An Insight into the Abiotic Stress Responses of Cultivated Beets (Beta vulgaris L.)
Abstract
:1. Introduction
2. Responses of Cultivated Beets (B. vulgaris L.) to Different Abiotic Stresses Including Alkaline, Temperature, Heavy Metal, and UV
2.1. Alkaline Stress
2.2. Cold and Heat Stresses
2.2.1. Cold Stress
2.2.2. Heat Stress
2.3. Heavy Metal Stress
2.4. Ultraviolet (UV) Stress
3. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Henry, K. Fodder Beet. In Root and Tuber Crops. Handbook of Plant Breeding; Bradshaw, J.E., Ed.; Springer: New York, NY, USA, 2010; Volume 7, pp. 221–243. [Google Scholar]
- Lange, W.; Brandenburg, W.A.; De Bock, T.S.M. Taxonomy and cultonomy of beet (Beta vulgaris L.). Bot. J. Linn. Soc. 1999, 130, 81–96. [Google Scholar] [CrossRef]
- Biancardi, E.; Panella, L.; Lewellen, R. Beta maritima: The Origin of Beets, 1st ed.; Springer: New York, NY, USA, 2012. [Google Scholar]
- Lee, J.H.; Son, C.W.; Kim, M.Y.; Kim, M.H.; Kim, H.R.; Kwak, E.S.; Kim, S.; Kim, M.R. Red beet (Beta vulgaris L.) leaf supplementation improves antioxidant status in C57BL/6J mice fed high fat high cholesterol diet. Nutr. Res. Pract. 2009, 3, 114–121. [Google Scholar] [CrossRef]
- Zhang, Y.; Nan, J.; Yu, B. OMICS Technologies and Applications in Sugar Beet. Front. Plant Sci. 2016, 7, 900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, H.-A.A.; Mekki, B.B.; El-Sadek, M.E.A.; El Lateef, E.E. Effect of L-Ornithine application on improving drought tolerance in sugar beet plants. Heliyon 2019, 5, e02631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magaña, C.; Núñez-Sánchez, N.; Fernández-Cabanás, V.M.; García, P.; Serrano, A.; Pérez-Marín, D.; Peman, J.M.; Alcalde, E. Direct prediction of bioethanol yield in sugar beet pulp using near infrared spectroscopy. Bioresour. Technol. 2011, 102, 9542–9549. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S. Improving biogas production by sugar beet silage co-fermentation: An approach for on-demand biogas energy. Environ. Sci. 2018. [Google Scholar] [CrossRef]
- Kugler, F.; Stintzing, F.C.; Carle, R. Identification of Betalains from Petioles of Differently Colored Swiss Chard (Beta vulgaris L. ssp. cicla [L.] Alef. Cv. Bright Lights) by High-Performance Liquid Chromatography−Electrospray Ionization Mass Spectrometry. J. Agric. Food Chem. 2004, 52, 2975–2981. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Sun, M.; Corke, H. Antioxidant activity of betalains from plants of the amaranthaceae. J. Agric. Food Chem. 2003, 51, 2288–2294. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; An, D.; Nguyen, C.T.T.; Patil, B.S.; Kim, J.; Yoo, K.S. Betalain and Betaine Composition of Greenhouse- or Field-Produced Beetroot (Beta vulgaris L.) and Inhibition of HepG2 Cell Proliferation. J. Agric. Food Chem. 2014, 62, 1324–1331. [Google Scholar] [CrossRef]
- Mzoughi, Z.; Chahdoura, H.; Chakroun, Y.; Cámara, M.; Fernández-Ruiz, V.; Morales, P.; Mosbah, H.; Flamini, G.; Snoussi, M.; Majdoub, H. Wild edible Swiss chard leaves (Beta vulgaris L. var. cicla): Nutritional, phytochemical composition and biological activities. Food Res. Int. 2019, 119, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Brooks, M.S.-L. Use of Red Beet (Beta vulgaris L.) for Antimicrobial Applications—A Critical Review. Food Bioprocess Technol. 2018, 11, 17–42. [Google Scholar] [CrossRef]
- Chakwizira, E.; Meenken, E.D.; Maley, S.; George, M.; Hubber, R.; Morton, J.; Stafford, A. Effects of potassium, sodium and chloride fertiliser rates on fodder beet yield and quality in Canterbury. Proc. N. Z. Grassl. Assoc. 2013, 75, 261–270. [Google Scholar] [CrossRef]
- Ribeiro, I.C.; Pinheiro, C.; Ribeiro, C.M.; Veloso, M.M.; Simoes-Costa, M.C.; Evaristo, I.; Paulo, O.S.; Ricardo, C.P. Genetic Diversity and Physiological Performance of Portuguese Wild Beet (Beta vulgaris spp. maritima) from Three Contrasting Habitats. Front. Plant Sci. 2016, 7, 1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, C.; Ribeiro, I.C.; Reisinger, V.; Planchon, S.; Veloso, M.M.; Renaut, J.; Eichacker, L.; Ricardo, C.P. Salinity effect on germination, seedling growth and cotyledon membrane complexes of a Portuguese salt marsh wild beet ecotype. Theor. Exp. Plant Physiol. 2018, 30, 113–127. [Google Scholar] [CrossRef]
- Pakniyat, H.; Armion, M. Sodium and proline accumulation as osmoregulators in tolerance of sugar beet genotypes to salinity. Pak. J. Biol. Sci. 2007, 22, 4081–4086. [Google Scholar] [CrossRef] [Green Version]
- Skorupa, M.; Golebiewski, M.; Kurnik, K.; Niedojadlo, J.; Kesy, J.; Klamkowski, K.; Wojcik, K.; Treder, W.; Tretyn, A.; Tyburski, J. Salt stress vs. salt shock—The case of sugar beet and its halophytic ancestor. BMC Plant Biol. 2019, 19, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostafavi, K. Effect of Salt Stress on Germination and Early Seedling Growth Stage of Sugar Beet Cultivars. Am.-Eurasian J. Sustain. Agric. 2012, 6, 120–125. [Google Scholar]
- Van Geyt, J.P.C.; Lange, W.; Oleo, M.; De Bock, T.S.M. Natural variation within the genus Beta and its possible use for breeding sugar beet: A review. Euphytica 1990, 49, 57–76. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Sultana, R.; Vales, M.I.; Saxena, K.B.; Kumar, R.R.; Ratnakumar, P. Integrated physiological and molecular approaches to improvement of abiotic stress tolerance in two pulse crops of the semi-arid tropics. Crop J. 2018, 6, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Rozema, J.; Cornelisse, D.; Zhang, Y.; Li, H.; Bruning, B.; Katschnig, D.; Broekman, R.; Ji, B.; van Bodegom, P. Comparing salt tolerance of beet cultivars and their halophytic ancestor: Consequences of domestication and breeding programmes. AoB Plants 2015, 7, plu083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niazi, B.H.; Rozema, J.; Amin, R.; Salim, M.; Rashid, A. Physiological Characteristics of Fodderbeet Grown on Saline Sodic Soils of Pakistan. Pak. J. Biol. Sci. 1999, 2, 595–598. [Google Scholar] [CrossRef] [Green Version]
