011, 24, 516–522. [Google Scholar] [CrossRef]
- Junior, V.; Arruda, I.; Bemme, L. Caracterização térmica e espectroscópica de microcápsulas de quitosana incorporada de própolis. Rev. Eletrônica da Univar 2013, 2, 161–165. [Google Scholar]
- Silva, A.J.; Silva, J.R.; de Souza, N.; Souto, P.C.D.S. Membranes from latex with propolis for biomedical applications. Mater. Lett. 2014, 116, 235–238. [Google Scholar] [CrossRef]
- Park, S.-I.; Hwang, Y.-S.; Um, J.-S. Estimating blue carbon accumulated in a halophyte community using UAV imagery: A case study of the southern coastal wetlands in South Korea. J. Coast. Conserv. 2021, 25, 1–9. [Google Scholar] [CrossRef]
- Ochoa-Hueso, R.; Corona, M.E.P.; Manrique, E. Impacts of Simulated N Deposition on Plants and Mycorrhizae from Spanish Semiarid Mediterranean Shrublands. Ecosystems 2013, 16, 838–851. [Google Scholar] [CrossRef]
- Duca, D.; Riva, G.; Pedretti, E.F.; Toscano, G. Wood pellet quality with respect to EN 14961-2 standard and certifications. Fuel 2014, 135, 9–14. [Google Scholar] [CrossRef]
- Patel, M.K.; Pandey, S.; Brahmbhatt, H.R.; Mishra, A.; Jha, B. Lipid content and fatty acid profile of selected halophytic plants reveal a promising source of renewable energy. Biomass Bioenergy 2019, 124, 25–32. [Google Scholar] [CrossRef]
- Gadetskaya, A.; Zhusupova, G.; Ross, S. Composition of the volatile oil from aerial parts of Limonium genus. Chem. J. Kazakhstan 2015, 2, 274–279. [Google Scholar]
- Korul’Kina, L.M.; Zhusupova, G.E.; Shul’Ts, E.E.; Erzhanov, K.B. Fatty-acid composition of two Limonium plant species. Chem. Nat. Compd. 2004, 40, 417–419. [Google Scholar] [CrossRef]
- Bashir, A.; Abdalla, A.A.; Wasfi, I.A.; Hassan, E.S.; Amiri, M.H.; Crabb, T.A. Flavonoids of Limonium axillare. Int. J. Pharmacogn. 1994, 32, 366–372. [Google Scholar] [CrossRef]
- Yurchyshyn, O.; Rusko, G.; Kutsyk, R. Antimicrobial effect of south Ukrainian sea lavender Limonium meyeri (Boiss.) O. Kuntze and Limonium hypanicum Klok. with especial emphasizing against staphylococci and Propionibacteria. Pharma Innov. J. 2017, 6, 380–384. [Google Scholar]
- Taheri, Y.; Suleria, H.A.R.; Martins, N.; Sytar, O.; Beyatli, A.; Yeskaliyeva, B.; Seitimova, G.; Salehi, B.; Semwal, P.; Painuli, S.; et al. Myricetin bioactive effects: Moving from preclinical evidence to potential clinical applications. BMC Complement. Med. Ther. 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Marinova, E.; Toneva, A.; Yanishlieva, N. Synergistic antioxidant effect of α-tocopherol and myricetin on the autoxidation of triacylglycerols of sunflower oil. Food Chem. 2008, 106, 628–633. [Google Scholar] [CrossRef]
- Li, A.-N.; Li, S.; Li, H.-B.; Xu, D.-P.; Xu, X.-R.; Chen, F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods 2014, 6, 319–330. [Google Scholar] [CrossRef]
- Skrajda, M.N. Phenolic compounds and antioxidant activity of edible flowers. J. Educ. Health Sport 2017, 7, 946–956. [Google Scholar]
