Precipitation before Flowering Determined Effectiveness of Leaf Removal Timing and Irrigation on Wine Composition of Merlot Grapevine
Abstract
:1. Introduction
2. Results
2.1. Weather at the Experiment Site
2.2. Canopy LAI and Season-Long Plant Water Status
2.3. Yield Components and Berry Composition
2.4. Berry Skin Flavonoid Concentration—Anthocyanins and Flavonols
2.5. Wine Flavonoid Concentration
3. Discussion
3.1. Grapevine Canopy and Water Status
3.2. Yield Components and Berry Composition
3.3. Berry and Wine Flavonoids
4. Materials and Methods
4.1. Site Description
4.2. Experimental Design
4.3. Mechanical Leaf Removal Treatments
4.4. Irrigation Treatments and Weather
4.5. Plant Water Status Assessment
4.6. Leaf Area Index and Yield Components
4.7. Chemicals
4.8. Berry Composition
4.9. Extraction of Skin Flavonoids
4.10. Berry and Wine Flavonoid Analysis
4.11. Winemaking
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- California Department of Food and Agriculture (CDFA). Grape Crush Report Final 2019; California Department of Food and Agriculture: Sacramento, CA, USA, 2020. [Google Scholar]
- Terry, D.B.; Kurtural, S.K. Achieving Vine Balance of Syrah with Mechanical Canopy Management and Regulated Deficit Irrigation. Am. J. Enol. Vitic. 2011, 62, 426–437. [Google Scholar] [CrossRef]
- Cook, M.G.; Zhang, Y.; Nelson, C.J.; Gambetta, G.; Kennedy, J.A.; Kurtural, S.K. Anthocyanin composition of Merlot is ameliorated by light microclimate and irrigation in central California. Am. J. Enol. Vitic. 2015, 66, 266–278. [Google Scholar] [CrossRef]
- Yu, R.; Cook, M.G.; Yacco, R.S.; Watrelot, A.A.; Gambetta, G.; Kennedy, J.A.; Kurtural, S.K. Effects of Leaf Removal and Applied Water on Flavonoid Accumulation in Grapevine (Vitis vinifera L. cv. Merlot) Berry in a Hot Climate. J. Agric. Food Chem. 2016, 64, 8118–8127. [Google Scholar] [CrossRef]
- Martínez-Lüscher, J.; Brillante, L.; Nelson, C.C.; Al-Kereamy, A.M.; Zhuang, S.; Kurtural, S.K. Precipitation before bud break and irrigation affect the response of grapevine ‘Zinfandel’yields and berry skin phenolic composition to training systems. Sci. Hortic. 2017, 222, 153–161. [Google Scholar] [CrossRef]
- Lorrain, B.; Ky, I.; Pechamat, L.; Teissedre, P.-L. Evolution of analysis of polyhenols from grapes, wines, and extracts. Molecules 2013, 18, 1076–1100. [Google Scholar] [CrossRef] [PubMed]
- Ristic, R.; Bindon, K.; Francis, L.; Herderich, M.; Iland, P. Flavonoids and C13-norisoprenoids in Vitis vinifera L. cv. Shiraz: Relationships between grape and wine composition, wine colour and wine sensory properties. Aust. J. Grape Wine Res. 2010, 16, 369–388. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Matthews, M.A.; Di Gaspero, G.; Gambetta, G.A. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 2007, 227, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.D.; Tarara, J.M.; Kennedy, J.A. Assessing the impact of temperature on grape phenolic metabolism. Anal. Chim. Acta 2008, 621, 57–67. [Google Scholar] [CrossRef]