- Wisniewska, A.; Andryka-Dudek, P.; Czerwinski, M.; Choluj, D. Fodder beet is a reservoir of drought tolerance alleles for sugar beet breeding. Plant Physiol. Biochem. 2019, 145, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Stagnari, F.; Galieni, A.; Speca, S.; Pisante, M. Water stress effects on growth, yield and quality traits of red beet. Sci. Hortic. 2014, 165, 13–22. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Wheeler, R.M.; Levine, L.H.; Stutte, G.W. Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply. J. Plant Physiol. 2001, 158, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Papazoglou, E.G.; Fernando, A.L. Preliminary studies on the growth, tolerance and phytoremediation ability of sugarbeet (Beta vulgaris L.) grown on heavy metal contaminated soil. Ind. Crop. Prod. 2017, 107, 463–471. [Google Scholar] [CrossRef]
- Vastarelli, P.; Moschella, A.; Pacifico, D.; Mandolino, G. Water Stress in Beta vulgaris: Osmotic Adjustment Response and Gene Expression Analysis in ssp. vulgaris and maritima. Am. J. Plant Sci. 2013, 4, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Abou-Elwafa, S.F.; Amin, A.E.A.; Eujayl, I. Genetic diversity of sugar beet under heat stress and deficit irrigation. Agron. J. 2020, 112, 3579–3590. [Google Scholar] [CrossRef]
- Zou, C.; Sang, L.; Gai, Z.; Wang, Y.; Li, C. Morphological and Physiological Responses of Sugar Beet to Alkaline Stress. Sugar Tech 2018, 20, 202–211. [Google Scholar] [CrossRef]
- Monteiro, F.; Romeiras, M.M.; Batista, D.; Duarte, M.C. Biodiversity assessment of sugar beet species and its wild relatives: Linking ecological data with new genetic approaches. Am. J. Plant Sci. 2013, 4, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Chołuj, D.; Wisniewska, A.; Szafranski, K.M.; Cebula, J.; Gozdowski, D.; Podlaski, S. Assessment of the physiological responses to drought in different sugar beet genotypes in connection with their genetic distance. J. Plant Physiol. 2014, 171, 1221–1230. [Google Scholar] [CrossRef] [PubMed]
- Shaw, B.; Thomas, T.H.; Cooke, D.T. Responses of sugar beet (Beta vulgaris L.) to drought and nutrient deficiency stress. Plant Growth Regul. 2002, 37, 77–83. [Google Scholar] [CrossRef]
- Yolcu, S.; Alavilli, H.; Ganesh, P.; Panigrahy, M.; Song, K. Salt and Drought Stress Responses in Cultivated Beets (Beta vulgaris L.) and Wild Beet (Beta maritima L.). Plants 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.Q.; Li, Z.Q.; Cao, H.; Wang, J.L. Genome-wide identification and expression analysis of the WRKY genes in sugar beet (Beta vulgaris L.) under alkaline stress. PeerJ 2019, 7, e7817. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.; Liu, D.; Wu, P.; Wang, Y.; Gai, Z.; Liu, L.; Yang, F.; Li, C.; Guo, G. Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress. Plant Mol. Biol. 2020, 102, 645–657. [Google Scholar] [CrossRef]
- Klemens, P.A.W.; Patzke, K.; Trentmann, O.; Poschet, G.; Büttner, M.; Schulz, A.; Marten, I.; Hedrich, R.; Neuhaus, H.E. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination. New Phytol. 2014, 202, 188–197. [Google Scholar] [CrossRef]
- Porcel, R.; Bustamante, A.; Ros, R.; Serrano, R.; Mulet Salort, J.M. BvCOLD1: A novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. Plant Cell Environ. 2018, 41, 2844–2857. [Google Scholar] [CrossRef] [PubMed]
- Kito, K.; Yamane, K.; Yamamori, T.; Matsuhira, H.; Tanaka, Y.; Takabe, T. Isolation, functional characterization and stress responses of raffinose synthase genes in sugar beet. J. Plant Biochem. Biotechnol. 2018, 27, 36–45. [Google Scholar] [CrossRef]
- Keller, I.; Müdsam, C.; Martins Rodrigues, C.; Kischka, D.; Zierer, W.; Sonnewald, U.; Harms, K.; Czarnecki, O.; Fiedler-Wiechers, K.; Koch, W.; et al. Cold-triggered induction of ROS- and raffinose metabolism in freezing-sensitive taproot tissue of sugar beet. Front. Plant Sci. 2021, 12, 715767. [Google Scholar] [CrossRef]
- Erbasol, I.; Bozdag, G.O.; Koc, A.; Pedas, P.; Karakaya, H.C. Characterization of two genes encoding metal tolerance proteins from Beta vulgaris subspecies maritima that confers manganese tolerance in yeast. Biometals 2013, 26, 795–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozdag, G.O.; Kaya, A.; Koc, A.; Noll, G.A.; Prüfer, D.; Karakaya, H.C. Characterization of a cDNA from Beta maritima that confers nickel tolerance in yeast. Gene 2014, 538, 251–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, A.M.; Tasnim, J.; El-Shehawi, A.M.; Rahman, M.A.; Parvez, M.S.; Ahmed, M.B.; Kabir, A.H. The Cd-induced morphological and photosynthetic disruption is related to the reduced Fe status and increased oxidative injuries in sugar beet. Plant Physiol. Biochem. 2021, 166, 448–458. [Google Scholar] [CrossRef]
- Fang, S.; Hou, X.; Liang, X. Response Mechanisms of Plants Under Saline-Alkali Stress. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Gai, Z.; Liu, D.; Wu, P.; Wang, B.; Zou, C.; Li, C.; Yang, F. Responses of Soil Microorganisms and Enzymatic Activities to Alkaline Stress in Sugar Beet Rhizosphere. Pol. J. Environ. Stud. 2020, 29, 739–748. [Google Scholar] [CrossRef]