- Medini, F.; Fellah, H.; Ksouri, R.; Abdelly, C. Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. J. Taibah Univ. Sci. 2014, 8, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Medini, F. Effects of physiological stage and solvent on polyphenol composition, antioxidant and antimicrobial activities of Limonium densiflorum. J. Med. Plants Res. 2011, 5. [Google Scholar] [CrossRef]
- Medini, F.; Bourgou, S.; Lalancette, K.; Snoussi, M.; Mkadmini, K.; Coté, I.; Abdelly, C.; Legault, J.; Ksouri, R. Phytochemical analysis, antioxidant, anti-inflammatory, and anticancer activities of the halophyte Limonium densiflorum extracts on human cell lines and murine macrophages. S. Afr. J. Bot. 2015, 99, 158–164. [Google Scholar] [CrossRef]
- Mandrone, M.; Bonvicini, F.; Lianza, M.; Sanna, C.; Maxia, A.; Gentilomi, G.; Poli, F. Sardinian plants with antimicrobial potential. Biological screening with multivariate data treatment of thirty-six extracts. Ind. Crop. Prod. 2019, 137, 557–565. [Google Scholar] [CrossRef]
- Senizza, B.; Zhang, L.; Rocchetti, G.; Zengin, G.; Ak, G.; Yıldıztugay, E.; Elbasan, F.; Jugreet, S.; Mahomoodally, M.F.; Lucini, L. Metabolomic profiling and biological properties of six Limonium species: Novel perspectives for nutraceutical purposes. Food Funct. 2021, 12, 3443–3454. [Google Scholar] [CrossRef]
- Belyagoubi-Benhammou, N.; Belyagoubi, L.; Gismondi, A.; DI Marco, G.; Canini, A.; Bekkara, F.A. GC/MS analysis, and antioxidant and antimicrobial activities of alkaloids extracted by polar and apolar solvents from the stems of Anabasis articulata. Med. Chem. Res. 2019, 28, 754–767. [Google Scholar] [CrossRef]
- Benmahieddine, A.; Belyagoubi-Benhammou, N.; Belyagoubi, L.; El Zerey-Belaskri, A.; Gismondi, A.; Di Marco, G.; Canini, A.; Bechlaghem, N.; Bekkara, F.A.; Djebli, N. Influence of plant and environment parameters on phytochemical composition and biological properties of Pistacia atlantica Desf. Biochem. Syst. Ecol. 2021, 95, 104231. [Google Scholar] [CrossRef]
- Saïdana, D.; Mahjoub, S.; Boussaada, O.; Chriaa, J.; Mahjoub, M.A.; Chéraif, I.; Daami, M.; Mighri, Z.; Helal, A.N. Antibac-terial and antifungal activities of the essential oils of two saltcedar species from Tunisia. J. Am. Oil Chem. Soc. 2008, 85, 817–826. [Google Scholar] [CrossRef]
- Tabet, A.; Boukhari, A. Antioxidant and antibacterial activities of two Algerian halophytes. Int. J. Pharm. Sci. Rev. Res. 2018, 50, 114–121. [Google Scholar]
- Filocamo, A.; Nostro, A.; Giovannini, A.; Catania, S.; Costa, C.; Marino, A.; Bisignano, G. Antimicrobial activity of Limonium avei (De Not.) Brullo & Erben extracts. Planta Med. 2010, 76, P465. [Google Scholar] [CrossRef]
- Nostro, A.; Filocamo, A.; Giovannini, A.; Catania, S.; Costa, C.; Marino, A.; Bisignano, G. Antimicrobial activity and phenolic content of natural site and micropropagated Limonium avei (De Not.) Brullo & Erben plant extracts. Nat. Prod. Res. 2011, 26, 1–5. [Google Scholar] [CrossRef]