- Torres, N.; Martínez-Lüscher, J.; Porte, E.; Kurtural, S.K. Optimal Ranges and Thresholds of Grape Berry Solar Radiation for Flavonoid Biosynthesis in Warm Climates. Front. Plant Sci. 2020, 11, 931. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lüscher, J.; Sánchez-Díaz, M.; Delrot, S.; Aguirreolea, J.; Pascual, I.; Gomes, E. Ultraviolet-B radiation and water deficit interact to alter flavonol and anthocyanin profiles in grapevine berries through transcriptomic regulation. Plant Cell Physiol. 2014, 55, 1925–1936. [Google Scholar] [CrossRef]
- Brillante, L.; Martínez-Lüscher, J.; Yu, R.; Plank, C.M.; Sanchez, L.; Bates, T.L.; Brenneman, C.; Oberholster, A.; Kurtural, S.K. Assessing spatial variability of grape skin flavonoids at the vineyard scale based on plant water status mapping. J. Agric. Food Chem. 2017, 65, 5255–5265. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; de Sá, M.; Leandro, C.; Caldeira, I.; Duarte, F.L.; Spranger, I. Reactivity of Polymeric Proanthocyanidins toward Salivary Proteins and Their Contribution to Young Red Wine Astringency. J. Agric. Food Chem. 2013, 61, 939–946. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Durst, R.W.; Lee, J. Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Downey, M.O.; Harvey, J.S.; Robinson, S.P. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Aust. J. Grape Wine Res. 2004, 10, 55–73. [Google Scholar] [CrossRef]
- Cortell, J.M.; Kennedy, J.A. Effect of shading on accumulation of flavonoid compounds in (Vitis vinifera L.) pinot noir fruit and extraction in a model system. J. Agric. Food Chem. 2006, 54, 8510–8520. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, J.L.P.; Kennedy, J.A. Development of proanthocyanidins in Vitis vinifera L. cv. Pinot noir grapes and extraction into wine. Am. J. Enol. Vitic. 2006, 57, 125–132. [Google Scholar]
- Torres, N.; Martínez-Lüscher, J.; Porte, E.; Yu, R.; Kaan Kurtural, S. Impacts of leaf removal and shoot thinning on cumulative daily light intensity and thermal time and their cascading effects of grapevine (Vitis vinifera L.) berry and wine chemistry in warm climates. Food Chem. 2021, 343, 128447. [Google Scholar] [CrossRef] [PubMed]
- Palliotti, A.; Gatti, M.; Poni, S. Early Leaf Removal to Improve Vineyard Efficiency: Gas Exchange, Source-to-Sink Balance, and Reserve Storage Responses. Am. J. Enol. Vitic. 2011, 62, 219–228. [Google Scholar] [CrossRef]
- Geller, J.P.; Kurtural, S.K. Mechanical canopy and crop-load management of Pinot gris in a warm climate. Am. J. Enol. Vitic. 2013, 64, 65–73. [Google Scholar] [CrossRef]
- Kemp, B.S.; Harrison, R.; Creasy, G.L. Effect of mechanical leaf removal and its timing on flavan-3-ol composition and concentrations in Vitis vinifera L. cv. Pinot Noir wine. Aust. J. Grape Wine Res. 2011, 17, 270–279. [Google Scholar] [CrossRef]
- Diago, M.P.; Ayestarán, B.; Guadalupe, Z.; Poni, S.; Tardáguila, J. Impact of prebloom and fruit set basal leaf removal on the flavonol and anthocyanin composition of Tempranillo grapes. Am. J. Enol. Vitic. 2012, 63, 367–376. [Google Scholar] [CrossRef]