- Yu, S.; Yu, L.; Hou, Y.; Zhang, Y.; Guo, W.; Xue, Y. Contrasting Effects of NaCl and NaHCO3 Stresses on Seed Germination, Seedling Growth, Photosynthesis, and Osmoregulators of the Common Bean (Phaseolus vulgaris L.). Agronomy 2019, 9, 409. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.; Wang, Y.; Wang, B.; Liu, D.; Liu, L.; Gai, Z.; Li, C. Long non-coding RNAs in the alkaline stress response in sugar beet (Beta vulgaris L.). BMC Plant Biol. 2020, 20, 227. [Google Scholar] [CrossRef] [PubMed]
- Alavilli, H.; Awasthi, J.P.; Rout, G.R.; Sahoo, L.; Lee, B.-H.; Panda, S.K. Overexpression of a Barley Aquaporin Gene, HvPIP2;5 Confers Salt and Osmotic Stress Tolerance in Yeast and Plants. Front. Plant Sci. 2016, 7, 1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alavilli, H.; Lee, H.; Park, M.; Lee, B.-H. Antarctic Moss Multiprotein Bridging Factor 1c Overexpression in Arabidopsis Resulted in Enhanced Tolerance to Salt Stress. Front. Plant Sci. 2017, 8, 1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, G.; Wang, G.; Stevanato, P.; Lv, C.; Wang, Q.; Yu, L.; Wang, Y. Physiological and Proteomic Analysis of Different Molecular Mechanisms of Sugar Beet Response to Acidic and Alkaline pH Environment. Front. Plant Sci. 2021, 12, 682799. [Google Scholar] [CrossRef]
- Gong, B.; Li, X.; Bloszies, S.; Wen, D.; Sun, S.; Wei, M.; Li, Y.; Yang, F.; Shi, Q.; Wang, X. Sodic alkaline stress mitigation by interaction of nitric oxide and polyamines involves antioxidants and physiological strategies in Solanum lycopersicum. Free Radic Biol. Med. 2014, 71, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Olias, R.; Eljakaoui, Z.; Li, J.; Morales, P.A.D.; Marín-Manzano, M.C.; Pardo, J.M.; Belver, A. The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ. 2009, 32, 904–916. [Google Scholar] [CrossRef]
- Blumwald, E.; Aharon, G.S.; Apse, M.P. Sodium transport in plant cells. Biochim. Biophys. Acta 2000, 1465, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Asada, K.; Takahashi, M. Production and scavenging of active oxygen in chloroplasts. In Photoinhibition; Kyle, D.J., Osmond, C.B., Arntzen, C.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1987; pp. 227–287. [Google Scholar]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Wang, Y.; Stevanato, P.; Yu, L.; Zhao, H.; Sun, X.; Sun, F.; Li, J.; Geng, G. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. J. Plant Res. 2017, 130, 1079–1093. [Google Scholar] [CrossRef] [PubMed]
- Bor, M.; Özdemir, F.; Türkan, I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci. 2003, 164, 77–84. [Google Scholar] [CrossRef]
- Li, J.; Cui, J.; Dai, C.; Liu, T.; Cheng, D.; Luo, C. Whole-Transcriptome RNA Sequencing Reveals the Global Molecular Responses and CeRNA Regulatory Network of mRNAs, lncRNAs, miRNAs and circRNAs in Response to Salt Stress in Sugar Beet (Beta vulgaris). Int. J. Mol. Sci. 2021, 22, 289. [Google Scholar] [CrossRef] [PubMed]
- Oster, J.D.; Shainberg, I.; Abrol, I.P. Reclamation of Salt-Affected Soils. In Agricultural Drainage; American Society of Agronomy, Inc. Crop Science Society of America, Inc. Soil Science Society of America, Inc.: Madison, WI, USA, 1999; Volume 38, pp. 659–691. [Google Scholar]
- Geng, G.; Li, R.; Stevanato, P.; Lv, C.; Lu, Z.; Yu, L.; Wang, Y. Physiological and Transcriptome Analysis of Sugar Beet Reveals Different Mechanisms of Response to Neutral Salt and Alkaline Salt Stresses. Front. Plant Sci. 2020, 11, 571864. [Google Scholar] [CrossRef]
- Zou, C.L.; Wang, Y.B.; Liu, L.; Liu, D.; Wu, P.R.; Yang, F.F.; Wang, B.; Tong, T.; Liu, X.M.; Li, C.F. Photosynthetic capacity, osmotic adjustment and antioxidant system in sugar beet (Beta vulgaris L.) in response to alkaline stress. Photosynthetica 2019, 57, 350–360. [Google Scholar] [CrossRef]
- Gong, B.; Wen, D.; VandenLangenberg, K.; Wei, M.; Yang, F.; Shi, Q.; Wang, X. Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Sci. Hortic. 2013, 157, 1–12. [Google Scholar] [CrossRef]
- Xu, D.; Tuyen, D.D. Genetic studies on saline and sodic tolerances in soybean. Breed Sci 2012, 61, 559–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.H.; Yang, C.W.; Yang, M.Y. Photosynthesis, photosystem II efficiency, amino acid metabolism and ion distribution in rice (Oryza sativa L.) in response to alkaline stress. Photosynthetica 2014, 52, 157–160. [Google Scholar] [CrossRef]
- Liu, L.; Ueda, A.; Saneoka, H. Physiological responses of white Swiss chard (Beta vulgaris L. subsp. cicla) to saline and alkaline stresses. Aust. J. Crop Sci. 2013, 7, 1046–1052. [Google Scholar]
- Ghoulam, C.; Foursy, A.; Fares, K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot. 2002, 47, 39–50. [Google Scholar] [CrossRef]
- Taghizadegan, M.; Toorchi, M.; Moghadam Vahed, M.; Khayamim, S. Evaluation of sugar beet breeding populations based morpho-physiological characters under salinity stress. Pak. J. Bot. 2019, 51. [Google Scholar] [CrossRef]
- Liu, L.; Wang, B.; Liu, D.; Zou, C.; Wu, P.; Wang, Z.; Wang, Y.; Li, C. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots. BMC Plant Biol. 2020, 20, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Pang, S.; Lu, Z.; Jin, B. Function and Mechanism of WRKY Transcription Factors in Abiotic Stress Responses of Plants. Plants 2020, 9, 1515. [Google Scholar] [CrossRef]
- Zou, C.; Wang, Y.; Wang, B.; Liu, D.; Liu, L.; Li, C.; Chen, F. Small RNA Sequencing in Sugar Beet Under Alkaline Stress. Sugar Tech 2021, 23, 57–64. [Google Scholar] [CrossRef]