- Al-Madhagi, W.M.; Hashim, N.M.; Ali, N.A.A.; Othman, R. Phytochemical screening, cytotoxic and antimicrobial activities of Limonium socotranum and Peperomia blanda extracts. Trop. Biomed. 2019, 36, 11–21. [Google Scholar]
- Saidana, D.; Boussaada, O.; Ayed, F.; Mahjoub, M.A.; Mighri, Z.; Helal, A.N. Thein vitrofree radical-scavenging and antifungal activities of the medicinal Herblimonium Echioides L. growing wild in Tunisia. J. Food Process. Preserv. 2012, 37, 533–540. [Google Scholar] [CrossRef]
- Gadetskaya, A.; Mohamed, S.; Tarawneh, A.; Ma, G.; Ponomarev, B.; Zhussupova, G.; Cantrell, C.; Cutler, S.; Ross, S. Biologically potent metabolites from Limonium species. Planta Med. 2016, 81, S1–S381. [Google Scholar] [CrossRef]
- Firdaus, M.; Kartikaningsih, H.; Sulifah, U. Sargassum spp extract inhibits the growth of foodborne illness bacteria. AIP Conf. Proc. 2019, 2202, 020083. [Google Scholar] [CrossRef]
- Ahsan, T.; Chen, J.; Zhao, X.; Irfan, M.; Wu, Y. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express 2017, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Kiprono, P.C.; Kaberia, F.; Keriko, J.M.; Karanja, J.N. The in vitro Anti-Fungal and Anti-Bacterial Activities of β-Sitosterol from Senecio lyratus (Asteraceae). Z. Naturforsch. C. J. Biosci. 2000, 55, 485–488. [Google Scholar] [CrossRef]
- Zheng, C.J.; Yoo, J.-S.; Lee, T.-G.; Cho, H.-Y.; Kim, Y.-H.; Kim, W.-G. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 2005, 579, 5157–5162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Ruan, W.; Li, J.; Xu, H.; Wang, J.; Gao, Y.; Wang, J. Biological Control of Phytopathogenic Fungi by Fatty Acids. Mycopathologia 2008, 166, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, X.; Deng, Y.; Bu, X.; Ye, H.; Guo, N. Antimicrobial potential of myristic acid against Listeria monocytogenes in milk. J. Antibiot. 2019, 72, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Prasath, K.G.; Sethupathy, S.; Pandian, S.K. Proteomic analysis uncovers the modulation of ergosterol, sphingolipid and oxidative stress pathway by myristic acid impeding biofilm and virulence in Candida albicans. J. Proteom. 2019, 208, 103503. [Google Scholar] [CrossRef] [PubMed]
- Carballeira, N.M.; O’Neill, R.; Parang, K. Synthesis and antifungal properties of α-methoxy and α-hydroxyl substituted 4-thiatetradecanoic acids. Chem. Phys. Lipids 2007, 150, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-Y.; Kim, Y.-S.; Shin, D.-H. Antimicrobial Synergistic Effect of Linolenic Acid and Monoglyceride againstBacillus cereusandStaphylococcus aureus. J. Agric. Food Chem. 2002, 50, 2193–2199. [Google Scholar] [CrossRef]
- Raynor, L.; Mitchell, A.; Walker, R. Antifungal Activities of Four Fatty Acids against Plant Pathogenic Fungi. Mycopathologia 2004, 157, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Al-Salih, D.A.A.K.; Aziz, F.M.; Mshimesh, B.A.R.; Jehad, M.T. Antibacterial effects of vitamin E: In vitro study. J. Biotechnol. Res. Cent. 2013, 7, 17–23. [Google Scholar]