- Niculcea, M.; López, J.; Carmen Antolín, M. Involvement of berry hormonal content in the response to pre- and post-veraison water deficit in different grapevine (Vitis vinifera L.) cultivars. Aust. J. Grape Wine Res. 2014, 20, 281–291. [Google Scholar] [CrossRef]
- Gatti, M.; Bernizzoni, F.; Civardi, S.; Poni, S. Effects of cluster thinning and preflowering leaf removal on growth and grape composition in cv. Sangiovese. Am. J. Enol. Vitic. 2012, 63, 325–332. [Google Scholar] [CrossRef]
- Kotseridis, Y.; Georgiadou, A.; Tikos, P.; Kallithraka, S.; Koundouras, S. Effects of severity of post-flowering leaf removal on berry growth and composition of three red Vitis vinifera L. cultivars grown under semiarid conditions. J. Agric. Food Chem. 2012, 60, 6000–6010. [Google Scholar] [CrossRef] [PubMed]
- Smart, R.E.; Coombe, B.G. Water relations of grapevines [Vitis]. Water Deficits Plant Growth 1983, 7, 137–196. [Google Scholar]
- Escalona, J.M.; Bota, J.; Medrano, H. Distribution of leaf photosynthesis and transpiration within grapevine canopies under different drought conditions. VITIS-J. Grapevine Res. 2015, 42, 57. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Royo, J.B. Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. ‘Tempranillo’. Agric. Water Manag. 2011, 98, 1171–1179. [Google Scholar] [CrossRef]
- Herrera, J.C.; Hochberg, U.; Degu, A.; Sabbatini, P.; Lazarovitch, N.; Castellarin, S.D.; Fait, A.; Alberti, G.; Peterlunger, E. Grape metabolic response to postveraison water deficit is affected by interseason weather variability. J. Agric. Food Chem. 2017, 65, 5868–5878. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, J.C.; Bucchetti, B.; Sabbatini, P.; Comuzzo, P.; Zulini, L.; Vecchione, A.; Peterlunger, E.; Castellarin, S.D. Effect of water deficit and severe shoot trimming on the composition of Vitis vinifera L. Merlot grapes and wines. Aust. J. Grape Wine Res. 2015, 21, 254–265. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Response of grapevine cv. ‘Tempranillo’ to timing and amount of irrigation: Water relations, vine growth, yield and berry and wine composition. Irrig. Sci. 2010, 28, 113. [Google Scholar] [CrossRef]
- Bucchetti, B.; Matthews, M.A.; Falginella, L.; Peterlunger, E.; Castellarin, S.D. Effect of water deficit on Merlot grape tannins and anthocyanins across four seasons. Sci. Hortic. 2011, 128, 297–305. [Google Scholar] [CrossRef]
- Medici, A.; Laloi, M.; Atanassova, R. Profiling of sugar transporter genes in grapevine coping with water deficit. FEBS Lett. 2014, 588, 3989–3997. [Google Scholar] [CrossRef] [Green Version]
- Nelson, C.C.; Kennedy, J.A.; Zhang, Y.; Kurtural, S.K. Applied water and rootstock affect productivity and anthocyanin composition of Zinfandel in central California. Am. J. Enol. Vitic. 2016, 67, 18–28. [Google Scholar] [CrossRef]
- Savoi, S.; Wong, D.C.J.; Degu, A.; Herrera, J.C.; Bucchetti, B.; Peterlunger, E.; Fait, A.; Mattivi, F.; Castellarin, S.D. Multi-Omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L.) Exposed to Water Deficit. Front. Plant Sci. 2017, 8, 1124. [Google Scholar] [CrossRef] [Green Version]