- Ding, Y.; Shi, Y.; Yang, S. Molecular Regulation of Plant Responses to Environmental Temperatures. Mol. Plant 2020, 13, 544–564. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate Impacts on Agriculture: Implications for Crop Production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Moliterni, V.M.; Paris, R.; Onofri, C.; Orrù, L.; Cattivelli, L.; Pacifico, D.; Avanzato, C.; Ferrarini, A.; Delledonne, M.; Mandolino, G. Early transcriptional changes in Beta vulgaris in response to low temperature. Planta 2015, 242, 187–201. [Google Scholar] [CrossRef]
- Hoffmann, C.; Kluge-Severin, S. Growth analysis of autumn and spring sown sugar beet. Eur. J. Agron. 2011, 34, 1–9. [Google Scholar] [CrossRef]
- Jalilian, M.; Dehdari, M.; Fahliani, R.A.; Dehnovi, M.M. Study of cold tolerance of different sugar beet (Beta vulgaris L.) cultivars at seedling growth stage. Environ. Stresses Crop Sci. 2017, 10, Pe475–Pe490. [Google Scholar] [CrossRef]
- Biancardi, E. Genetics and Breeding of Sugar Beet; CRC Press: Boca Raton, FL, USA, 2005; pp. 45–57. [Google Scholar] [CrossRef]
- Stevanato, P. Resistance to abiotic stresses. In Genetics and Breeding of Sugar Beet; Biancardi, E., Campbell, L.G., Skaracis, G.N., De Biaggi, M., Eds.; Science Publisher Inc.: Enfield, NH, USA, 2005; pp. 116–119. [Google Scholar]
- Rodrigues, C.M.; Müdsam, C.; Keller, I.; Zierer, W.; Czarnecki, O.; Corral, J.M.; Reinhardt, F.; Nieberl, P.; Fiedler-Wiechers, K.; Sommer, F.; et al. Vernalization Alters Sink and Source Identities and Reverses Phloem Translocation from Taproots to Shoots in Sugar Beet. Plant Cell 2020, 32, 3206–3223. [Google Scholar] [CrossRef]
- Kirchhoff, M.; Svirshchevskaya, A.; Hoffman, C.; Schechert, A.; Jung, C.; Kopisch-Obuch, F. High degree of genetic variation of winter hardiness in a panel of Beta vulgaris L. Crop Sci. 2012, 52, 179–188. [Google Scholar] [CrossRef]
- Hoffmann, C. Root Quality of Sugarbeet. Sugar Tech 2011, 12, 276–287. [Google Scholar] [CrossRef]
- Barbier, H.; Nalin, F.; Guern, J. Freezing injury in sugar beet root cells: Sucrose leakage and modifications of tonoplast properties. Plant Sci. Lett. 1982, 26, 75–81. [Google Scholar] [CrossRef]
- ElSayed, A.; Rafudeen, M.; Golldack, D. Physiological aspects of raffinose family oligosaccharides in plants: Protection against abiotic stress. Plant Biol. 2014, 16, 1–8. [Google Scholar] [CrossRef]
- Paul, M.J.; Primavesi, L.F.; Jhurreea, D.; Zhang, Y. Trehalose metabolism and signaling. Annu. Rev. Plant Biol. 2008, 59, 417–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poschet, G.; Hannich, B.; Raab, S.; Jungkunz, I.; Klemens, P.; Krueger, S.; Wic, S.; Neuhaus, E.; Büttner, M. A Novel Arabidopsis Vacuolar Glucose Exporter Is Involved in Cellular Sugar Homeostasis and Affects the Composition of Seed Storage Compounds. Plant Physiol. 2011, 157, 1664–1676. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Yang, F.; Goddard, L.; Schubert, S. Differing Trends in the Tropical Surface Temperatures and Precipitation over Land and Oceans. J. Clim. 2004, 17, 653–664. [Google Scholar] [CrossRef]
- TeKrony, D.M.; Egli, D.B. Relationship of Seed Vigor to Crop Yield: A Review. Crop Sci. 1991, 31, 816–822. [Google Scholar] [CrossRef]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [Green Version]
- Havaux, M. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell Environ. 1993, 16, 461–467. [Google Scholar] [CrossRef]
- Murakami, Y.; Tsuyama, M.; Kobayashi, Y.; Kodama, H.; Iba, K. Trienoic fatty acids and plant tolerance of high temperature. Science 2000, 287, 476–479. [Google Scholar] [CrossRef]
- Malmir, M.; Mohammadian, R.; Sorooshzadeh, A.; Mokhtassi-Bidgoli, A.; Ehsanfar, S. The response of the sugar beet (Beta vulgaris L. ssp. vulgaris var. altissima Döll) genotypes to heat stress in initial growth stage. Acta Agric. Slov. 2020, 115, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Zandalinas, S.I.; Mittler, R.; Balfagon, D.; Arbona, V.; Gomez-Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant 2018, 162, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Albayrak, S.; Çamas, N. Effects of temperature and light intensity on growth of fodder beet (Beta vulgaris var. crassa Mansf.). Bangladesh J. Bot. 2007, 36, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Demmers-Derks, H.; Mitchell, R.A.C.; Mitchell, V.J.; Lawlor, D.W. Response of sugar beet (Beta vulgaris L.) yield and biochemical composition to elevated CO2 and temperature at two nitrogen applications. Plant Cell Environ. 1998, 21, 829–836. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.H.; Byrd, G.T. Relationships between specific leaf weight and mineral concentration among genotypes. Field Crops Res. 1996, 54, 19–28. [Google Scholar] [CrossRef]
- Hawkes, J.S. Heavy Metals. J. Chem. Educ. 1997, 74, 1374. [Google Scholar] [CrossRef]
- Herawati, N.; Suzuki, S.; Hayashi, K.; Rivai, I.F.; Koyoma, H. Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type. Bull. Environ. Contam. Toxicol. 2000, 64, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.K.; Liu, Z.Y.; Wang, H. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun. Soil Sci. Plant Anal. 2010, 41, 820–831. [Google Scholar] [CrossRef]
- Carrillo-Chavez, A.; Salas-Megchun, E.; Levresse, G.; Munoz-Torres, C.; Perez-Arvizu, O.; Gerke, T. Geochemistry and mineralogy of mine-waste material from a “skarn-type” deposit in central Mexico: Modeling geochemical controls of metals in the surface environment. J. Geochem. Explor. 2014, 144, 28–36. [Google Scholar] [CrossRef]