- Baran, R.; Thomas, L. Combination of fluconazole and alpha-tocopherol in the treatment of yellow nail syndrome. J. Drugs Dermatol. JDD 2009, 8, 276–278. [Google Scholar]
- Yeamsuksawat, T.; Liang, J. Characterization and release kinetic of crosslinked chitosan film incorporated with α-tocopherol. Food Packag. Shelf Life 2019, 22, 100415. [Google Scholar] [CrossRef]
- Martins, J.T.; Cerqueira, M.; Vicente, A.A. Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocoll. 2012, 27, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Raza, Z.A.; Abid, S.; Azam, A.; Rehman, A. Synthesis of alpha-tocopherol encapsulated chitosan nano-assemblies and their impregnation on cellulosic fabric for potential antibacterial and antioxidant cosmetotextiles. Cellulose 2019, 27, 1717–1731. [Google Scholar] [CrossRef]
- Liu, C.-G.; Desai, K.G.H.; Chen, A.X.-G.; Park, H.-J. Linolenic Acid-Modified Chitosan for Formation of Self-Assembled Nanoparticles. J. Agric. Food Chem. 2004, 53, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Kurniasih, M.; Purwati; Dewi, R.S. Toxicity tests, antioxidant activity, and antimicrobial activity of chitosan. IOP Conf. Ser. Mater. Sci. Eng. 2018, 349, 012037. [Google Scholar] [CrossRef] [Green Version]
- Rajaei, A.; Hadian, M.; Mohsenifar, A.; Rahmani-Cherati, T.; Tabatabaei, M. A coating based on clove essential oils encapsulated by chitosan-myristic acid nanogel efficiently enhanced the shelf-life of beef cutlets. Food Packag. Shelf Life 2017, 14, 137–145. [Google Scholar] [CrossRef]
- Langa-Lomba, N.; Buzón-Durán, L.; Martín-Ramos, P.; Casanova-Gascón, J.; Martín-Gil, J.; Sánchez-Hernández, E.; González-García, V. Assessment of Conjugate Complexes of Chitosan and Urtica dioica or Equisetum arvense Extracts for the Control of Grapevine Trunk Pathogens. Agronomy 2021, 11, 976. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Buzón-Durán, L.; Andrés-Juan, C.; Lorenzo-Vidal, B.; Martín-Gil, J.; Martín-Ramos, P. Physicochemical Characterization of Crithmum maritimum L. and Daucus carota subsp. gummifer (Syme) Hook.fil. and Their Antimicrobial Activity against Apple Tree and Grapevine Phytopathogens. Agronomy 2021, 11, 886. [Google Scholar] [CrossRef]
- Liang, C.; Yuan, F.; Liu, F.; Wang, Y.; Gao, Y. Structure and antimicrobial mechanism of ɛ-polylysine–chitosan conjugates through Maillard reaction. Int. J. Biol. Macromol. 2014, 70, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Buzón-Durán, L.; Langa-Lomba, N.; González-García, V.; Casanova-Gascón, J.; Martín-Gil, J.; Pérez-Lebeña, E.; Martín-Ramos, P. On the Applicability of Chitosan Oligomers-Amino Acid Conjugate Complexes as Eco-Friendly Fungicides against Grapevine Trunk Pathogens. Agronomy 2021, 11, 324. [Google Scholar] [CrossRef]