- Tardáguila, J.; de Toda, F.M.; Poni, S.; Diago, M.P. Impact of Early Leaf Removal on Yield and Fruit and Wine Composition of Vitis vinifera L. Graciano and Carignan. Am. J. Enol. Vitic. 2010, 61, 372–381. [Google Scholar]
- Poni, S.; Gatti, M.; Bernizzoni, F.; Civardi, S.; Bobeica, N.; Magnanini, E.; Palliotti, A. Late leaf removal aimed at delaying ripening in cv. Sangiovese: Physiological assessment and vine performance. Aust. J. Grape Wine Res. 2013, 19, 378–387. [Google Scholar] [CrossRef]
- Brillante, L.; Martínez-Lüscher, J.; Kurtural, S.K. Applied water and mechanical canopy management affect berry and wine phenolic and aroma composition of grapevine (Vitis vinifera L., cv. Syrah) in Central California. Sci. Hortic. 2018, 227, 261–271. [Google Scholar] [CrossRef]
- Tardáguila, J.; Diago, M.P.; Martínez de Toda, F.; Poni, S.; Vilanova, M. Effects of timing of leaf removal on yield, berry maturity, wine composition and sensory properties of cv. Grenache grown under non irrigated conditions. OENO One 2008, 42, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Sivilotti, P.; Falchi, R.; Herrera, J.C.; Škvarč, B.; Butinar, L.; Sternad Lemut, M.; Bubola, M.; Sabbatini, P.; Lisjak, K.; Vanzo, A. Combined Effects of Early Season Leaf Removal and Climatic Conditions on Aroma Precursors in Sauvignon Blanc Grapes. J. Agric. Food Chem. 2017, 65, 8426–8434. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Yuan, F.; Skinkis, P.A.; Qian, M.C. Influence of cluster zone leaf removal on Pinot noir grape chemical and volatile composition. Food Chem. 2015, 173, 414–423. [Google Scholar] [CrossRef]
- Scheiner, J.J.; Sacks, G.L.; Pan, B.; Ennahli, S.; Tarlton, L.; Wise, A.; Lerch, S.D.; Vanden Heuvel, J.E. Impact of Severity and Timing of Basal Leaf Removal on 3-Isobutyl-2-Methoxypyrazine Concentrations in Red Winegrapes. Am. J. Enol. Vitic. 2010, 61, 358–364. [Google Scholar]
- Wessner, L.F.; Kurtural, S.K. Pruning Systems and Canopy Management Practice Interact on the Yield and Fruit Composition of Syrah. Am. J. Enol. Vitic. 2013, 64, 134–138. [Google Scholar] [CrossRef]
- Pastore, C.; Zenoni, S.; Fasoli, M.; Pezzotti, M.; Tornielli, G.B.; Filippetti, I. Selective defoliation affects plant growth, fruit transcriptional ripening program and flavonoid metabolism in grapevine. BMC Plant Biol. 2013, 13, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poni, S.; Bernizzoni, F.; Civardi, S.; Libelli, N. Effects of pre-bloom leaf removal on growth of berry tissues and must composition in two red Vitis vinifera L. cultivars. Aust. J. Grape Wine Res. 2009, 15, 185–193. [Google Scholar] [CrossRef]
- Bubola, M.; Sivilotti, P.; Janjanin, D.; Poni, S. Early leaf removal has a larger effect than cluster thinning on grape phenolic composition in cv. Teran. Am. J. Enol. Vitic. 2017, 68, 234–242. [Google Scholar] [CrossRef]
- Bergqvist, J.; Dokoozlian, N.; Ebisuda, N. Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the Central San Joaquin Valley of California. Am. J. Enol. Vitic. 2001, 52, 1–7. [Google Scholar]