- Turgut, C.; Pepe, M.K.; Cutright, T.J. The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils. Chemosphere 2005, 58, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Dubey, R.S. Metal toxicity, oxidative stress and antioxidative defense system in plants. In Reactive Oxygen Species and Antioxidants in Higher Plants; Gupta, S.D., Ed.; CRC Press: Boca Raton FL, USA, 2011; pp. 177–203. [Google Scholar]
- Gamalero, E.; Lingua, G.; Berta, G.; Glick, B.R. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can. J. Microbiol. 2009, 55, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Villiers, F.; Ducruix, C.; Hugouvieux, V. Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 2011, 11, 1650–1663. [Google Scholar] [CrossRef] [PubMed]
- DalCorso, G.; Farinati, S.; Furini, A. Regulatory networks of cadmium stress in plants. Plant Signal Behav. 2010, 5, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Carrier, P.; Baryla, A.; Havaux, M. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta 2003, 216, 939–950. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Dubey, R.S. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep. 2007, 26, 2027–2038. [Google Scholar] [CrossRef] [PubMed]
- Reeves, R.D.; Baker, A.J.M. Metal accumulating plants. In Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment; Raskin, I., Ensley, B.D., Eds.; John Wiley and Sons: New York, NY, USA, 2000; pp. 193–229. [Google Scholar]
- Greger, M.; Ögren, E. Direct and indirect effects of Cd2+ on photosynthesis in sugar beet (Beta vulgaris). Physiol. Plant. 1991, 83, 129–135. [Google Scholar] [CrossRef]
- Kevrešan, S.; Petrović, N.; Popović, M.; Kandrač, J. Effect of heavy metals on nitrate and protein metabolism in sugar beet. Biol. Plant 1998, 41, 235–240. [Google Scholar] [CrossRef]
- Trela, Z.; Burdach, Z.; Przestalski, S.; Karcz, W. Effect of trimethyllead chloride on slowly activating (SV) channels in red beet (Beta vulgaris L.) taproots. Comptes Rendus Biologies 2012, 335, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Dubey, R.S. Lead toxicity in plants. Braz. J. Plant Physiol. 2005, 17, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Larbi, A.; Morales, F.; Abadía, A.; Gogorcena, Y.; Lucena, J.; Abadía, J. Effects of Cd and Pb in sugar beet plants grown in nutrient solution: Induced Fe deficiency and growth inhibition. Funct. Plant Biol. 2002, 29, 1453–1464. [Google Scholar] [CrossRef] [PubMed]
- Sagardoy, R.; Morales, F.; López-Millán, A.F.; Abadía, A.; Abadía, J. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biol. 2009, 11, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.; El-Meleigy, S.; Ebad, F.; Helmy, M.; Jentschke, G.; Godbold, D. Base cations ameliorate Zn toxicity but not Cu toxicity in sugar beet (Beta vulgaris). J. Plant Nutr. Soil Sci. 1999, 162, 275–279. [Google Scholar] [CrossRef]
- Gutierrez-Carbonell, E.; Lattanzio, G.; Sagardoy, R.; Rodríguez-Celma, J.; Ríos Ruiz, J.J.; Matros, A.; Abadía, A.; Abadía, J.; López-Millán, A.F. Changes induced by zinc toxicity in the 2-DE protein profile of sugar beet roots. J. Proteom. 2013, 94, 149–161. [Google Scholar] [CrossRef]
- Greger, M.; Johansson, M.; Stihl, A.; Hamza, K. Foliar uptake of Cd by pea (Pisum sativum) and sugar beet (Beta vulgaris). Physiol. Plant 1993, 88, 563–570. [Google Scholar] [CrossRef]
- Greger, M.; Johansson, M. Cadmium effects on leaf transpiration of sugar beet (Beta vulgaris). Physiol. Plant 1992, 86, 465–473. [Google Scholar] [CrossRef]
- Greger, M.; Bertell, G. Effect of Ca2+ and Cd2+ on the Carbohydrate Metabolism in Sugar Beet (Beta vulgaris). J. Exp. Bot. 1992, 43, 167–173. [Google Scholar] [CrossRef]
- Greger, M.; Lindberg, S. Effects of Cd2+ and EDTA on young sugar beets (Beta vulgaris). I. Cd2+ uptake and sugar accumulation. Physiol. Plant 1986, 66, 69–74. [Google Scholar] [CrossRef]
- Lindberg, S.; Wingstrand, G. Mechanism of Cd2+ inhibition of (K+ + Mg2+) ATPase activity and K+ (86Rb+) uptake in young roots of sugar beet (Beta vulgaris). Physiol. Plant. 1985, 63, 181–186. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Zouari, M.; Gogorcena, Y.; Lucena, J.J.; Abadía, J. Effects of cadmium and lead on ferric chelate reductase activities in sugar beet roots. Plant Physiol. Bioch. 2003, 41, 999–1005. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.A.; Popova, L.P. Functions and toxicity of cadmium in plants: Recent advances and future prospects. Turk. J. Bot. 2013, 37, 1–13. [Google Scholar]
- Abbas, T.; Rizwan, M.; Ali, S.; Adrees, M.; Zia-ur-Rehman, M.; Qayyum, M.F.; Ok, Y.S.; Murtaza, G. Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environ. Sci. Pollut. Res. 2018, 25, 25668–25680. [Google Scholar] [CrossRef]
- Pál, M.; Horváth, E.; Janda, T.; Páldi, E.; Szalai, G. Physiological changes and defense mechanisms induced by cadmium stress in maize. J. Plant Nutr. Soil. Sci. 2006, 169, 239–246. [Google Scholar] [CrossRef]
- Hall, J.L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 2002, 53, 1–11. [Google Scholar] [CrossRef]
- Yazici, M.A.; Asif, M.; Tutus, Y.; Ortas, I.; Ozturk, L.; Lambers, H.; Cakmak, I. Reduced root mycorrhizal colonization as affected by phosphorus fertilization is responsible for high cadmium accumulation in wheat. Plant Soil 2021, 468, 19–35. [Google Scholar] [CrossRef]
- Harada, E.; Kim, J.A.; Meyer, A.J.; Hell, R.; Clemens, S.; Choi, Y.E. Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol. 2010, 51, 1627–1637. [Google Scholar] [CrossRef] [PubMed]