- Buzón-Durán, L.; Martín-Gil, J.; Marcos-Robles, J.L.; Fombellida-Villafruela, A.; Pérez-Lebeña, E.; Martín-Ramos, P. Antifungal Activity of Chitosan Oligomers–Amino Acid Conjugate Complexes against Fusarium culmorum in Spelt (Triticum spelta L.). Agronomy 2020, 10, 1427. [Google Scholar] [CrossRef]
- Buzón-Durán, L.; Martín-Gil, J.; Pérez-Lebeña, E.; Ruano-Rosa, D.; Revuelta, J.L.; Casanova-Gascón, J.; Ramos-Sánchez, M.C.; Martín-Ramos, P. Antifungal Agents Based on Chitosan Oligomers, ε-polylysine and Streptomyces spp. Secondary Metabolites against Three Botryosphaeriaceae Species. Antibiotics 2019, 8, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Moriano, P.; Fernandez-Arrojo, L.; Mengíbar, M.; Belmonte-Reche, E.; Peñalver, P.; Acosta, F.N.; Ballesteros, A.O.; Morales, J.C.; Kidibule, P.; Fernandez-Lobato, M.; et al. Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. Biocatal. Biotransform. 2017, 36, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.T.; Cobos, R. Identification of Fungi Associated with Grapevine Decline in Castilla y León (Spain). Phytopathol. Mediterr. 2007, 46, 18–25. [Google Scholar] [CrossRef]
- Talwalkar, A.T. IGT/DOE Coal-Conversion Systems Technical Data Book; Institute of Gas Technology: Chicago, IL, USA, 1981; p. 23. [Google Scholar]
- Jallali, I.; Zaouali, Y.; Missaoui, I.; Smeoui, A.; Abdelly, C.; Ksouri, R. Variability of antioxidant and antibacterial effects of essential oils and acetonic extracts of two edible halophytes: Crithmum Maritimum L. and Inula Crithmoïdes L. Food Chem. 2014, 145, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Langa-Lomba, N.; Sánchez-Hernández, E.; Buzón-Durán, L.; González-García, V.; Casanova-Gascón, J.; Martín-Gil, J.; Martín-Ramos, P. Activity of Anthracenediones and Flavoring Phenols in Hydromethanolic Extracts of Rubia tinctorum against Grapevine Phytopathogenic Fungi. Plants 2021, 10, 1527. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 11th ed.; CLSI standard M07; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Arendrup, M.C.; Cuenca-Estrella, M.; Lass-Flörl, C.; Hope, W. EUCAST technical note on the EUCAST definitive document EDef 7.2: Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clin. Microbiol. Infect. 2012, 18, E246–E247. [Google Scholar] [CrossRef] [Green Version]
- Levy, Y.; Benderly, M.; Cohen, Y.; Gisi, U.; Bassand, D. The joint action of fungicides in mixtures: Comparison of two methods for synergy calculation. EPPO Bull. 1986, 16, 651–657. [Google Scholar] [CrossRef]
Fraction | C | H | N | S | O | C/N Ratio |
---|---|---|---|---|---|---|
Flowers | 44.7% | 6.5% | 1.3% | 0.3% | 47.2% | 34.9 |
Leaves | 40.5% | 6.4% | 2.6% | 0.9% | 49.6% | 15.7 |
Fraction | Assignment | |
---|---|---|
Flowers | Leaves | |
3382 | Bonded O–H stretching (cellulose) | |
2921 | 2918 | –CH2 asymmetric stretching of alkyls |
2852 | 2850 | –CH2 symmetric stretching; CH2–(C6)– bending (cellulose) |