- King, P.D.; McClellan, D.J.; Smart, R.E. Effect of severity of leaf and crop removal on grape and wine composition of Merlot vines in Hawke’s Bay vineyards. Am. J. Enol. Vitic. 2012, 63, 500–507. [Google Scholar] [CrossRef]
- Sternad Lemut, M.; Sivilotti, P.; Franceschi, P.; Wehrens, R.; Vrhovsek, U. Use of Metabolic Profiling to Study Grape Skin Polyphenol Behavior as a Result of Canopy Microclimate Manipulation in a ‘Pinot noir’ Vineyard. J. Agric. Food Chem. 2013, 61, 8976–8986. [Google Scholar] [CrossRef]
- Martínez-Lüscher, J.; Brillante, L.; Kurtural, S.K. Flavonol profile is a reliable indicator to assess canopy architecture and the exposure of red wine grapes to solar radiation. Front. Plant Sci. 2019, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Kliewer, W.M.; Dokoozlian, N.K. Leaf area/crop weight ratios of grapevines: Influence on fruit composition and wine quality. Am. J. Enol. Vitic. 2005, 56, 170–181. [Google Scholar]
- Bindon, K.A.; Madani, S.H.; Pendleton, P.; Smith, P.A.; Kennedy, J.A. Factors affecting skin tannin extractability in ripening grapes. J. Agric. Food Chem. 2014, 62, 1130–1141. [Google Scholar] [CrossRef]
- Bonada, M.; Jeffery, D.W.; Petrie, P.R.; Moran, M.A.; Sadras, V.O. Impact of elevated temperature and water deficit on the chemical and sensory profiles of B arossa S hiraz grapes and wines. Aust. J. Grape Wine Res. 2015, 21, 240–253. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Matthews, M.A.; Waterhouse, A.L. Effect of maturity and vine water status on grape skin and wine flavonoids. Am. J. Enol. Vitic. 2002, 53, 268–274. [Google Scholar]
- Ollé, D.; Guiraud, J.L.; Souquet, J.M.; Terrier, N.; Ageorges, A.; CheynierR, V.; Verries, C. Effect of pre- and post-veraison water deficit on proanthocyanidin and anthocyanin accumulation during Shiraz berry development. Aust. J. Grape Wine Res. 2011, 17, 90–100. [Google Scholar] [CrossRef]
- Blancquaert, E.H.; Oberholster, A.; Ricardo-da-Silva, J.M.; Deloire, A.J. Grape flavonoid evolution and composition under altered light and temperature conditions in Cabernet Sauvignon (Vitis vinifera L.). Front. Plant Sci. 2019, 10, 1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cáceres-Mella, A.; Talaverano, M.I.; Villalobos-González, L.; Ribalta-Pizarro, C.; Pastenes, C. Controlled water deficit during ripening affects proanthocyanidin synthesis, concentration and composition in Cabernet Sauvignon grape skins. Plant Physiol. Biochem. 2017, 117, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lüscher, J.; Chen, C.C.L.; Brillante, L.; Kurtural, S.K. Partial solar radiation exclusion with color shade nets reduces the degradation of organic acids and flavonoids of grape berry (Vitis vinifera L.). J. Agric. Food Chem. 2017, 65, 10693–10702. [Google Scholar] [CrossRef]