- Poniedziałek, M.; Sękara, A.; Jędrszczyk, E.; Ciura, J. Phytoremediation efficiency of crop plants in removing cadmium, lead and zinc from soil. Folia Hortic. Ann. 2010, 22, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; An, Z.; Mao, Z.; Ma, L.; Lu, Z. Enhanced Heavy Metal Tolerance and Accumulation by Transgenic Sugar Beets Expressing Streptococcus thermophilus StGCS-GS in the Presence of Cd, Zn and Cu Alone or in Combination. PLoS ONE 2015, 10, e0128824. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.K.; Minhas, P.S.; Lal, K.; Chaturvedi, R.K.; Yadav, G.; Verma, T.P. Accumulation of metals in soils, groundwater and edible parts of crops grown under long-term irrigation with sewage mixed industrial effluents. Bull. Environ. Contam Toxicol 2015, 95, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Farrell, M.; Jones, D.L. Use of composts in the remediation of heavy metal contaminated soil. J. Hazard. Mater. 2010, 175, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Dronnet, V.M.; Renard, C.M.G.C.; Axelos, M.A.V.; Thibault, J.-F. Binding of divalent metal cations by sugar-beet pulp. Carbohydr. Polym. 1997, 34, 13–82. [Google Scholar] [CrossRef]
- Vasiljeva, S.; Smirnova, G.; Basova, N.; Babarykin, D. Cadmium-induced oxidative damage and protective action of fractioned red beet (Beta vulgaris) root juice in chickens. Agron. Res. 2018, 16, 1517–1526. [Google Scholar] [CrossRef]
- Colovic, M.B.; Vasic, V.M.; Djuric, D.M.; Krstic, D.Z. Sulphur-containing amino acids: Protective role against free radicals and heavy metals. Curr. Med. Chem. 2018, 25, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Levall, M.W.; Bornman, J.F. Differential response of a sensitive and tolerant sugarbeet line to Cercospora beticola infection and UV-B radiation. Physiol. Plant. 2001, 109, 21–27. [Google Scholar] [CrossRef]
- Young, A.R.; Claveau, J.; Rossi, A.B. Ultraviolet radiation and the skin: Photobiology and sunscreen photoprotection. J. Am. Acad. Derm. 2017, 76, S100–S109. [Google Scholar] [CrossRef] [Green Version]
- Rahimzadeh, P.; Hosseini Sarghein, S.; Dilmaghani, K. Effects of UV-A and UV-C radiation on some morphological and physiological parameters in savory (Satureja hortensis L.). Ann. Biol. Res. 2011, 2, 164–171. [Google Scholar]
- Panagopoulos, I.; Bornman, J.F.; Bjorn, L.O. Effects of ultraviolet radiation and visible light on growth, fluorescence induction, ultra-weak luminescence and peroxidase activity in sugar beet plants. J. Photochem. Photobiol. B Biol. 1990, 8, 73–87. [Google Scholar] [CrossRef]
- Panagopoulos, I.; Bornman, J.F.; Björn, L. The effect of UV-B and UV-C radiation on Hibiscus leaves determined by ultraweak luminescence and fluorescence induction. Physiol. Plant. 1989, 76, 461–465. [Google Scholar] [CrossRef]
- Rahimzadeh Karvansara, P.; Razavi, S.M. Physiological and biochemical responses of sugar beet (Beta vulgaris L) to ultraviolet-B radiation. PeerJ 2019, 7, e6790. [Google Scholar] [CrossRef] [PubMed]
- Levall, M.W.; Bornman, J.F. Selection in vitro for UV-tolerant sugar beet (Beta vulgaris) somaclones. Physiol. Plant. 1993, 88, 37–43. [Google Scholar] [CrossRef]
- Bornman, J.F.; Bornman, C.H.; Björn, L.O. Effects of Ultraviolet Radiation on Viability of Isolated Beta vulgaris and Hordeum vulgare Protoplasts. Z. Für Pflanzenphysiol. 1982, 105, 297–306. [Google Scholar] [CrossRef]
- Bornman, J.F.; Evert, R.F.; Mierzwa, R.J. The effect of UV-B and UV-C radiation on sugar beet leaves. Protoplasma 1983, 117, 7–16. [Google Scholar] [CrossRef]
Type of Abiotic Stress | Gene Name | References |
---|---|---|
Alkaline stress | WRKY transcription factor family (WRKY10 and 16) | [35] |
Alkaline stress | Metal Tolerance Protein 11 (MTP11) | [36] |
Alkaline stress | Ethylene-insensitive protein 2 (EIN2) | [36] |
Alkaline stress | Polyphenol Oxidase (PPO) | [36] |
Cold stress | Integral membrane protein (IMP) | [37] |
Cold stress | A novel ER-located aquaporin gene (COLD1) | [38] |
Cold stress | Raffinose synthase 1 and 2 (RS1 and RS2) | [39] |
Freezing | Galactinol synthase 2 and 3 (GOLS2 and GOLS3) Raffinose synthase 2 and 5 (RS2 and RS5) | [40] |
Heavy metal | Metal tolerance protein (BmMTP10 and BmMTP11) | [41] |
Heavy metal | Toxic nickel concentration (NIC3, NIC6 and NIC8) | [42] |
Heavy metal | Natural resistance-associated macrophage protein 3 (NRAMP3) | [43] |
Beet Variety | Stress Treatments | Experimental Results | Reference |
---|---|---|---|
B. vulgaris, KWS0143 | NaHCO3:Na2CO3 (0.5%, 0.7%, 0.9%) | High activity levels of antioxidant enzymes, such as CAT and APX | [30] |
B. vulgaris, H004 | pH 5, pH 7.5, and pH 9.5 | Acidic pH resulted in more growth retardation, photosynthesis, and enzymatic aberrations than neutral and alkaline pH | [50] |
B. vulgaris, KWS0143 | 75 mM alkaline solution (NaHCO3:Na2CO3, 2:1, pH 9.67) | Significant inhibition of plant growth | [47] |
A decrease in stomatal conductance (Gs), transpiration rate (Tr), and net photosynthetic rate (Pn) | |||
Identification of 93 differentially expressed alkaline stress-responsive IncRNAs | |||
B. vulgaris, H004 | Neutral salt (NaCl:Na2SO4, 1:1) and alkaline salt (Na2CO3) | Mild neutral salt and alkaline conditions led to a significant increase in total biomass, leaf area, and photosynthesis | [61] |
B. vulgaris, KWS0143 and Beta464 | 0, 25, 50, 75 and 100 mM of mixed (Na2CO3:NaHCO3, 1:2) alkaline conditions | The levels of photosynthetic pigments were remarkably diminished by high alkaline stress (75 and 100 mM) | [62] |