2158 | CN stretching | |
1731 | 1728 | C=O stretching of alkyl ester |
1653 | 1636 | Amide I; C=C stretching; C=O stretching |
1605 | 1617 | Aromatic C=C skeletal stretching; COO− antisymmetric stretching (polygalacturonic, pectin ester) |
1558 | Amide II; COO− symmetric stretching; polynuclear aromatics | |
1515 | 1517 | C=C stretching vibrations of aromatic structures |
1457 1441 | 1462 | O–CH3 stretching; C–H bending of CH2 or CH3 |
1417 | CH2 symmetric bending; aromatic C=C; COO symmetric stretching | |
1362 | 1372 | C–H (cellulose) |
1236 | 1236 | Amide III; C–C–O asymmetric stretching acetylated glucomannan; C–O stretching of aryl ether; C–O and OH of COOH groups |
1162 | 1168 | C–O–C in bridge asymmetric; C–C in plane |
1100 | 1104 | C–O–C symmetric stretching |
1017 | 1021 | C–H bending (typical of carotenes); polygalacturonic acid (a variety of pectin in plant cuticles) |
874 | β-glycosidic linkages (glucose units of cellulose chains) | |
832 | 830 | O–C=O in-plane deformation or a CH2 rocking deformation |
720 | In-plane bending or rocking of the methylenes (–CH2–) | |
668 | C–C out-of-plane bending |
Peak | Rt (min) | Area (%) | Assignment | MW (Da) | Qual |
---|---|---|---|---|---|
2 | 11.842 | 0.92 | geranyl acetate or 2,6-octadien-1-ol, 3,7-dimethyl-, acetate (stereoisomers) | 196.3 | 90; 86 |
3 | 17.154 | 1.03 | bicyclo[3.1.1]heptane, 2,6,6-trimethyl-, (1α,2β,5α) (also named trans-pinane) | 138.3 | 90 |
6 | 18.405 | 4.94 | tetradecanoic acid | 228.4 | 93 |
7 | 19.666 | 1.07 | heneicosane; hexacosane | 296.6; 366.7 | 98; 92 |
11 | 21.458 | 17.61 | eicosane; hexadecane, 2,6,10,14-tetramethyl-; heptadecane | 282.5; 282.5; 240.5 | 97; 97; 96 |
13 | 23.060 | 3.36 | heneicosane; pentacosane | 296.6; 352.7 | 96; 93 |
17 | 24.608 | 16.87 | tetradecanoic acid, 2-hydroxy-, methyl ester (or methyl 2-hydroxy tetradecanoate) | 258.4 | 93 |
18 | 25.095 | 1.66 | tetracosane; heptadecane, 9-octyl-; tricosane, 2-methyl- | 338.7; 352.7; 338.7 | 93; 93; 86 |
19 | 25.309 | 1.26 | 1,2-tetradecanediol | 230.4 | 64 |
20 | 25.538 | 2.35 | squalene | 410.7 | 98 |
21 | 25.592 | 1.21 | pentacosane, 13-undecyl-; heneicosane, 3-methyl- | 507; 310.6 | 52; 38 |
22 | 25.708 | 0.90 | octacosane; hexacosane | 394.8; 366.7 | 99; 98 |
23 | 26.025 | 14.37 | 1,2-tetradecanediol | 230.4 | 90 |
28 | 27.252 | 1.13 | γ-tocopherol | 416.7 | 98 |
29 | 27.554 | 1.23 | fumaric acid, 3,5-difluorophenyl dodecyl ester; Z-14-nonacosane | 396.5; 406.8 | 68; 64 |
30 | 27.607 | 3.19 | octacosyl trifluoroacetate; tetratriacontyl pentafluoropropionate | 506.8; 640.9 | 38; 38 |
31 | 27.992 | 5.56 | vitamin E; dl-α-tocopherol | 430.7; 430.7 | 99; 99 |
33 | 29.112 | 1.74 | campesterol | 400.7 | 62 |
34 | 30.173 | 8.83 | γ-sitosterol; β-sitosterol | 414.7; 414.7 | 99; 95 |
35 | 31.166 | 1.59 | 2-ethylacridine | 207.3 | 90 |
Peak | Rt (min) | Area (%) | Assignment | MW (Da) | Qual |
---|---|---|---|---|---|