- Yu, R.; Brillante, L.; Martínez-Lüscher, J.; Kurtural, S.K. Spatial variability of soil and plant water status and their cascading effects on grapevine physiology are linked to berry and wine chemistry. Front. Plant Sci. 2020, 11, 790. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.D.; Tarara, J.M.; Gambetta, G.A.; Matthews, M.A.; Kennedy, J.A. Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes. J. Exp. Bot. 2012, 63, 2655–2665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Williams, L.E.; Ayars, J.E. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric. For. Meteorol. 2005, 132, 201–211. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Jones, G.P. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J. Agric. Food Chem. 2001, 49, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, T.L.; Kennedy, J.A.; Vasconcelos, M.C. Use of Microscale Fermentations in Grape and Wine Research. Am. J. Enol. Vitic. 2007, 58, 534–539. [Google Scholar]
2014 | 2015 | |||||||
---|---|---|---|---|---|---|---|---|
SDI | RDI | SDI | RDI | |||||
ETc a (mm) | Applied Water (L/vine) | ETc a (mm) | Applied Water (L/vine) | ETc a (mm) | Applied Water (L/vine) | ETc a (mm) | Applied Water (L/vine) | |
bud break-fruit set | 29.72 | 181.16 | 29.72 | 181.16 | n/a b | n/a b | n/a b | n/a b |
fruit set-veraison | 122.19 | 862.20 | 72.37 | 477.70 | 101.64 | 726.57 | 71.18 | 454.11 |
veraison-harvest | 61.49 | 439.60 | 61.49 | 439.60 | 97.50 | 696.99 | 97.50 | 696.99 |
total | 213.40 | 1482.96 | 163.58 | 1098.46 | 199.13 | 1423.55 | 168.68 | 1151.09 |
Components of Yield | Berry Composition | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cluster/Vine | Yield (kg)/Vine | Average Berry wt. (g) | Skin Mass (mg) | Skin to Berry Weight Ratio (%) | Leaf Area to Fruit Ratio (m2/kg) | TSS (°Brix) | pH | TA (g/L) | ||
2014 | ||||||||||
LR | Control | 55 a | 6.2 a | 1.09 | 45.3 a | 4.15 a | 0.94 | 24.3 | 3.60 | 4.83 |
PBLR | 54 a | 6.1 a | 1.07 | 42.9 ab | 4.00 a | 0.87 | 24.1 | 3.62 | 4.66 | |
PFLR | 45 b | 4.5 b | 1.11 | 39.5 b | 3.56 b | 0.94 | 24.2 | 3.64 | 4.69 | |
p value | ** | * | ns | * | * | ns | ns | ns | ns | |
IRRI | SDI | 52 | 6.1 a | 1.14 a | 42.7 | 3.83 | 0.79 b | 23.9 b | 3.63 | 4.83 |
RDI | 51 | 5.3 b | 1.04 b | 42.3 | 3.83 | 1.05 a | 24.5 a | 3.61 | 4.62 | |
p value | ns | ns | ** | ns | ns | * | ns | ns | ns | |
LR × IRRI | ns | * | ns | ns | ns | ns | ns | ns | ns | |
2015 | ||||||||||
LR | Control | 120 a | 16.6 a | 1.30 a | 36.5 | 2.69 | 0.43 | 24.6 ab | 3.48 | 7.53 |
PBLR | 105 b | 13.4 b | 1.27 b | 37.4 | 2.92 | 0.49 | 24.9 a | 3.50 | 7.90 | |
PFLR | 118 ab | 15.1 ab | 1.32 ab | 32.3 | 2.46 | 0.47 | 24.1 b | 3.49 | 7.44 | |
p value | * | ** | * | ns | ns | ns | ** | ns | ns | |
IRRI | SDI | 120 a | 15.7 | 1.31 | 36.8 | 2.81 | 0.46 | 24.3 | 3.48 | 7.73 |
RDI | 108 b | 14.4 | 1.33 | 34.0 | 2.57 | 0.47 | 24.8 | 3.50 | 7.52 | |
p value | ** | ns | ns | ns | ns | ns | ns | ns | ns | |
LR × IRRI | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Anthocyanins | Flavonols | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | ||||||||||||
Delphinidin | Cyanidin | Petunidin | Peonidin | Malvidin | Tri-hydroxylated | Di-hydroxylated | Total anthocyanins | Quercetin | Myricetin | Total flavonols | ||
LR | Control | 11.06 a | 6.56 a | 11.94 a | 17.32 | 94.05 | 117.05 | 23.88 ab | 140.93 | 13.33 | 0.73 | 14.06 |