Sugar beet displayed resistance to alkaline stress through osmotic adjustment and antioxidant enzymes under mild alkaline stress | |||
B. vulgaris L. var. cicla | 50 and 100 mM alkaline salt (NaHCO3 and Na2CO3, 9:1) | Growth retardation due to high pH, CO3 2−, and HCO3– toxicity | [66] |
Lower GB levels under 50 mM alkaline stress than 50 mM salt stress, whereas no significant alterations in proline levels | |||
B. vulgaris, Gantang7 | 0, 15, 25, 50 and 100 mM NaHCO3 | Among 58 putative WRKY genes, 9 genes were found to be responsive to alkaline stress (~15 mM–100 mM NaCHO3) in both root and shoot | [35] |
Enhanced expression of BvWRKY10 gene in shoots and BvWRKY16 expression in roots under alkaline conditions | |||
B. vulgaris, KWS0143 | 75 mM alkaline solution (Na2CO3:NaHCO3, 1:2, pH 9.67) | Differential expression of 1270 genes in alkaline stress-tolerant cultivar KWS0143 under alkaline stress | [36] |
B. vulgaris, KWS0143 | 75 mM alkaline solution (Na2CO3:NaHCO3, 1:2, pH 9.67) for short-term (3 d), and long-term (7 d) | 53 novel miRNAs responsive to long-term and short-term alkaline stress | [71] |
Beet Variety | Stress Treatments | Experimental Results | Reference |
---|---|---|---|
B. vulgaris, Merak, and Antic cultivars | Cold stress (0 °C, 5 °C and 10 °C) | Some parameters, such as proline content, Fv/Fm ratio, and root dry matter, were higher in cold-tolerant varieties than sensitive ones | [77] |
Genetic diversity in cold tolerance of sugar beet cultivars was observed at seedling stage | |||
B. vulgaris, Bianca | Cold stress (−2 °C) | Prolonged exposure of sugar beets at the young seedling stage to the cold stress seriously limits the yield | [75] |
After short-term cold stress, transcription factors and genes involved in metabolic pathways were expressed in sugar beet leaves and roots | |||
B. vulgaris | Cold stress (−2 °C and −10 °C) | Sugar beet plantlets at the cotyledon stage completely died at −2 °C; however, at the 3–4 leaf stages, the plants can survive up to −10 °C | [78,79] |
B. vulgaris | Cold stress (−5 °C) | Freezing injury results in an increase in tonoplast permeability for sucrose | [83] |
Under freezing conditions, the sucrose content decreased in roots, followed by leakage of the root sap due to cell alteration in membrane permeability and infection with microbes | |||
B. vulgaris, NK-210 mm-0 | Cold stress (4 °C) | The transcript levels of two sugar beet genes, B. vulgaris RS1 and RS2 (BvRS1 and BvRS2), encoding raffinose synthase, were induced by cold stress in sugar beet leaves and roots | [39] |
B. vulgaris genotypes; GT1, GT2, and GT3 | Cold stress (12 °C, 4 °C, and 0 °C) | Raffinose accumulation and transcription of genes involved in raffinose metabolism in leaves and taproots have been observed under low temperature | [40] |
B. vulgaris, belladonna | Cold stress (4 °C) | Ectopic overexpression of BvIMP in Arabidopsis led to altered glucose concentration under cold conditions, lower accumulation of monosaccharides | [37] |
B. vulgaris | Cold stress (10 °C) | Overexpression of BvCOLD1 restored the membrane fluidity in transgenic Arabidopsis lines under cold stress and rendered tolerance to cold | [38] |
B. vulgaris var. altissima Döll | Heat stress (20 °C and 30 °C) | Among 31 sugar beet genotypes, the tolerant genotype exhibited higher germination, seed vigor, plumule length, and seedling length under heat stress | [92] |
B. vulgaris, USKPS25 and USC944-6-68 breeding lines | High temperature conditions in the field experiments | The stress tolerance index (STI) showed positive correlation with average root and sugar yields, which were used as selection parameters to identify heat-tolerant lines | [29] |
B. vulgaris var. crassa Mansf. Fodder beet cv. Ecdogelb and Ecdorot | Heat and cold stress (18.28, 19.58, 18.26, 17.61, and 14.1 °C) | Two fodder beet cultivars showed the highest levels of RGR, RWR, and DLW under high temperature and low light intensity | [94] |
Beet Variety | Stress Treatments | Experimental Results | Reference |
---|---|---|---|
B. vulgaris, red beet | 0.1–100 μM trimethyllead chloride (Met3PbCl) | Lead (Pb) damage the vacuolar membrane in red beet taproots | [112] |
B. vulgaris, Monohill | 10 μM and 50 μM Cd-EDTA or CdCl2 | As compared to control plants, Cd-treated plants showed lower shoot dry weights, photosynthetic pigments, and reduction in water content of shoots and fine roots | [114] |
The reduction in uptake of N, P, Mg, K, Mn, Cu, and Zn due to Cd stress | |||
B. vulgaris, Monohill | Direct Cd application (1, 5, 20, 50, 2000 μM CdCl2) Indirect Cd application (5, 10, 20 μM CdCl2) | Direct application of Cd on isolated leaves, protoplasts and chloroplasts inhibited CO2 fixation, whereas indirect Cd application through the culture medium decreased the maximal quantum yield of CO2 assimilation | [110] |
B. vulgaris | 0; 0.5; 5; 10 g Cd 0 1; 10; 20 g Ni Cd + Ni (0 + 0, 0.25 + 0.5, 2.5 + 5, 5 + 10) | The highest Ni concentration (20 g) is lethal to the plants | [27] |
The single application of Ni causes higher toxic effects than the combination of Ni and Cd | |||
B. vulgaris | 10 μM CdSO4 | Cd stress causes growth retardation in sugar beets because of low iron levels resulting in photosynthetic inefficiency, and oxidative damage | [43] |
Sugar beet roots displayed higher levels of BvHMA3 and BvNRAMP3 gene expression, whereas the reduction in ferric chelate reductase (FCR) activity and expression of iron-regulated transporter 1 (BvIRT1) gene was observed | |||