1 | 17.154 | 5.41 | bicyclo[3.1.1]heptane, 2,6,6-trimethyl-, (1α,2β,5α) (also named (-)-trans-pinane); 3-octadecyne | 138.3; 250.5 | 64;58 |
4 | 17.593 | 2.20 | cyclohexanol, 1-ethynyl-; phytol, acetate; 1-hexadecyne | 124.2; 338.6; 222.4 | 38; 38; 38 |
5 | 18.026 | 9.83 | hexadecanoic acid, methyl ester | 270.5 | 99 |
6 | 18.386 | 4.25 | n-hexadecanoic acid; n-decanoic acid | 256.4; 172.3 | 99; 90 |
7 | 19.667 | 7.63 | 9,12-octadecadienoic acid (Z,Z)-, methyl ester | 294.5 | 99 |
8 | 19.740 | 22.26 | 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z)-; 9,12,15-octadecatrienoic acid, (Z,Z,Z)- | 292.5; 278.4 | 99; 95 |
9 | 19.832 | 3.80 | phytol | 296.5 | 98 |
12 | 25.538 | 1.08 | squalene | 410.7 | 99 |
13 | 25.962 | 2.82 | nonacosane; eicosane; docosane | 408.8; 282.5; 310.6 | 99; 98; 96 |
14 | 26.415 | 1.77 | δ-tocotrienol (or 2H-1-benzopyran-6-ol, 3,4-dihydro-2,8-dimethyl-2-(4,8,12-trimethyltridecyl)-, [2R-[2*(4R*,8R*)]]-) | 396.6 | 98 |
15 | 27.125 | 1.14 | β-tocopherol | 416.7 | 99 |
16 | 27.252 | 1.84 | γ-tocopherol; β-tocopherol; δ-tocopherol, o-methyl- | 416.7; 416.7; 416.7 | 97; 94; 94 |
17 | 27.476 | 1.21 | eicosane; octadecane | 282.5; 254.5 | 96; 96 |
18 | 27.607 | 1.57 | 1H-indole-2-carboxylic acid, 6-(4-ethoxyphenyl)-3-methyl-4-oxo-4,5,6,7-tetrahydro-, isopropyl ester; n-methyl-1-adamantaneacetamide | 355.4; 207.31 | 40; 38 |
19 | 27.987 | 8.08 | α-tocopherol | 416.7 | 99 |
20 | 28.070 | 1.35 | phytol, acetate; 2-(4-fluoro-phenyl)-4-(3-methyl-benzylidene)-4h-oxazol-5-one | 338.6; 281.3 | 49; 43 |
21 | 30.163 | 19.15 | γ-sitosterol; β-sitosterol | 414.7; 414.7 | 99; 99 |
Pathogen | Compound | Concentration (μg·mL−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
62.5 | 93.75 | 125 | 187.5 | 250 | 375 | 500 | 750 | 1000 | 1500 | ||
X. ampelinus | COS | + | + | + | + | + | + | + | + | + | − |
Flower extract | + | + | + | + | + | + | + | + | + | − | |
Leaf extract | + | + | + | + | + | + | + | + | + | − | |
Eicosane | + | + | + | + | + | + | + | + | − | − | |
β-sitosterol | + | + | + | + | + | + | + | + | − | − | |
Tetradecanoic acid | + | + | + | + | + | + | − | − | − | − | |
Linolenic acid | + | + | + | + | + | + | − | − | − | − | |
Vitamin E | + | + | + | + | + | + | − | − | − | − | |
COS–flower extract | + | + | + | + | − | − | − | − | − | − | |
COS–leaf extract | + | + | + | + | + | + | + | − | − | − | |
COS–eicosane | + | + | + | + | + | + | + | − | − | − | |
COS–β-sitosterol | + | + | + | + | + | + | − | − | − | − | |
COS–tetradecanoic acid | + | + | + | + | − | − | − | − | − | − | |
COS–linolenic acid | + | + | + | + | − | − | − | − | − | − | |
COS–vitamin E | + | + | + | + | − | − | − | − | − | − | |
E. amylovora | COS | + | + | + | + | + | + | + | + | + | − |
Flower extract | + | + | + | + | + | + | + | + | + | − | |
Leaf extract | + | + | + | + | + | + | + | + | + | − | |
Eicosane | + | + | + | + | + | + | + | + | + | + | |
β-sitosterol | + | + | + | + | + | + | + | + | + | − | |