PBLR | 8.32 b | 5.45 b | 9.57 b | 15.56 | 85.70 | 103.59 | 21.01 b | 124.60 | 13.09 | 0.85 | 13.94 | |
PFLR | 11.19 a | 7.25 a | 12.01 a | 18.86 | 90.52 | 113.72 | 26.11 a | 139.83 | 15.00 | 0.88 | 15.88 | |
p value | ** | * | ** | ns | Ns | ns | * | ns | ns | ns | ns | |
IRRI | SDI | 9.28 b | 6.73 | 10.43 b | 18.08 | 81.71 | 101.43 b | 24.81 | 126.24 b | 13.54 | 0.80 | 14.34 |
RDI | 11.10 a | 6.11 | 11.91 a | 16.39 | 98.56 | 121.57 a | 22.50 | 144.07 a | 14.09 | 0.84 | 14.93 | |
p value | * | ns | * | ns | ** | ** | ns | ** | ns | ns | ns | |
LR × IRRI | ns | ns | ns | ns | Ns | ns | ns | ns | ns | ns | ns | |
2015 | ||||||||||||
LR | Control | 7.89 | 5.29 | 8.92 | 16.67 | 70.46 b | 87.27 b | 21.96 | 109.23 | 4.89 b | 1.71 b | 7.81 b |
PBLR | 8.47 | 5.65 | 9.35 | 18.28 | 70.88 ab | 88.70 b | 23.93 | 112.64 | 6.35 ab | 1.88 b | 9.69 ab | |
PFLR | 8.91 | 5.76 | 10.33 | 18.44 | 85.96 a | 105.20 a | 24.21 | 129.40 | 7.41 a | 2.36 a | 11.53 a | |
p value | ns | ns | ns | ns | * | * | ns | ns | ** | * | ** | |
IRRI | SDI | 8.19 | 5.60 | 9.31 | 17.63 | 74.46 | 91.96 | 23.24 | 115.19 | 6.17 | 1.96 | 9.58 |
RDI | 8.66 | 5.53 | 9.76 | 17.96 | 77.08 | 95.49 | 23.49 | 118.98 | 6.27 | 2.02 | 9.78 | |
p value | ns | ns | ns | ns | Ns | ns | ns | ns | ns | ns | ns | |
LR × IRRI | ns | ns | ns | ns | Ns | ns | ns | ns | ns | ns | ns | |
Year | ** | * | * | ns | *** | *** | ns | ** | *** | *** | *** | |
Year × LR | * | ns | ns | ns | Ns | ns | ns | ns | ns | ns | ns | |
Year × IRRI | ns | ns | ns | ns | * | ns | ns | ns | ns | ns | ns | |
Year × LR × IRRI | ns | ns | ns | ns | Ns | ns | ns | ns | ns | ns | ns |
Anthocyanins | Flavonols | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | ||||||||||||
Delphinidin | Cyanidin | Petunidin | Peonidin | Malvidin | Tri-hydroxylated | Di-hydroxylated | Total anthocyanins | Quercetin | Myricetin | Total flavonols | ||
LR | Control | 3.98 | 1.86 | 8.19 | 2.11 | 128.23 | 140.40 | 3.97 | 144.37 | 19.56 | 6.70 | 26.26 |
PBLR | 4.23 | 1.92 | 8.58 | 2.12 | 135.87 | 148.68 | 4.04 | 152.72 | 23.66 | 7.60 | 31.26 | |
PFLR | 4.44 | 2.25 | 9.31 | 2.42 | 124.73 | 138.49 | 4.68 | 143.16 | 24.05 | 7.67 | 31.72 | |
p value | ns | ns | Ns | ns | ns | ns | ns | ns | ns | ns | ns | |
IRRI | SDI | 3.81 | 1.85 b | 7.80 b | 2.15 | 122.82 | 134.43 | 4.00 | 138.43 | 19.44 b | 6.59 | 26.03 b |
RDI | 4.62 | 2.17 a | 9.59 a | 2.29 | 136.40 | 150.61 | 4.46 | 155.07 | 25.40 a | 8.06 | 33.46 a | |
p value | ns | * | * | ns | ns | ns | ns | ns | * | ns | * | |
LR × IRRI | ns | ns | Ns | ns | ns | ns | ns | ns | ns | ns | ns | |
2015 | ||||||||||||
LR | Control | 7.15 | 2.04 | 6.14 | 8.60 | 71.00 | 84.29 | 10.64 | 94.93 | 9.68 b | 3.71 b | 13.39 b |
PBLR | 8.37 | 2.06 | 6.59 | 9.09 | 70.59 | 85.56 | 11.15 | 96.71 | 11.82 ab | 4.24 ab | 16.05 ab | |
PFLR | 9.31 | 2.55 | 7.67 | 10.35 | 85.21 | 102.20 | 12.89 | 115.09 | 12.71 a | 4.72 a | 17.43 a | |
p value | ns | ns | Ns | ns | ns | ns | ns | ns | * | ** | * | |
IRRI | SDI | 7.64 | 2.21 | 6.60 | 9.03 | 72.58 | 86.82 | 11.24 | 98.06 | 10.16 b | 3.97 b | 14.13 b |