B. vulgaris, Orbis | 50, 100, and 300 μM ZnSO4 | Zn toxicity decreased macronutrient concentrations (N, K, and Mg), whereas it enhanced the P level in shoots as well as roots | [115] |
The toxic level of Zn reduced water content, leaf numbers, and root/shoot ratio along with wrinkled and chlorotic leaves | |||
B. vulgaris, Orbis | 50, 100, and 300 μM ZnSO4 | High levels of Zn led to cell death and cessation of metabolism through decreasing aerobic respiration and damaging defense systems required for oxidative stress response | [117] |
B. vulgaris, Qaweterna | 0.1, 1, 10, 100 μM CuSO4, or ZnSO4 | Cu and Zn treatments significantly reduced plant growth, shoot and root lengths, and dry weight | [116] |
At high Cu concentrations, the shoots showed turgor loss, but lower Cu concentration did not affect plant growth | |||
B. vulgaris, Monohill | 0 to 10 μM CdCl2 | Sugar beet seedlings grown in nutrient solution containing high concentrations of CdCl2 showed an increased leaf transpiration rate and a decreased stomatal aperture area. Thus, higher Cd concentrations affected the permeability of the leaf cuticle. | [119] |
B. vulgaris, Monohill | 0, 1, 5 or 20 μM Cd2+ | Long-term Cd exposure caused decreased sucrose uptake and diminished dry weight in taproots, but direct addition of Cd2+ to the medium enhanced the sucrose uptake at the tonoplast | [120] |
B. vulgaris, Monohill | 0, 5 or 50 μM Cd2+ | Increased accumulation of Cd lowered the contents of glucose, fructose, and sucrose in both shoots and roots | [121] |
B. vulgaris, Monohill | Short-term application: 10 and 50 μM CdCl2/Cd-EDTA, or 1 and 2 mM Pb-EDTA for 30 min and 1 h Long-term application: 10 and 50 μM CdCl2, /Cd-EDTA, or PbCl2, and 10; 50; 500; 1000 and 2000 μM Pb-EDTA for 7–10 days | The activity of FCR involved in iron homeostasis was decreased under short-term exposure of Pb and Cd, but a prolonged exposure increased the FCR activity in roots | [123] |
B. vulgaris, hybrid NS Hy-11 | 10−4, 10−2, 1 mM NiSO4, or CdCl2 | When sugar beet was exposed to the highest concentrations of heavy metals (Ni and Cd), the nitrate content and nitrate reductase (NR) activity dramatically dropped in the leaves | [111] |
B. vulgaris, US-8916 | 0, 50, 100, 200 μM CdCl2, ZnCl2, or CuCl2 | Overexpression of StGCS-GS from S. thermophilus in sugar beets showed the explicit role of this gene in enhancing Cd, Zn, and Cu tolerance and accumulation of these metals in transgenic sugar beets | [131] |
B. maritima | 75 μM NiCl2 | Yeast cells expressing a cDNA clone (NIC6) from B. maritima showed high tolerance to Ni | [42] |
B. maritima plants overcome the Ni-induced toxicity by internal sequestration, but not by effluxing Ni | |||
B. maritima, TR 51196 | 8 mM Mn2+ for yeast cells 2 mM Mn2+ for gene expression analyses | Two MTP genes, B. maritima MTP10 and MTP11 encoding metal-tolerant proteins, were found to render tolerance to high concentrations of Mn2+ in yeast cells | [41] |
Transcript level of BmMTP10 gene was augmented by the excessive Mn2+, but BmMTP11 transcription was not altered |
Beet Variety | Stress Treatments | Experimental Results | Reference |
---|---|---|---|
B. vulgaris, inbred genotype no. 22 | Yellow light (350–450 nm) Yellow light + UV-B (350–450 nm + 280–320 nm) | The leaves curled inwards and positioned towards light source with a 68% growth reduction over control under yellow light, whereas the plants were dead under the combination of yellow light and UV-B | [140] |
Yellow light and a combination of white light and UV-B led to higher carotenoid levels | |||
B. vulgaris, BR1 | 3.042, 6.084 and 9.126 kJm−2d −1 of UV-B | The UV-B-treated sugar beets showed a drastic growth retardation with reduction in fresh weight, dry weight, and height | [142] |
Total chlorophyll and carotenoid contents and photochemical efficiency of PSII were reduced, but the betalain levels were increased under UV-B | |||
B. vulgaris, inbred lines S (CCA 242) and T (GGO 480) | 13 kJ m−2 d−1 of UV-B Cercospora beticola | The sugar beet line tolerant to Cercospora fungal infection was shown to be tolerant to UV-B alone and combined UV-B and biotic stresses, but the photosynthetic yield significantly reduced in sensitive line | [137] |
B. vulgaris, Primahill, derivative 9164 | UV-B (290–320 nm) UV-C (254 nm) | The ultrastructural image of sugar beet leaves showed prominent damages due to UV-B (290–320 nm), whereas UV-C (254 nm)-treated plants showed fewer structural changes, leading to a higher quantity of starch in chloroplasts, grana stacks fused to each other, and decreased damage to the leaf surface | [144,145] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yolcu, S.; Alavilli, H.; Ganesh, P.; Asif, M.; Kumar, M.; Song, K. An Insight into the Abiotic Stress Responses of Cultivated Beets (Beta vulgaris L.). Plants 2022, 11, 12. https://doi.org/10.3390/plants11010012
Yolcu S, Alavilli H, Ganesh P, Asif M, Kumar M, Song K. An Insight into the Abiotic Stress Responses of Cultivated Beets (Beta vulgaris L.). Plants. 2022; 11(1):12. https://doi.org/10.3390/plants11010012
Chicago/Turabian StyleYolcu, Seher, Hemasundar Alavilli, Pushpalatha Ganesh, Muhammad Asif, Manu Kumar, and Kihwan Song. 2022. "An Insight into the Abiotic Stress Responses of Cultivated Beets (Beta vulgaris L.)" Plants 11, no. 1: 12. https://doi.org/10.3390/plants11010012
APA StyleYolcu, S., Alavilli, H., Ganesh, P., Asif, M., Kumar, M., & Song, K. (2022). An Insight into the Abiotic Stress Responses of Cultivated Beets (Beta vulgaris L.). Plants, 11(1), 12. https://doi.org/10.3390/plants11010012