Tetradecanoic acid | + | + | + | + | + | + | − | − | − | − | |
Linolenic acid | + | + | + | + | + | + | − | − | − | − | |
Vitamin E | + | + | + | + | + | + | + | − | − | − | |
COS–flower extract | + | + | + | + | + | + | − | − | − | − | |
COS–leaf extract | + | + | + | + | + | + | + | − | − | − | |
COS–eicosane | + | + | + | + | + | + | + | + | + | − | |
COS–β-sitosterol | + | + | + | + | + | − | − | − | − | − | |
COS–tetradecanoic acid | + | + | + | + | − | − | − | − | − | − | |
COS–linolenic acid | + | + | + | + | − | − | − | − | − | − | |
COS–vitamin E | + | + | + | + | − | − | − | − | − | − |
EC | COS | Flower Extract | Leaf Extract | Eicosane | β-Sitosterol | Tetradecanoic | Linolenic | Vitamin E |
---|---|---|---|---|---|---|---|---|
EC50 | 744 ± 42 | 845 ± 19 | 1033 ± 107 | 154 ± 29 | 82 ± 11 | 153 ± 17 | 227 ± 17 | 212 ± 13 |
EC90 | 1180 ± 46 | 1555 ± 71 | 2167 ± 215 | 1023 ± 96 | 151 ± 26 | 394 ± 49 | 538 ± 73 | 434 ± 57 |
EC | COS–Flower Extract | COS–Leaf Extract | COS–Eicosane | COS–β-Sitosterol | COS–Tetradecanoic | COS–Linolenic | COS–Vitamin E | |
EC50 | 611 ± 33 | 625 ± 20 | 234 ± 13 | 51 ± 2 | 109 ± 2 | 39 ± 1 | 217 ± 7 | |
EC90 | 914 ± 75 | 966 ± 64 | 678 ± 54 | 124 ± 4 | 130 ± 4 | 129 ± 8 | 406 ± 10 |
EC | COS–Flower Extract | COS–Leaf Extract | COS–Eicosane | COS–β-Sitosterol | COS–Tetradecanoic | COS–Linolenic | COS–Vitamin E |
---|---|---|---|---|---|---|---|
EC50 | 1.30 | 1.38 | 1.09 | 2.90 | 2.33 | 8.98 | 1.52 |
EC90 | 1.47 | 1.58 | 1.63 | 2.15 | 4.55 | 5.75 | 1.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Hernández, E.; Buzón-Durán, L.; Langa-Lomba, N.; Casanova-Gascón, J.; Lorenzo-Vidal, B.; Martín-Gil, J.; Martín-Ramos, P. Characterization and Antimicrobial Activity of a Halophyte from the Asturian Coast (Spain): Limonium binervosum (G.E.Sm.) C.E.Salmon. Plants 2021, 10, 1852. https://doi.org/10.3390/plants10091852
Sánchez-Hernández E, Buzón-Durán L, Langa-Lomba N, Casanova-Gascón J, Lorenzo-Vidal B, Martín-Gil J, Martín-Ramos P. Characterization and Antimicrobial Activity of a Halophyte from the Asturian Coast (Spain): Limonium binervosum (G.E.Sm.) C.E.Salmon. Plants. 2021; 10(9):1852. https://doi.org/10.3390/plants10091852
Chicago/Turabian StyleSánchez-Hernández, Eva, Laura Buzón-Durán, Natalia Langa-Lomba, José Casanova-Gascón, Belén Lorenzo-Vidal, Jesús Martín-Gil, and Pablo Martín-Ramos. 2021. "Characterization and Antimicrobial Activity of a Halophyte from the Asturian Coast (Spain): Limonium binervosum (G.E.Sm.) C.E.Salmon" Plants 10, no. 9: 1852. https://doi.org/10.3390/plants10091852
APA StyleSánchez-Hernández, E., Buzón-Durán, L., Langa-Lomba, N., Casanova-Gascón, J., Lorenzo-Vidal, B., Martín-Gil, J., & Martín-Ramos, P. (2021). Characterization and Antimicrobial Activity of a Halophyte from the Asturian Coast (Spain): Limonium binervosum (G.E.Sm.) C.E.Salmon. Plants, 10(9), 1852. https://doi.org/10.3390/plants10091852