RDI | 8.91 | 2.22 | 7.01 | 9.66 | 78.63 | 94.54 | 11.89 | 106.43 | 12.64 a | 4.48 a | 17.12 a | |
p value | ns | ns | Ns | ns | ns | ns | ns | ns | * | * | * | |
LR × IRRI | ns | ns | Ns | ns | ns | ns | ns | ns | ns | ns | ns | |
Year | *** | ns | ** | *** | *** | *** | *** | *** | *** | *** | *** | |
Year × LR | ns | ns | Ns | ns | ns | ns | ns | ns | ns | ns | ns | |
Year × IRRI | ns | ns | Ns | ns | ns | ns | ns | ns | ns | ns | ns | |
Year × LR × IRRI | ns | ns | Ns | ns | ns | ns | ns | ns | ns | ns | ns |
Extension Subunits | Terminal Subunits | Total Proanthocyanidins | mDP | ||||||
---|---|---|---|---|---|---|---|---|---|
EGC | C | EC | ECG | C | EC | ||||
2014 | |||||||||
LR | Control | 125.34 | 28.30 | 303.18 | 8.52 | 88.13 | 136.29 a | 689.76 | 3.09 |
PBLR | 121.63 | 26.79 | 275.97 | 8.56 | 83.36 | 113.30 b | 629.62 | 3.21 | |
PFLR | 123.49 | 28.67 | 286.42 | 7.86 | 92.06 | 128.50 ab | 667.43 | 3.04 | |
p value | ns | Ns | ns | ns | ns | * | ns | ns | |
IRRI | SDI | 123.93 | 29.44 | 291.60 | 7.58 | 88.84 | 132.45 | 673.84 | 3.06 |
RDI | 124.06 | 26.37 | 286.31 | 9.09 | 87.18 | 120.19 | 652.63 | 3.15 | |
p value | ns | Ns | ns | ns | ns | ns | ns | ns | |
LR × IRRI | ns | Ns | ns | ns | ns | ns | ns | ns | |
2015 | |||||||||
LR | Control | 44.30 | 19.51 | 214.10 | 29.81 | 70.43 | 47.47 | 425.62 | 3.65 |
PBLR | 49.41 | 20.29 | 229.99 | 31.80 | 71.52 | 49.02 | 452.03 | 3.79 | |
PFLR | 58.89 | 20.66 | 237.69 | 31.30 | 72.54 | 48.05 | 469.12 | 3.91 | |
p value | ns | Ns | ns | ns | ns | ns | ns | ns | |
IRRI | SDI | 46.35 | 19.07 | 217.74 | 29.55 | 69.24 | 47.38 | 429.34 | 3.70 |
RDI | 56.39 | 21.39 | 238.84 | 32.62 | 74.05 | 49.12 | 472.41 | 3.88 | |
p value | ns | Ns | ns | ns | ns | ns | ns | ns | |
LR × IRRI | ns | Ns | ns | ns | ns | ns | ns | ns | |
Year | *** | *** | *** | *** | *** | *** | *** | *** | |
Year × LR | ns | Ns | ns | ns | ns | ns | ns | ns | |
Year × IRRI | ns | Ns | ns | ns | ns | ns | ns | ns | |
Year × LR × IRRI | ns | Ns | ns | ns | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, R.; Fidelibus, M.W.; Kennedy, J.A.; Kurtural, S.K. Precipitation before Flowering Determined Effectiveness of Leaf Removal Timing and Irrigation on Wine Composition of Merlot Grapevine. Plants 2021, 10, 1865. https://doi.org/10.3390/plants10091865
Yu R, Fidelibus MW, Kennedy JA, Kurtural SK. Precipitation before Flowering Determined Effectiveness of Leaf Removal Timing and Irrigation on Wine Composition of Merlot Grapevine. Plants. 2021; 10(9):1865. https://doi.org/10.3390/plants10091865
Chicago/Turabian StyleYu, Runze, Matthew W. Fidelibus, James A. Kennedy, and Sahap Kaan Kurtural. 2021. "Precipitation before Flowering Determined Effectiveness of Leaf Removal Timing and Irrigation on Wine Composition of Merlot Grapevine" Plants 10, no. 9: 1865. https://doi.org/10.3390/plants10091865
APA StyleYu, R., Fidelibus, M. W., Kennedy, J. A., & Kurtural, S. K. (2021). Precipitation before Flowering Determined Effectiveness of Leaf Removal Timing and Irrigation on Wine Composition of Merlot Grapevine. Plants, 10(9), 1865. https://doi.org/10.3390/plants10091865